1
|
Yona T, Kamel N, Cohen-Eick G, Ovadia I, Fischer A. One-dimension statistical parametric mapping in lower limb biomechanical analysis: A systematic scoping review. Gait Posture 2024; 109:133-146. [PMID: 38306782 DOI: 10.1016/j.gaitpost.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/26/2023] [Accepted: 01/16/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND Biomechanics significantly impacts sports performance and injury prevention. Traditional methods like discrete point analysis simplify continuous kinetic and kinematic data, while one-dimensional Statistical Parametric Mapping (spm1d) evaluates entire movement curves. Nevertheless, spm1d's application in sports and injury research is limited. As no systematic review exists, we conducted a scoping systematic review, synthesizing the current applications of spm1d across various populations, activities, and injuries. This review concludes by identifying gaps in the literature and suggesting areas for future research. RESEARCH QUESTION What research exists using spm1d in sports biomechanics, focusing on the lower limbs, in what populations, and what are the current research gaps? METHODS We searched PubMed, Embase, Web of Science, and ProQuest databases for the following search string: "(((knee) OR (hip)) OR (ankle)) OR (foot) OR (feet) AND (statistical parametric mapping)". English peer-reviewed studies assessing lower limb kinetics or kinematics in different sports or sports-related injuries were included. Reviews, meta-analyses, conference abstracts, and grey literature were excluded. RESULTS Our search yielded 165 papers published since 2012. Among these, 112 examined healthy individuals (67 %), and 53 focused on injured populations (33 %). Running (n = 45), cutting (n = 25), and jumping/landing (n = 18) were the most common activities. The predominant injuries were anterior cruciate ligament rupture (n = 21), chronic ankle instability (n = 18), and hip-related pain (n = 9). The main research gaps included the unbalanced populations, underrepresentation of common sports and sport-related injuries, gender inequality, a lack of studies in non-laboratory settings, a lack of studies on varied sports gear, and a lack of reporting standardization. SIGNIFICANCE This review spotlights crucial gaps in spm1d research within sports biomechanics. Key issues include a lack of studies beyond laboratory settings, underrepresentation of various sports and injuries, and gender disparities in research populations. Addressing these gaps can significantly enhance the application of spm1d in sports performance, injury analysis, and rehabilitation.
Collapse
Affiliation(s)
- Tomer Yona
- Department of Biomedical Engineering, Technion, Israel Institute of Technology, Haifa, Israel
| | - Netanel Kamel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Galya Cohen-Eick
- Department of Biomedical Engineering, Technion, Israel Institute of Technology, Haifa, Israel
| | - Inbar Ovadia
- Department of Mechanical Engineering, Technion, Israel Institute of Technology, Haifa, Israel
| | - Arielle Fischer
- Department of Biomedical Engineering, Technion, Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
2
|
López NR, Gómez RM, Valderrama MM, González AG, de la Torre-Montero JC, Moreno ÁPS, Fidalgo-Herrera AJ, Ribeiro ASF, López-Moreno C, Martínez-Beltrán MJ. Biomechanical analysis of barefoot walking and three different sports footwear in children aged between 4 and 6 years old. PLoS One 2023; 18:e0291056. [PMID: 37669303 PMCID: PMC10479898 DOI: 10.1371/journal.pone.0291056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 08/21/2023] [Indexed: 09/07/2023] Open
Abstract
The technological transformation and advertising utilized in the footwear industry significantly impact purchasing decisions. The gait properties, barefoot and with shoes, change depending on the footwear structure. The aim of this work is the biomechanical analysis of walking barefoot and with different sports shoes in a controlled group of 12 children between 4 and 6 years old. Kinematic and spatiotemporal variables were analyzed using a BTS motion capture analysis system with the Helen Hayes protocol. Previously, a survey was carried out with 262 families with children between 4 and 6 years old to justify the choice of footwear for this study. No significant differences were found between any of the measured conditions. The kinematic results showed significant differences in the ankle (right sagittal plane p = 0.04, left p < 0.01; right frontal plane p < 0.01, left p < 0.01), knee (right and left sagittal plane p < 0.01) and hip (right sagittal plane p < 0.01, left p = 0.04; right frontal plane p = 0.03). Additionally, the post hoc analysis revealed significant differences between barefoot gait and different footwear. The footwear used for this study and each one's various characteristics are not preponderant in the spatiotemporal and kinematic parameters of the children's gait. Thus, the footwear purchase may be conditioned by its design or composition and other properties may not be relevant.
Collapse
Affiliation(s)
| | | | - Mar Mínguez Valderrama
- Center of childish development and early attention of Mancomunidad Sagra Alta, Toledo, Spain
| | - Adela García González
- Comillas Pontifical University, Department of Health Sciences, San Juan de Dios School of Nursing and Physical Therapy, Madrid, Spain
- San Juan de Dios Foundation, Madrid, Spain
| | - Julio C. de la Torre-Montero
- Comillas Pontifical University, Department of Health Sciences, San Juan de Dios School of Nursing and Physical Therapy, Madrid, Spain
- San Juan de Dios Foundation, Madrid, Spain
| | | | | | - Ana S. F. Ribeiro
- Comillas Pontifical University, Department of Health Sciences, San Juan de Dios School of Nursing and Physical Therapy, Madrid, Spain
- San Juan de Dios Foundation, Madrid, Spain
| | - Carlos López-Moreno
- Comillas Pontifical University, Department of Health Sciences, San Juan de Dios School of Nursing and Physical Therapy, Madrid, Spain
- San Juan de Dios Foundation, Madrid, Spain
| | - María Jesús Martínez-Beltrán
- Comillas Pontifical University, Department of Health Sciences, San Juan de Dios School of Nursing and Physical Therapy, Madrid, Spain
- San Juan de Dios Foundation, Madrid, Spain
| |
Collapse
|
3
|
Li F, Adrien N, He Y. Biomechanical Risks Associated with Foot and Ankle Injuries in Ballet Dancers: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:4916. [PMID: 35457783 PMCID: PMC9029463 DOI: 10.3390/ijerph19084916] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/14/2022] [Accepted: 04/16/2022] [Indexed: 12/04/2022]
Abstract
Professional ballet dancers can be classified as dance artists and sports performers. This systematic review aims to consider the biomechanical risk factors for foot and ankle injuries in ballet dancers, as this could potentially reduce the impact that 'cost of injury' may have on ballet companies. An additional outcome was to examine the effects of injury on the career of ballet dancers. This study searched articles in four electronic databases for information in peer-reviewed journals. The included articles examined the relationships between biomechanical factors and the relationship between ballet shoes and foot performance. There were 9 articles included in this review. Among these articles, two focused on the peak force of the foot using two types of pointe shoes, three focused on overuse injuries of the ballet dancer's foot, one article focused on the loading of the foot of a dancer, and three articles focused on the function and biomechanics of the foot in dancers. This review also found that the pointe shoe condition was the most important factor contributing to a foot injury; overuse injury related to high-intensity training and affected both the ankle and the foot; and metatarsophalangeal joint injury related to the function and structure of the foot. Finally, strengthening the lower extremity muscle is also a recommendation to improve muscle coordination and reduce injuries.
Collapse
Affiliation(s)
- Fengfeng Li
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China; (F.L.); (N.A.)
| | - Ntwali Adrien
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China; (F.L.); (N.A.)
- Savaria Institute of Technology, Eötvös Loránd University, 9700 Szombathely, Hungary
| | - Yuhuan He
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China; (F.L.); (N.A.)
- Department of Physical and Health Education, Udon Thani Rajabhat University, Udon Thani 41000, Thailand
- CEEC Economic and Trade Cooperation Institute, Ningbo University, Ningbo 315211, China
| |
Collapse
|
4
|
A Pilot Study of Muscle Force between Normal Shoes and Bionic Shoes during Men Walking and Running Stance Phase Using Opensim. ACTUATORS 2021. [DOI: 10.3390/act10100274] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The original idea for bionic shoes (BSs) involves combining the function of unstable foot conditions and the structure of the human plantar. The purpose of this study was to investigate the differences between the normal shoes (NS) and the BS during the stance phases of walking and running. A total of 15 Chinese males from Ningbo University were recruited for this study (age: 24.3 ± 2.01 years; height: 176.25 ± 7.11 cm, body weight (BW): 75.75 ± 8.35 kg). The participants were asked to perform a walking and running task. Statistical parametric mapping (SPM) analysis was used to investigate any differences between NSs and BSs during the walking and running stance phases. The results demonstrated that there were significant differences found (21.23–28.24%, p = 0.040; 84.47–100%, p = 0.017) in hip extension and flexion between the NS and the BS during the walking stance phase. There were no significant differences found in ankle and moment during the running stance phase. Significant differences were found in the rectus femoris (5.29–6.21%; p = 0.047), tibialis anterior (14.37–16.40%; p = 0.038), and medial gastrocnemius (25.55–46.86%; p < 0.001) between the NS and the BS during the walking stance phase. Significant differences were found in rectus femoris (12.83–13.10%, p = 0.049; 15.89–80.19%, p < 0.001), tibialis anterior (15.85–18.31%, p = 0.039; 21.14–24.71%, p = 0.030), medial gastrocnemius (80.70–90.44%; p = 0.007), and lateral gastrocnemius (11.16–27.93%, p < 0.001; 62.20–65.63%, p = 0.032; 77.56–93.45%, p < 0.001) between the NS and the BS during the running stance phase. These findings indicate that BSs are more efficient for muscle control than unstable shoes and maybe suitable for rehabilitation training.
Collapse
|
5
|
Jiang X, Zhou H, Quan W, Hu Q, Baker JS, Gu Y. Ground Reaction Force Differences between Bionic Shoes and Neutral Running Shoes in Recreational Male Runners before and after a 5 km Run. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18189787. [PMID: 34574713 PMCID: PMC8469130 DOI: 10.3390/ijerph18189787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 11/29/2022]
Abstract
Running-related injuries are common among runners. Recent studies in footwear have shown that designs of shoes can potentially affect sports performance and risk of injury. Bionic shoes combine the functions of barefoot running and foot protection and incorporate traditional unstable structures based on bionic science. The purpose of this study was to investigate ground reaction force (GRF) differences for a 5 km run and how bionic shoes affect GRFs. Sixteen male recreational runners volunteered to participate in this study and finished two 5 km running sessions (a neutral shoe session and a bionic shoe session). Two-way repeated-measures ANOVAs were performed to determine the differences in GRFs. In the analysis of the footwear conditions of runners, bionic shoes showed significant decreases in vertical impulse, peak propulsive force, propulsive impulse, and contact time, while the braking impulse and vertical instantaneous loading rate (VILR) increased significantly compared to the neutral shoes. Main effects for a 5 km run were also observed at vertical GRFs and anterior–posterior GRFs. The increases of peak vertical impact force, vertical average loading rate (VALR), VILR, peak braking force and braking impulse were observed in post-5 km running trials and a reduction in peak propulsive force and propulsive impulse. The interaction effects existed in VILR and contact time. The results suggest that bionic shoes may benefit runners with decreasing injury risk during running. The findings of the present study may help to understand the effects of footwear design during prolonged running, thereby providing valuable information for reducing the risk of running injuries.
Collapse
Affiliation(s)
- Xinyan Jiang
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China; (X.J.); (H.Z.); (W.Q.)
| | - Huiyu Zhou
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China; (X.J.); (H.Z.); (W.Q.)
- School of Health and Life Sciences, University of the West of Scotland, Scotland G72 0LH, UK
| | - Wenjing Quan
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China; (X.J.); (H.Z.); (W.Q.)
- Savaria Institute of Technology, Eötvös Loránd University, 9700 Szombathely, Hungary
| | - Qiuli Hu
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China; (X.J.); (H.Z.); (W.Q.)
- Correspondence: (Q.H.); (Y.G.); Tel.: +86-574-87600456 (Q.H.); +86-574-87600208 (Y.G.)
| | - Julien S. Baker
- Centre for Health and Exercise Science Research, Department of Sport, Physical Education and Health Hong Kong Baptist University, Hong Kong 999077, China;
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China; (X.J.); (H.Z.); (W.Q.)
- Correspondence: (Q.H.); (Y.G.); Tel.: +86-574-87600456 (Q.H.); +86-574-87600208 (Y.G.)
| |
Collapse
|
6
|
Fu F, Levadnyi I, Wang J, Xie Z, Fekete G, Cai Y, Gu Y. Effect of the Construction of Carbon Fiber Plate Insert to Midsole on Running Performance. MATERIALS 2021; 14:ma14185156. [PMID: 34576379 PMCID: PMC8467156 DOI: 10.3390/ma14185156] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022]
Abstract
In this paper, to investigate the independent effect of the construction of the forefoot carbon-fiber plate inserted to the midsole on running biomechanics and finite element simulation, fifteen male marathon runners were arranged to run across a runway with embedded force plates at two specific running speeds (fast-speed: 4.81 ± 0.32 m/s, slow-speed: 3.97 ± 0.19 m/s) with two different experimental shoes (a segmented forefoot plate construction (SFC), and a full forefoot plate construction (FFC)), simulating the different pressure distributions, energy return, and stiffness during bending in the forefoot region between the SFC and FFC inserted to midsole. Kinetics and joint mechanics were analyzed. The results showed that the footwear with SFC significantly increased the peak metatarsophalangeal joint (MTPJ) plantarflexion velocity and positive work at the knee joint compared to the footwear with FFC. The results about finite element simulation showed a reduced maximum pressure on the midsole; meanwhile, not significantly affected was the longitudinal bending stiffness and energy return with the SFC compared to the FFC. The results can be used for the design of marathon running shoes, because changing the full carbon fiber plate to segment carbon fiber plate induced some biomechanical transformation but did not significantly affect the running performance, what is more, reducing the peak pressure of the carbon plate to the midsole by cutting the forefoot area of the carbon fiber plate could be beneficial from a long-distance running perspective for manufacturers.
Collapse
Affiliation(s)
- Fengqin Fu
- Faculty of Sports Science, Ningbo University, Ningbo 315000, China; (F.F.); (J.W.)
- Doctoral School on Safety and Security Sciences, Óbuda University, 1011-1239 Budapest, Hungary
- Xtep Sports Science & Engineering Laboratory, Xtep Co. Ltd., Xiamen 361000, China; (I.L.); (Z.X.); (Y.C.)
| | - Ievgen Levadnyi
- Xtep Sports Science & Engineering Laboratory, Xtep Co. Ltd., Xiamen 361000, China; (I.L.); (Z.X.); (Y.C.)
| | - Jiayu Wang
- Faculty of Sports Science, Ningbo University, Ningbo 315000, China; (F.F.); (J.W.)
| | - Zhihao Xie
- Xtep Sports Science & Engineering Laboratory, Xtep Co. Ltd., Xiamen 361000, China; (I.L.); (Z.X.); (Y.C.)
| | - Gusztáv Fekete
- Savaria Institute of Technology, Eötvös Loránd University, 9700 Szombathely, Hungary;
| | - Yuhui Cai
- Xtep Sports Science & Engineering Laboratory, Xtep Co. Ltd., Xiamen 361000, China; (I.L.); (Z.X.); (Y.C.)
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo 315000, China; (F.F.); (J.W.)
- Correspondence: ; Tel.: +86-574-87600208
| |
Collapse
|
7
|
Xu D, Zhou H, Baker JS, István B, Gu Y. An Investigation of Differences in Lower Extremity Biomechanics During Single-Leg Landing From Height Using Bionic Shoes and Normal Shoes. Front Bioeng Biotechnol 2021; 9:679123. [PMID: 34434925 PMCID: PMC8381337 DOI: 10.3389/fbioe.2021.679123] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/27/2021] [Indexed: 11/17/2022] Open
Abstract
Bionic shoes utilizing an actual foot shape sole structure can alter lower limb’s biomechanics, which may help in the development of specific training or rehabilitation programs. The purpose of this study was to investigate the biomechanical differences in the lower limb during a single-leg landing task using bionic shoes (BS) and normal shoes (NS). Fifteen healthy male subjects participated in this study, sagittal, and frontal plane data were collected during the landing phase (drop landing from 35 cm platform). Our study showed that BS depicted a significantly greater minimum knee flexion angle at initial contact (p = 0.000), a significantly greater minimum (initial contact) hip flexion angle at initial contact (p = 0.009), a significantly smaller sagittal plane total energy dissipation (p = 0.028), a significantly smaller frontal plane total energy dissipation (p = 0.008), a significantly smaller lower limb total energy dissipation (p = 0.017) than NS during the landing phase. SPM analysis revealed that BS depicted a significantly smaller knee joint vertical reaction force during the 13.8–19.8% landing phase (p = 0.01), a significantly smaller anterior tibia shear force during the 14.2–17.5% landing phase (p = 0.024) than NS. BS appears to change lower limb kinematics at initial contact and then readjust the landing strategies for joint work and joint reaction force, thereby reducing the risk of lower limb skeletal muscle injury. BS have great potential for future development and application uses, which may help athletes to reduce lower limb injury risk.
Collapse
Affiliation(s)
- Datao Xu
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Huiyu Zhou
- Faculty of Sports Science, Ningbo University, Ningbo, China.,School of Health and Life Sciences, University of the West of Scotland, Scotland, United Kingdom
| | - Julien S Baker
- Centre for Health and Exercise Science Research, Department of Sport and Physical Education, Hong Kong Baptist University, Hong Kong, China
| | - Bíró István
- Faculty of Engineering, University of Szeged, Szeged, Hungary
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo, China
| |
Collapse
|
8
|
Analysis of Different Stop-Jumping Strategies on the Biomechanical Changes in the Lower Limbs. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11104633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The stop-jumping task is one of the most important technical actions in basketball. A previous study showed 70% probability of non-contact ACL injuries during stop-jumping tasks. Therefore, the present study aimed to investigate the differences in lower extremity biomechanical changes between the rear foot as the initial contact area to terminate the jump (SJR) and the fore foot as the initial contact area to also terminate the jump (SJF) during the horizontal landing during a stop-jumping phase. In total, 25 male amateur Ningbo University basketball athletes from China were recruited for this study. The participants were asked to jump vertically by using two different stop-jumping strategies. Kinematic and kinetics data were amassed during a stop-jumping task. Statistical parametric mapping (SPM) analysis was used to find the differences between SJR and SJF. Our results indicated that the change of different ankle range of motion caused significantly different values for knee angle (p < 0.001), velocity (p = 0.003) (p = 0.023) (p < 0.001), moment (p = 0.04) (p < 0.001), (p = 0.036) and power (p = 0.015) (p < 0.001) during the stop-jumping phase and the horizontal landing phase. The same biomechanical parameters of the hip joint were also significantly different for hip angle (p < 0.001), moment (p = 0.012) (p < 0.001) (p < 0.001), and power (p = 0.01) (p < 0.001) (p < 0.001). These findings indicate that altering the primary contact at the ankle angle might effectively reduce the risk of a knee injury.
Collapse
|