1
|
Nguyen TT, Ly BT, Vo TLH, Chu DB, Cao TMH, Bui VH, Sekiguchi K, Van DA. Semi-diurnal distribution of polycyclic aromatic hydrocarbons bound to PM 2.5 and PM 0.1 during pollution episode in the urban area of Hanoi. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:772. [PMID: 39088135 DOI: 10.1007/s10661-024-12923-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Every year, Hanoi suffers from several episodes (periods with daily concentration of PM2.5 higher than 50 µg m-3 during at least two consecutive days). These episodes are of health concern because of the high concentration of PM2.5 and/or PM0.1 and the presence of PM-bound toxic components, such as, PAHs. In this study, the concentrations of PAHs bound to PM2.5 and PM0.1 in night-time and day-time samples during episode and non-episode periods in December 2021 were determined. The concentrations of PAHs bound to PM2.5 were found to increase significantly from day-time samples of 3.24 ± 0.83 ng m-3 to night-time samples of 10.8 ± 4.45 ng m-3 in episode periods. However, PAHs bound to PM0.1 increased slightly from day-time samples of 0.58 ± 0.12 ng m-3 to night-time samples of 0.89 ± 0.30 ng m-3 in episode periods. Diagnostic ratios of PAHs indicate that biomass/coal combustion and vehicular emission are the primary sources of PAHs. The incremental lifetime cancer risk was estimated to vary from 8.7E-09 to 2.5E-08 for children and 6.7E-08 to 2.2E-07 for adults, respectively. Accordingly, loss of life expectancy was estimated at 0.11 min and 0.82 min for children and adults, respectively. These findings imply that the carcinogenic impact induced by PAHs via inhalation is negligible during the episode period.
Collapse
Affiliation(s)
- Thi-Thao Nguyen
- School of Chemistry and Life Sciences, Hanoi University of Science and Technology, No. 1 Dai Co Viet, Hanoi, 100000, Vietnam
| | - Bich-Thuy Ly
- School of Chemistry and Life Sciences, Hanoi University of Science and Technology, No. 1 Dai Co Viet, Hanoi, 100000, Vietnam
| | - T Le-Ha Vo
- School of Chemistry and Life Sciences, Hanoi University of Science and Technology, No. 1 Dai Co Viet, Hanoi, 100000, Vietnam
| | - Dinh-Binh Chu
- School of Chemistry and Life Sciences, Hanoi University of Science and Technology, No. 1 Dai Co Viet, Hanoi, 100000, Vietnam
| | - T Mai-Huong Cao
- School of Chemistry and Life Sciences, Hanoi University of Science and Technology, No. 1 Dai Co Viet, Hanoi, 100000, Vietnam
| | - Van-Hoi Bui
- Department of Water-Environment-Oceanography, University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology, No. 18 Hoang Quoc Viet, Cau Giay, Hanoi, 100000, Vietnam
| | - Kazuhiko Sekiguchi
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama, 338-8570, Japan
| | - Dieu-Anh Van
- School of Chemistry and Life Sciences, Hanoi University of Science and Technology, No. 1 Dai Co Viet, Hanoi, 100000, Vietnam.
| |
Collapse
|
2
|
Fu J, Ji J, Luo L, Li X, Zhuang X, Ma Y, Wen Q, Zhu Y, Ma J, Huang J, Zhang D, Lu S. Temporal and spatial distributions, source identification, and health risk assessment of polycyclic aromatic hydrocarbons in PM 2.5 from 2016 to 2021 in Shenzhen, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:103788-103800. [PMID: 37697187 DOI: 10.1007/s11356-023-29686-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous contaminants in the atmosphere that have drawn intense attention due to their carcinogenicity and mutagenicity. In this work, 1424 air samples were collected between January 2016 and December 2021 in three areas of Shenzhen, China to determine the concentrations of PM2.5 and PAHs and their spatiotemporal variation. Human health risks due to the daily intake and uptake of PAHs and the resulting incremental lifetime cancer risk (ILCR) were also evaluated. PAHs were detected frequently in the samples at concentrations between 0.28 and 32.7 ng/m3 (median: 1.04 ng/m3). PM2.5 and PAH concentrations decreased from 2016 to 2021, and the Yantian area had lower median concentrations of PM2.5 (23.0 μg/m3) and PAHs (0.02 ng/m3) than the Longgang and Nanshan areas. The concentrations of PM2.5 and PAHs were significantly higher in winter than in summer. Analysis of diagnostic ratios indicated that petroleum combustion was the dominant source of airborne PAHs in Shenzhen. The estimated daily intake (EDI) and uptake (EDU) of PAHs by local residents decreased gradually with increasing age, indicating that infants are at particular risk of PAH exposure. However, the incremental lifetime cancer risks (ILCRs) were below the threshold value of 10-6, indicating that inhalation exposure to PAHs posed a negligible carcinogenic risk to Shenzhen residents. While promising, these results may underestimate actual PAH exposure levels, so further analysis of health risks due to PAHs in Shenzhen is needed.
Collapse
Affiliation(s)
- Jinfeng Fu
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, 518107, China
| | - Jiajia Ji
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Lan Luo
- Longhua District Center for Disease Control and Prevention, Shenzhen, 518054, China
| | - Xiaoheng Li
- Longhua District Center for Disease Control and Prevention, Shenzhen, 518054, China
| | - Xiaoxin Zhuang
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, 518107, China
| | - Ying Ma
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, 518107, China
| | - Qilan Wen
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, 518107, China
| | - Yue Zhu
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, 518107, China
| | - Jiaojiao Ma
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, 518107, China
| | - Jiayin Huang
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, 518107, China
| | - Duo Zhang
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, 518107, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, 518107, China.
| |
Collapse
|
3
|
Zhang X, Zhang H, Wang Y, Bai P, Zhang L, Wei Y, Tang N. Characteristics and determinants of personal exposure to typical air pollutants: A pilot study in Beijing and Baoding, China. ENVIRONMENTAL RESEARCH 2023; 218:114976. [PMID: 36460073 DOI: 10.1016/j.envres.2022.114976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/14/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Personal exposure to fine particulate matter (PM2.5), nitrogen oxides (NOx, NO2 and NO), ozone (O3) and sulfur dioxide (SO2) was repeatedly measured among fourteen office workers in Beijing and Baoding, China in summer, autumn and winter of 2019. Time-activity patterns were simultaneously recorded. Determinants of personal air pollution exposure were investigated for each pollutant via a linear mixed effect model. The personal concentrations of PM2.5, NO2, NO and O3 were higher in autumn and winter than those in summer. A decreasing trend was found in the personal PM2.5 level for a typical indoor population in Beijing, indicating that particulate pollution was effectively controlled in Beijing and its surrounding area. The personal levels of PM2.5, NO2, and O3 were weakly correlated with those monitored at ambient stations and were lower than the respective ambient levels except for PM2.5 in summer and NO2 in winter. This pilot study showed that the indoor air environment, ambient pollution, traffic-related variables and temperature were significant exposure sources for office workers. Our study highlighted the significance of controlling traffic emissions and improving the workplace air quality to protect the health of office workers. More importantly, we demonstrated the feasibility of model development for personal air pollution exposure prediction.
Collapse
Affiliation(s)
- Xuan Zhang
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Hao Zhang
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Yan Wang
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Pengchu Bai
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Lulu Zhang
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, 430068, China; Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Yongjie Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Center for Global Health, School of Public Health, Nanjing Medical University, China.
| | - Ning Tang
- Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan; Institute of Medical, Pharmaceutical and Health Science, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
| |
Collapse
|
4
|
Bai X, Wei J, Ren Y, Gao R, Chai F, Li H, Xu F, Kong Y. Pollution characteristics and health risk assessment of polycyclic aromatic hydrocarbons and nitrated polycyclic aromatic hydrocarbons during heating season in Beijing. J Environ Sci (China) 2023; 123:169-182. [PMID: 36521982 DOI: 10.1016/j.jes.2022.02.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 06/17/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and their nitrated derivatives (NPAHs) attract continuous attention due to their outstanding carcinogenicity and mutagenicity. In order to investigate the diurnal variations, sources, formation mechanism, and health risk assessment of them in heating season, particulate matter (PM) were collected in Beijing urban area from December 26, 2017 to January 17, 2018. PAHs and NPAHs in PM were quantitatively analyzed via gas chromatography-mass spectrometry (GC-MS) . Average daily concentrations of PAHs and NPAHs were (78 ± 54) ng/m3 and (783 ± 684) pg/m3, respectively. The concentrations of them were significantly higher at nighttime than at daytime, and NPAHs concentrations were 1-2 orders of magnitude lower than PAHs concentrations. In the heating season, the dominant species of PAHs include benzo[b]fluoranthene, fluoranthene, pyrene, and chrysene, while 9-nitroanthracene, 2+3-nitrofluoranthene, and 2-nitropyrene were dominant species for NPAHs. NPAHs were found to have a single peak during heating and to be primarily distributed in the 0.4-0.7 µm particle size. Primary emissions such as biomass burning, coal combustion, and traffic emissions were the major sources of PAHs. NPAHs were produced by the primary source of vehicle emissions and the secondary reaction triggered by OH radicals, as well as biomass burning during daytime. According to the health risk assessment, the total carcinogenic risk was higher in adults than in children. While upon oral ingestion, the carcinogenic risk in children was higher than that of adults, but the risk of adults was higher than children through skin contact and respiratory inhalation.
Collapse
Affiliation(s)
- Xurong Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Shandong University, Environment Research Institute, Qingdao 266237, China
| | - Jie Wei
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanqin Ren
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Rui Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Fahe Chai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hong Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fei Xu
- Shandong University, Environment Research Institute, Qingdao 266237, China
| | - Yuxue Kong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
5
|
Zhang H, Zhang X, Wang Y, Bai P, Hayakawa K, Zhang L, Tang N. Characteristics and Influencing Factors of Polycyclic Aromatic Hydrocarbons Emitted from Open Burning and Stove Burning of Biomass: A Brief Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:3944. [PMID: 35409624 PMCID: PMC8998094 DOI: 10.3390/ijerph19073944] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/06/2023]
Abstract
To mitigate global warming and achieve carbon neutrality, biomass has become a widely used carbon-neutral energy source due to its low cost and easy availability. However, the incomplete combustion of biomass can produce polycyclic aromatic hydrocarbons (PAHs), which are harmful to human health. Moreover, increasing numbers of wildfires in many regions caused by global warming have greatly increased the emissions of PAHs from biomass burning. To effectively mitigate PAH pollution and health risks associated with biomass usage, the concentrations, compositions and influencing factors of PAH emissions from biomass burning are summarized in this review. High PAH emissions from open burning and stove burning are found, and two- to four-ring PAHs account for a higher proportion than five- and six-ring PAHs. Based on the mechanism of biomass burning, biomass with higher volatile matter, cellulose, lignin, potassium salts and moisture produces more PAHs. Moreover, burning biomass in stoves at a high temperature or with an insufficient oxygen supply can increase PAH emissions. Therefore, the formation and emission of PAHs can be reduced by pelletizing, briquetting or carbonizing biomass to increase its density and burning efficiency. This review contributes to a comprehensive understanding of PAH pollution from biomass burning, providing prospective insight for preventing air pollution and health hazards associated with carbon neutrality.
Collapse
Affiliation(s)
- Hao Zhang
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-Machi, Kanazawa 920-1192, Japan; (H.Z.); (X.Z.); (Y.W.); (P.B.)
| | - Xuan Zhang
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-Machi, Kanazawa 920-1192, Japan; (H.Z.); (X.Z.); (Y.W.); (P.B.)
| | - Yan Wang
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-Machi, Kanazawa 920-1192, Japan; (H.Z.); (X.Z.); (Y.W.); (P.B.)
| | - Pengchu Bai
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-Machi, Kanazawa 920-1192, Japan; (H.Z.); (X.Z.); (Y.W.); (P.B.)
| | - Kazuichi Hayakawa
- Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-Machi, Kanazawa 920-1192, Japan;
| | - Lulu Zhang
- Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-Machi, Kanazawa 920-1192, Japan;
| | - Ning Tang
- Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-Machi, Kanazawa 920-1192, Japan;
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-Machi, Kanazawa 920-1192, Japan
| |
Collapse
|
6
|
Yang L, Zhang L, Chen L, Han C, Akutagawa T, Endo O, Yamauchi M, Neroda A, Toriba A, Tang N. Polycyclic aromatic hydrocarbons and nitro-polycyclic aromatic hydrocarbons in five East Asian cities: Seasonal characteristics, health risks, and yearly variations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117360. [PMID: 34004472 DOI: 10.1016/j.envpol.2021.117360] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
Total suspended particulate matter and fine particulate matter were collected in five East Asian cities (Sapporo, Sagamihara, Kirishima, Shenyang, and Vladivostok) during warm and cold periods from 2017 to 2018. Nine polycyclic aromatic hydrocarbons (PAHs) and three nitro-polycyclic aromatic hydrocarbons (NPAHs) were detected by high-performance liquid chromatography with a fluorescence detector. The average concentrations of ∑PAHs and ∑NPAHs differed significantly both temporally and spatially and were the lowest in Kirishima during the warm period (∑PAHs: 0.11 ± 0.06 ng m-3; ∑NPAHs: 1.23 ± 0.96 pg m-3) and the highest in Shenyang during the cold period (∑PAHs: 49.7 ± 21.8 ng m-3; ∑NPAHs: 357 ± 180 pg m-3). The average total benzo[a]pyrene-equivalent concentrations were also higher in Shenyang and Vladivostok than in Japanese cities. According to the results of source apportionment, traffic emissions impacted these cities in both the warm and cold periods, whereas coal combustion-generated effects were obvious in Shenyang and Vladivostok during the cold period. Furthermore, PAHs and NPAHs originating from the Asian continent, including Shenyang and Vladivostok, exerted some influence on Japanese cities, especially in the cold period. Compared to Japanese cities and Vladivostok, yearly variations in ∑PAHs and 1-nitropyrene in Shenyang showed that their concentrations were considerably lower than those reported in past studies, indicating the positive effects of air pollutant control policies in China. These results not only describe the current characteristics and yearly variations of PAHs and NPAHs in typical urban cities in East Asia but also, more importantly, reveal that the effects of the East Asian monsoon play an important role in the analysis of atmospheric behaviours of PAHs and NPAHs. Furthermore, this study supports the role of multinational cooperation to promote air pollution control in East Asia.
Collapse
Affiliation(s)
- Lu Yang
- Graduate School of Medical Sciences, Kanazawa University, 920-1192, Kanazawa, Japan.
| | - Lulu Zhang
- Institute of Nature and Environmental Technology, Kanazawa University, 920-1192, Kanazawa, Japan.
| | - Lijiang Chen
- School of Pharmaceutical Sciences, Liaoning University, 110036, Shenyang, China.
| | - Chong Han
- School of Metallurgy, Northeastern University, 110819, Shenyang, China.
| | - Tomoko Akutagawa
- Hokkaido Research Organization, Environmental and Geological Research Department, Institute of Environmental Sciences, 060-0819, Sapporo, Japan.
| | - Osamu Endo
- School of Life and Environmental Science, Azabu University, 252-5201, Sagamihara, Japan.
| | - Masahito Yamauchi
- National Institute of Technology, Kagoshima College, 899-5193, Kirishima, Japan.
| | - Andrey Neroda
- Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, 690041, Vladivostok, Russia.
| | - Akira Toriba
- School of Pharmaceutical Sciences, Nagasaki University, 852-8521, Nagasaki, Japan.
| | - Ning Tang
- Institute of Nature and Environmental Technology, Kanazawa University, 920-1192, Kanazawa, Japan; Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 920-1192, Kanazawa, Japan.
| |
Collapse
|