1
|
Freire C, Castiello F, Babarro I, Anguita-Ruiz A, Casas M, Vrijheid M, Sarzo B, Beneito A, Kadawathagedara M, Philippat C, Thomsen C, Sakhi AK, Lopez-Espinosa MJ. Association of prenatal exposure to phthalates and synthetic phenols with pubertal development in three European cohorts. Int J Hyg Environ Health 2024; 261:114418. [PMID: 38968838 DOI: 10.1016/j.ijheh.2024.114418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND There is limited epidemiological evidence on the association of prenatal exposure to phthalates and synthetic phenols with altered pubertal timing. OBJECTIVE To examine the association of prenatal exposure to phthalates, bisphenol A (BPA), parabens, benzophenone 3 (BP-3), and triclosan (TCS) with pubertal development in girls and boys from three European cohorts. METHODS Urinary metabolites of six different phthalate diesters (DEP, DiBP, DnBP, BBzP, DEHP, and DiNP), BPA, methyl- (MePB), ethyl- (EtPB), propyl- (PrPB), and butyl-paraben (BuPB), BP-3, and TCS were quantified in one or two (1st and 3rd trimester) urine samples collected during pregnancy (1999-2008) from mothers in three birth cohorts: INMA (Spain), EDEN (France), and MoBa (Norway). Pubertal development of their children was assessed at a single visit at age 7-12 years (579 girls, 644 boys) using the parent-reported Pubertal Development Scale (PDS). Mixed-effect Poisson and g-computation and Bayesian Kernel Machine Regression (BKMR) were employed to examine associations of individual and combined prenatal chemical exposure, respectively, with the probability of overall pubertal onset, adrenarche, and gonadarche (stage 2+) in girls and boys. Effect modification by child body mass index (BMI) was also assessed. RESULTS Maternal concentrations of the molar sum of DEHP and of DiNP metabolites were associated with a slightly higher probability of having started puberty in boys (relative risk, RR [95% CI] = 1.13 [0.98-1.30] and 1.20 [1.06-1.34], respectively, for a two-fold increase in concentrations), with a stronger association for DiNP in boys with overweight or obesity. In contrast, BPA, BuPB, EtPB, and PrPB were associated with a lower probability of pubertal onset, adrenarche, and/or gonadarche in all boys (e.g. overall puberty, BPA: RR [95% CI] = 0.93 [0.85-1.01] and BuPB: 0.95 [0.90-1.00], respectively), and the association with BPA was stronger in boys with underweight/normal weight. In girls, MEHP and BPA were associated with delayed gonadarche in those with underweight/normal weight (RR [95% CI] = 0.86 [0.77-0.95] and 0.90 [0.84-0.97], respectively). Most of these associations were trimester specific. However, the chemical mixture was not associated with any pubertal outcome in boys or girls. CONCLUSIONS Prenatal exposure to certain phthalates and synthetic phenols such as BPA may impact the pubertal development of boys, and weight status may modify this effect. BPA may also alter the pubertal development of girls.
Collapse
Affiliation(s)
- Carmen Freire
- Department of Legal Medicine, Toxicology, and Physical Anthropology, School of Medicine, University of Granada, 18016, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Francesca Castiello
- Pediatric Unit, Germans Trias I Pujol University Hospital, 08916, Badalona, Spain
| | - Izaro Babarro
- Faculty of Medicine and Nursing, University of the Basque Country (UPV/EU), 20014, Donostia/San Sebastián, Spain; Biogipuzkoa Health Research Institute, 20014, Donostia/San Sebastián, Spain
| | - Augusto Anguita-Ruiz
- ISGlobal, 08036, Barcelona, Spain; CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Maribel Casas
- ISGlobal, 08036, Barcelona, Spain; Universitat Pompeu Fabra, 08005, Barcelona, Spain
| | - Martine Vrijheid
- CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain; ISGlobal, 08036, Barcelona, Spain; Universitat Pompeu Fabra, 08005, Barcelona, Spain
| | - Blanca Sarzo
- CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Jaume I University-University of Valencia, 46020, Valencia, Spain
| | - Andrea Beneito
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Jaume I University-University of Valencia, 46020, Valencia, Spain
| | - Manik Kadawathagedara
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, 75004, Paris, France
| | - Claire Philippat
- University Grenoble Alpes, Inserm, U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Cathrine Thomsen
- Department of Food Safety, Norwegian Institute of Public Health, 0456, Oslo, Norway
| | - Amrit Kaur Sakhi
- Department of Food Safety, Norwegian Institute of Public Health, 0456, Oslo, Norway
| | - Maria-Jose Lopez-Espinosa
- CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Jaume I University-University of Valencia, 46020, Valencia, Spain; Department of Nursing, Faculty of Nursing and Chiropody, University of Valencia, 46010, Valencia, Spain
| |
Collapse
|
2
|
Boychenko S, Egorova VS, Brovin A, Egorov AD. White-to-Beige and Back: Adipocyte Conversion and Transcriptional Reprogramming. Pharmaceuticals (Basel) 2024; 17:790. [PMID: 38931457 PMCID: PMC11206576 DOI: 10.3390/ph17060790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Obesity has become a pandemic, as currently more than half a billion people worldwide are obese. The etiology of obesity is multifactorial, and combines a contribution of hereditary and behavioral factors, such as nutritional inadequacy, along with the influences of environment and reduced physical activity. Two types of adipose tissue widely known are white and brown. While white adipose tissue functions predominantly as a key energy storage, brown adipose tissue has a greater mass of mitochondria and expresses the uncoupling protein 1 (UCP1) gene, which allows thermogenesis and rapid catabolism. Even though white and brown adipocytes are of different origin, activation of the brown adipocyte differentiation program in white adipose tissue cells forces them to transdifferentiate into "beige" adipocytes, characterized by thermogenesis and intensive lipolysis. Nowadays, researchers in the field of small molecule medicinal chemistry and gene therapy are making efforts to develop new drugs that effectively overcome insulin resistance and counteract obesity. Here, we discuss various aspects of white-to-beige conversion, adipose tissue catabolic re-activation, and non-shivering thermogenesis.
Collapse
Affiliation(s)
- Stanislav Boychenko
- Gene Therapy Department, Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia; (S.B.); (A.B.)
| | - Vera S. Egorova
- Biotechnology Department, Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia
| | - Andrew Brovin
- Gene Therapy Department, Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia; (S.B.); (A.B.)
| | - Alexander D. Egorov
- Gene Therapy Department, Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia; (S.B.); (A.B.)
| |
Collapse
|
3
|
Toledano JM, Puche-Juarez M, Moreno-Fernandez J, Gonzalez-Palacios P, Rivas A, Ochoa JJ, Diaz-Castro J. Implications of Prenatal Exposure to Endocrine-Disrupting Chemicals in Offspring Development: A Narrative Review. Nutrients 2024; 16:1556. [PMID: 38892490 PMCID: PMC11173790 DOI: 10.3390/nu16111556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
During the last decades, endocrine-disrupting chemicals (EDCs) have attracted the attention of the scientific community, as a result of a deepened understanding of their effects on human health. These compounds, which can reach populations through the food chain and a number of daily life products, are known to modify the activity of the endocrine system. Regarding vulnerable groups like pregnant mothers, the potential damage they can cause increases their importance, since it is the health of two lives that is at risk. EDCs can affect the gestation process, altering fetal development, and eventually inducing the appearance of many disorders in their childhood and/or adulthood. Because of this, several of these substances have been studied to clarify the influence of their prenatal exposure on the cognitive and psychomotor development of the newborn, together with the appearance of non-communicable diseases and other disorders. The most novel research on the subject has been gathered in this narrative review, with the aim of clarifying the current knowledge on the subject. EDCs have shown, through different studies involving both animal and human investigation, a detrimental effect on the development of children exposed to the during pregnancy, sometimes with sex-specific outcomes. However, some other studies have failed to find these associations, which highlights the need for deeper and more rigorous research, that will provide an even more solid foundation for the establishment of policies against the extended use of these chemicals.
Collapse
Affiliation(s)
- Juan M. Toledano
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.M.T.); (J.J.O.); (J.D.-C.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain;
- Nutrition and Food Sciences Ph.D. Program, University of Granada, 18071 Granada, Spain
| | - Maria Puche-Juarez
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.M.T.); (J.J.O.); (J.D.-C.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain;
- Nutrition and Food Sciences Ph.D. Program, University of Granada, 18071 Granada, Spain
| | - Jorge Moreno-Fernandez
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.M.T.); (J.J.O.); (J.D.-C.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria (IBS), 18016 Granada, Spain;
| | - Patricia Gonzalez-Palacios
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain;
- Department of Nutrition and Food Science, University of Granada, 18071 Granada, Spain
| | - Ana Rivas
- Instituto de Investigación Biosanitaria (IBS), 18016 Granada, Spain;
- Department of Nutrition and Food Science, University of Granada, 18071 Granada, Spain
| | - Julio J. Ochoa
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.M.T.); (J.J.O.); (J.D.-C.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria (IBS), 18016 Granada, Spain;
| | - Javier Diaz-Castro
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.M.T.); (J.J.O.); (J.D.-C.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria (IBS), 18016 Granada, Spain;
| |
Collapse
|
4
|
Guo Z, Wang L, Li Y, Wu Z, Wang K, Duan J. Dust phase and window film phase phthalates in dormitories: profile characteristics, source screening, and estimated gas-phase concentration and dermal exposure comparison. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:15257-15270. [PMID: 38291205 DOI: 10.1007/s11356-024-32019-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/11/2024] [Indexed: 02/01/2024]
Abstract
Recently, phthalate exposure has become a major public health concern. However, gaps still remain in our understanding of phthalate profile characteristics, source screening, and gas-phase estimation. This study measured phthalate concentrations in dust and window films in 101 dormitories at 13 universities in Beijing, China, from October to December 2019. Based on the phthalate concentrations in the dust and window films, we estimated the gas-phase phthalate concentrations using steady-state and instantaneous equilibrium models, respectively, and male and female students' dermal exposure using the Monte Carlo simulation. Commonly used materials and supplies were screened for phthalate sources and evaluated using the positive matrix factorization (PMF) model. The results showed that the detection frequency of ten phthalates ranged from 79.2 to 100% in dust and from 84.2 to 100% in window films. Dicyclohexyl phthalate (DCHP), di-(2-ethylhexyl) phthalate (DEHP), and dibutyl phthalate (DBP) were the most abundant phthalates in both indoor media and were also predominant in the indoor materials and supplies. The PMF results indicated that the potential sources of phthalates in dust and window films had both similarities and differences. Indoor door seals, paint, coatings, cables, air-conditioning rubber cable ties, wallpaper, and window seals were highly probable sources of phthalates. The gas-phase phthalate concentrations estimated using the two methods differed, especially for phthalates with high octanol-air partition coefficients (Koa), varying by 1-2 orders of magnitude. Moreover, compared with related studies, the gas-phase concentrations were significantly underestimated for phthalates with high Koa values, while the estimated gas-phase concentrations of phthalates with low Koa values were closer to the measured values. The estimated dermal exposure using the two methodologies also considerably differed. Such findings suggest that more attention should be focused on the exposure risk from the dust phase and window film phase phthalates.
Collapse
Affiliation(s)
- Zichen Guo
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Lixin Wang
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Yatai Li
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Zaixing Wu
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Kexin Wang
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Jiahui Duan
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| |
Collapse
|
5
|
Perez-Diaz C, Uriz-Martínez M, Ortega-Rico C, Leno-Duran E, Barrios-Rodríguez R, Salcedo-Bellido I, Arrebola JP, Requena P. Phthalate exposure and risk of metabolic syndrome components: A systematic review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122714. [PMID: 37844863 DOI: 10.1016/j.envpol.2023.122714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/13/2023] [Accepted: 10/07/2023] [Indexed: 10/18/2023]
Abstract
Metabolic syndrome is a cluster of conditions that increase the risk of cardiovascular disease, i.e. obesity, insulin resistance, hypertriglyceridemia, low high-density lipoprotein cholesterol (HDL-c) levels and arterial hypertension. Phthalates are environmental chemicals which might influence the risk of the aforementioned disturbances, although the evidence is still controversial. The objective of this work was to synthesize the evidence on the association between human phthalate exposure and metabolic syndrome or any of its components. In this systematic review, the PRISMA guidelines were followed and the literature was search in PubMed, Web of Science and Scopus. Longitudinal and cross-sectional studies were included, the later only if a subclinical marker of disease was evaluated. The methodological quality was assessed with the Newcastle Ottawa Scale and a checklist for Analytical Cross-Sectional Studies developed in the Joanna Briggs Institute. A total of 58 articles were identified that showed high heterogenicity in the specific phthalates assessed, time-window of exposure and duration of follow-up. The quality of the studies was evaluated as high (n = 46, score >7 points) or medium (n = 12, score 4-6). The most frequently studied phthalates were DEHP-MEHP, MBzP and MEP. The evidence revealed a positive association between prenatal (in utero) exposure to most phthalates and markers of obesity in the offspring, but contradictory results when postnatal exposure and obesity were assessed. Moreover, postnatal phthalate exposure showed positive and very consistent associations with markers of diabetes and, to a lesser extent, with triglyceride levels. However, fewer evidence and contradictory results were found for HDL-c levels and markers of hypertension. The suggested mechanisms for these metabolic effects include transcription factor PPAR activation, antagonism of thyroid hormone function, antiandrogenic effects, oxidative stress and inflammation, and epigenetic changes. Nevertheless, as the inconsistency of some results could be related to differences in the study design, future research should aim to standardise the exposure assessment.
Collapse
Affiliation(s)
- Celia Perez-Diaz
- Universidad de Granada. Department of Preventive Medicine and Public Health, Pharmacy School. Campus de Cartuja S/n, 18071, Granada, Spain; Instituto de Investigación Biosanitaria (ibs.GRANADA). Avda. de Madrid, 15. Pabellón de Consultas Externas 2, 2(a) Planta, 18012, Granada, Spain
| | - Maialen Uriz-Martínez
- Universidad de Granada. Department of Preventive Medicine and Public Health, Pharmacy School. Campus de Cartuja S/n, 18071, Granada, Spain
| | - Carmen Ortega-Rico
- Universidad de Granada. Department of Preventive Medicine and Public Health, Pharmacy School. Campus de Cartuja S/n, 18071, Granada, Spain
| | - Ester Leno-Duran
- Universidad de Granada. Department of Obstetrics and Gynaecology, Medicine School. Parque Tecnologico de La Salud, Av. de La Investigación, 11, 18016, Granada, Spain.
| | - Rocío Barrios-Rodríguez
- Universidad de Granada. Department of Preventive Medicine and Public Health, Pharmacy School. Campus de Cartuja S/n, 18071, Granada, Spain; Instituto de Investigación Biosanitaria (ibs.GRANADA). Avda. de Madrid, 15. Pabellón de Consultas Externas 2, 2(a) Planta, 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11. Planta 0, 28029 Madrid, Spain
| | - Inmaculada Salcedo-Bellido
- Universidad de Granada. Department of Preventive Medicine and Public Health, Pharmacy School. Campus de Cartuja S/n, 18071, Granada, Spain; Instituto de Investigación Biosanitaria (ibs.GRANADA). Avda. de Madrid, 15. Pabellón de Consultas Externas 2, 2(a) Planta, 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11. Planta 0, 28029 Madrid, Spain
| | - Juan Pedro Arrebola
- Universidad de Granada. Department of Preventive Medicine and Public Health, Pharmacy School. Campus de Cartuja S/n, 18071, Granada, Spain; Instituto de Investigación Biosanitaria (ibs.GRANADA). Avda. de Madrid, 15. Pabellón de Consultas Externas 2, 2(a) Planta, 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11. Planta 0, 28029 Madrid, Spain
| | - Pilar Requena
- Universidad de Granada. Department of Preventive Medicine and Public Health, Pharmacy School. Campus de Cartuja S/n, 18071, Granada, Spain; Instituto de Investigación Biosanitaria (ibs.GRANADA). Avda. de Madrid, 15. Pabellón de Consultas Externas 2, 2(a) Planta, 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11. Planta 0, 28029 Madrid, Spain
| |
Collapse
|
6
|
Lan H, Hu Z, Gan H, Wu L, Xie S, Jiang Y, Ye D, Ye X. Association between exposure to persistent organic pollutants and pubertal timing in boys and girls: A systematic review and meta-analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115540. [PMID: 37801753 DOI: 10.1016/j.ecoenv.2023.115540] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/08/2023]
Abstract
In recent years, the phenomenon of abnormal pubertal timing in children has become increasingly common worldwide. Persistent organic pollutants (POPs) may be one of the risk factors contributing to this phenomenon, but the relationship between them is unclear based on current evidence. The purpose of this study was to determine the association of POPs exposure with pubertal timing in girls and boys by conducting a systematic review and meta-analysis. We searched PubMed and Embase databases for studies before June 1, 2023. Meta-analysis was performed by pooling relative risk (RR) or odds ratio (OR) or prevalence ratio (PR) or hazard ratio (HR) estimates with 95 % confidence intervals (CIs). Subgroup analysis, publication bias assessment and sensitivity analysis were also carried out. A total of 21 studies were included, involving 2479 boys and 8718 girls. The results of meta-analysis showed that exposure to POPs was significantly associated with delayed pubertal timing in girls (RR: 0.85; 95 % CI: 0.79-0.91; p < 0.001). There was no statistically significant association between exposure to POPs and pubertal timing in boys (RR: 1.18; 95 % CI: 0.99-1.40; p = 0.070). Subgroup analysis showed that there may be gender differences in the effects of exposure to POPs on pubertal timing. Our results suggested that exposure to POPs could delay pubertal timing in girls. However, based on current evidence, no significant association was found between POPs exposure and pubertal timing in boys.
Collapse
Affiliation(s)
- Huili Lan
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhiqin Hu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Hongya Gan
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Lixiang Wu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Shushu Xie
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yan Jiang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ding Ye
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaoqing Ye
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
7
|
Stevens DR, Starling AP, Bommarito PA, Keil AP, Nakiwala D, Calafat AM, Adgate JL, Dabelea D, Ferguson KK. Midpregnancy Phthalate and Phenol Biomarkers in Relation to Infant Body Composition: The Healthy Start Prospective Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:87017. [PMID: 37616158 PMCID: PMC10449008 DOI: 10.1289/ehp12500] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Gestational phthalate and phenol exposure disrupts adipogenesis, contributing to obesity in mice. Whether gestational phthalate or phenol exposure is associated with infant body composition has not been investigated in humans. OBJECTIVE We examined associations between biomarkers of phthalate and phenol exposure in midpregnancy and infant size and body composition at birth and at 5 months of age. METHODS Analyses were conducted among 438 infants from the Healthy Start prospective pregnancy cohort. Sixteen phthalate and phenol biomarkers were quantified in spot urine samples collected at 24-28 wk of gestation. Infant outcomes measured at birth and at 5 months of age included size [weight (in grams)] and body composition [fat and lean masses (in grams); percentage fat mass]. Single- (linear) and multipollutant (quantile g-computation) models were used to estimate associations of phthalate and phenol biomarkers with infant outcomes at birth and at 5 months of age. Models were adjusted for sociodemographics, sample collection timing, and lifestyle factors and used to examine for effect modification by infant sex. RESULTS In single-pollutant models, mono-benzyl phthalate and di-n -butyl phthalate were inversely associated with percentage fat mass [β : - 0.49 (95% CI: - 0.91 , - 0.08 ) and - 0.51 (95% CI: - 1.02 , 0.01), respectively] in male but not female infants at birth. Similar, but less precise, associations were observed at 5 months of age. In multipollutant models, a 1-quartile increase in the phthalate and phenol biomarker mixture was inversely associated with percentage fat mass at birth [- 1.06 (95% CI: - 2.21 , 0.1)] and at 5 months of age [- 2.14 (95% CI: - 3.88 , - 0.39 )] among males, but associations were null among females [0.48 (95% CI: - 0.78 , 1.75) and - 0.64 (95% CI: - 2.68 , 1.41), respectively]. Similar associations were observed with infant weight. CONCLUSION In this U.S.-based prospective cohort, gestational phthalate and phenol biomarkers were inversely associated with infant weight and fat mass, particularly in males. https://doi.org/10.1289/EHP12500.
Collapse
Affiliation(s)
- Danielle R. Stevens
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Anne P. Starling
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Center for Lifecourse Epidemiology of Adiposity and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Paige A. Bommarito
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Alexander P. Keil
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dorothy Nakiwala
- Center for Lifecourse Epidemiology of Adiposity and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Antonia M. Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - John L. Adgate
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Public Health Campus, Aurora, Colorado, USA
| | - Dana Dabelea
- Center for Lifecourse Epidemiology of Adiposity and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kelly K. Ferguson
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| |
Collapse
|
8
|
Anastasiadis X, Matsas A, Panoskaltsis T, Bakas P, Papadimitriou DT, Christopoulos P. Impact of Chemicals on the Age of Menarche: A Literature Review. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1234. [PMID: 37508731 PMCID: PMC10378553 DOI: 10.3390/children10071234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/01/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
A growing body of evidence suggests that chemicals interfere with the age of onset of menarche. We conducted a review in order to demonstrate the relationship between several categories of chemicals and menarche. We searched for English language papers using the Medline/PubMed database until April 2023. The chemical factors found to affect menarche were prenatal and antenatal smoke, phthalates, phenols, organochlorines, perfluoroalkyls and polyfluoroalkyls, metals, air pollutants and polybrominated diphenyl ethers. Low or high exposure to each chemical compound could affect the age of menarche, leading to early or delayed menarche. Furthermore, the results show that intrauterine exposure may have a different impact from antenatal exposure. There is evidence that endocrine-disrupting chemicals affect the age of menarche, but more research needs to be conducted.
Collapse
Affiliation(s)
- Xristos Anastasiadis
- Second Department of Obstetrics and Gynecology, "Aretaieion" Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Alkis Matsas
- Second Department of Obstetrics and Gynecology, "Aretaieion" Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Theodoros Panoskaltsis
- Second Department of Obstetrics and Gynecology, "Aretaieion" Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Panagiotis Bakas
- Second Department of Obstetrics and Gynecology, "Aretaieion" Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Dimitrios T Papadimitriou
- Second Department of Obstetrics and Gynecology, "Aretaieion" Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Panagiotis Christopoulos
- Second Department of Obstetrics and Gynecology, "Aretaieion" Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| |
Collapse
|
9
|
Płotka-Wasylka J, Mulkiewicz E, Lis H, Godlewska K, Kurowska-Susdorf A, Sajid M, Lambropoulou D, Jatkowska N. Endocrine disrupting compounds in the baby's world - A harmful environment to the health of babies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163350. [PMID: 37023800 DOI: 10.1016/j.scitotenv.2023.163350] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 06/01/2023]
Abstract
Globally, there has been a significant increase in awareness of the adverse effects of chemicals with known or suspected endocrine-acting properties on human health. Human exposure to endocrine disrupting compounds (EDCs) mainly occurs by ingestion and to some extent by inhalation and dermal uptake. Although it is difficult to assess the full impact of human exposure to EDCs, it is well known that timing of exposure is of importance and therefore infants are more vulnerable to EDCs and are at greater risk compared to adults. In this regard, infant safety and assessment of associations between prenatal exposure to EDCs and growth during infancy and childhood has been received considerable attention in the last years. Hence, the purpose of this review is to provide a current update on the evidence from biomonitoring studies on the exposure of infants to EDCs and a comprehensive view of the uptake, the mechanisms of action and biotransformation in baby/human body. Analytical methods used and concentration levels of EDCs in different biological matrices (e.g., placenta, cord plasma, amniotic fluid, breast milk, urine, and blood of pregnant women) are also discussed. Finally, key issues and recommendations were provided to avoid hazardous exposure to these chemicals, taking into account family and lifestyle factors related to this exposure.
Collapse
Affiliation(s)
- Justyna Płotka-Wasylka
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233 Gdańsk, Poland; BioTechMed Center, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233 Gdańsk, Poland.
| | - Ewa Mulkiewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, 63 Wita Stwosza Street, 80-308 Gdańsk, Poland
| | - Hanna Lis
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, 63 Wita Stwosza Street, 80-308 Gdańsk, Poland
| | - Klaudia Godlewska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, 63 Wita Stwosza Street, 80-308 Gdańsk, Poland
| | | | - Muhammad Sajid
- Applied Research Center for Environment and Marine Studies, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Dimitra Lambropoulou
- Department of Chemistry, Environmental Pollution Control Laboratory, Aristotle University of Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki GR-57001, Greece
| | - Natalia Jatkowska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233 Gdańsk, Poland.
| |
Collapse
|
10
|
Rokoff LB, Seshasayee SM, Carwile JL, Rifas-Shiman SL, Botelho JC, Gordon CM, Hauser R, James-Todd T, Young JG, Rosen CJ, Calafat AM, Oken E, Fleisch AF. Associations of urinary metabolite concentrations of phthalates and phthalate replacements with body composition from mid-childhood to early adolescence. ENVIRONMENTAL RESEARCH 2023; 226:115629. [PMID: 36889566 PMCID: PMC10101932 DOI: 10.1016/j.envres.2023.115629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Phthalates may adversely influence body composition by lowering anabolic hormones and activating peroxisome-proliferator activated receptor gamma. However, data are limited in adolescence when body mass distributions rapidly change and bone accrual peaks. Also, potential health effects of certain phthalate/replacements [e.g., di-2-ethylhexyl terephthalate (DEHTP)] have not been well studied. METHODS Among 579 children in the Project Viva cohort, we used linear regression to evaluate associations of urinary concentrations of 19 phthalate/replacement metabolites from mid-childhood (median: 7.6 years; 2007-2010) with annualized change in areal bone mineral density (aBMD) and lean, total fat, and truncal fat mass as measured by dual-energy X-ray absorptiometry between mid-childhood and early adolescence (median: 12.8 years). We used quantile g-computation to assess associations of the overall chemical mixture with body composition. We adjusted for sociodemographics and tested for sex-specific associations. RESULTS Urinary concentrations were highest for mono-2-ethyl-5-carboxypentyl phthalate [median (IQR): 46.7 (69.1) ng/mL]. We detected metabolites of most replacement phthalates in a relatively small number of participants [e.g., 28% for mono-2-ethyl-5-hydrohexyl terephthalate (MEHHTP; metabolite of DEHTP)]. Detectable (vs. non-detectable) MEHHTP was associated with less bone and greater fat accrual in males and greater bone and lean mass accrual in females [e.g., change in aBMD Z-score/year (95% CI): -0.049 (-0.085, -0.013) in males versus 0.042 (0.007, 0.076) in females; pinteraction<0.01]. Children with higher concentrations of mono-oxo-isononyl phthalate and mono-3-carboxypropyl phthalate (MCPP) had greater bone accrual. Males with higher concentrations of MCPP and mono-carboxynonyl phthalate had greater accrual of lean mass. Other phthalate/replacement biomarkers, and their mixtures, were not associated with longitudinal changes in body composition. CONCLUSIONS Concentrations of select phthalate/replacement metabolites in mid-childhood were associated with changes in body composition through early adolescence. As use of phthalate replacements such as DEHTP may be increasing, further investigation can help better understand the potential effects of early-life exposures.
Collapse
Affiliation(s)
- Lisa B Rokoff
- Center for Interdisciplinary Population & Health Research, MaineHealth Institute for Research, Portland, ME, USA.
| | - Shravanthi M Seshasayee
- Center for Interdisciplinary Population & Health Research, MaineHealth Institute for Research, Portland, ME, USA
| | - Jenny L Carwile
- Center for Interdisciplinary Population & Health Research, MaineHealth Institute for Research, Portland, ME, USA
| | - Sheryl L Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Julianne Cook Botelho
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Catherine M Gordon
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Russ Hauser
- Department of Environmental Health and Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Tamarra James-Todd
- Department of Environmental Health and Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jessica G Young
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Clifford J Rosen
- Center for Clinical and Translational Science, MaineHealth Institute for Research, Scarborough, ME, USA
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Abby F Fleisch
- Center for Interdisciplinary Population & Health Research, MaineHealth Institute for Research, Portland, ME, USA; Pediatric Endocrinology and Diabetes, Maine Medical Center, Portland, ME, USA
| |
Collapse
|
11
|
Wu D, Lim BXH, Seah I, Xie S, Jaeger JE, Symons RK, Heffernan AL, Curren EEM, Leong SCY, Riau AK, Lim DKA, Stapleton F, Ali MJ, Singh S, Tong L, Mehta JS, Su X, Lim CHL. Impact of Microplastics on the Ocular Surface. Int J Mol Sci 2023; 24:3928. [PMID: 36835339 PMCID: PMC9962686 DOI: 10.3390/ijms24043928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
Plastics are synthetic materials made from organic polymers that are ubiquitous in daily living and are especially important in the healthcare setting. However, recent advances have revealed the pervasive nature of microplastics, which are formed by degradation of existing plastic products. Although the impact on human health has yet to be fully characterised, there is increasing evidence that microplastics can trigger inflammatory damage, microbial dysbiosis, and oxidative stress in humans. Although there are limited studies investigating their effect on the ocular surface, studies of microplastics on other organs provide some insights. The prevalence of plastic waste has also triggered public outcry, culminating in the development of legislation aimed at reducing microplastics in commercial products. We present a review outlining the possible sources of microplastics leading to ocular exposure, and analyse the possible mechanisms of ocular surface damage. Finally, we examine the utility and consequences of current legislation surrounding microplastic regulation.
Collapse
Affiliation(s)
- Duoduo Wu
- Department of Ophthalmology, National University Health System, Singapore 119228, Singapore
| | - Blanche X. H. Lim
- Department of Ophthalmology, National University Health System, Singapore 119228, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Ivan Seah
- Department of Ophthalmology, National University Health System, Singapore 119228, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Shay Xie
- Eurofins Environment Testing Australia & New Zealand, Dandenong, VIC 3175, Australia
- Australian Water Association, St Leonards, NSW 2065, Australia
| | - Julia E. Jaeger
- Eurofins Environment Testing Australia & New Zealand, Dandenong, VIC 3175, Australia
| | - Robert K. Symons
- Eurofins Environment Testing Australia & New Zealand, Dandenong, VIC 3175, Australia
| | - Amy L. Heffernan
- Eurofins Environment Testing Australia & New Zealand, Dandenong, VIC 3175, Australia
| | - Emily E. M. Curren
- St. John’s Island National Marine Laboratory, Tropical Marine Science Institute, National University of Singapore, Singapore 119077, Singapore
| | - Sandric C. Y. Leong
- St. John’s Island National Marine Laboratory, Tropical Marine Science Institute, National University of Singapore, Singapore 119077, Singapore
| | - Andri K. Riau
- Singapore Eye Research Institute, Singapore 169856, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Dawn K. A. Lim
- Department of Ophthalmology, National University Health System, Singapore 119228, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Fiona Stapleton
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia
| | | | - Swati Singh
- LV Prasad Eye Institute, Hyderabad 500034, India
| | - Louis Tong
- Singapore Eye Research Institute, Singapore 169856, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
- Singapore National Eye Centre, Singapore 168751, Singapore
| | - Jodhbir S. Mehta
- Singapore Eye Research Institute, Singapore 169856, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
- Singapore National Eye Centre, Singapore 168751, Singapore
| | - Xinyi Su
- Department of Ophthalmology, National University Health System, Singapore 119228, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Chris H. L. Lim
- Department of Ophthalmology, National University Health System, Singapore 119228, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
- Singapore Eye Research Institute, Singapore 169856, Singapore
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
12
|
Rivera-Núñez Z, Kinkade CW, Zhang Y, Rockson A, Bandera EV, Llanos AAM, Barrett ES. Phenols, Parabens, Phthalates and Puberty: a Systematic Review of Synthetic Chemicals Commonly Found in Personal Care Products and Girls' Pubertal Development. Curr Environ Health Rep 2022; 9:517-534. [PMID: 35867279 PMCID: PMC9742306 DOI: 10.1007/s40572-022-00366-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW Exposure to endocrine disrupting chemicals through personal care products (PCPs) is widespread and may disrupt hormone-sensitive endpoints, such as timing of puberty. Given the well-documented (and ongoing) decline in age at menarche in many populations, we conducted a systematic review of the epidemiological literature on exposure to chemicals commonly found in PCPs (including certain phthalates, phenols, and parabens) in relation to girls' pubertal development. RECENT FINDINGS The preponderance of research on this topic has examined phthalate exposures with the strongest evidence indicating that prenatal monoethyl phthalate (MEP) concentrations may be associated with slightly earlier timing of puberty, including age at menarche. Findings examining peri-pubertal phthalate exposures and pubertal outcomes were less consistent as were studies of prenatal and peri-pubertal phenol exposures. Very few studies had examined parabens in relation to girls' pubertal development. Common study limitations included potential exposure misclassification related to use of spot samples and/or mistimed biomarker assessment with respect to the outcomes. The role of body size as a mediator in these relationships remains unresolved. Overall, evidence of associations between chemical exposures in PCPs and girls' pubertal development was conflicting. When associations were observed, effect sizes were small. Nevertheless, given the many environmental, social, and behavioral factors in the modern environment that may act synergistically to accelerate timing of puberty, even marginal changes may be cause for concern, with implications for cancer risk, mental health, and cardiometabolic disease in later life.
Collapse
Affiliation(s)
- Zorimar Rivera-Núñez
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA. .,Department of Biostatistics and Epidemiology, Rutgers School of Public Health, 683 Hoes Lane West, Piscataway, NJ, 08854, USA.
| | - Carolyn W Kinkade
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA
| | - Yingting Zhang
- Robert Wood Johnson Library of the Health Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Amber Rockson
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, 683 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Elisa V Bandera
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, 683 Hoes Lane West, Piscataway, NJ, 08854, USA.,Cancer Epidemiology and Health Outcomes, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08903, USA
| | - Adana A M Llanos
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, 683 Hoes Lane West, Piscataway, NJ, 08854, USA.,Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Emily S Barrett
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA.,Department of Biostatistics and Epidemiology, Rutgers School of Public Health, 683 Hoes Lane West, Piscataway, NJ, 08854, USA
| |
Collapse
|
13
|
Berman YE, Doherty DA, Mori TA, Beilin LJ, Ayonrinde OT, Adams LA, Huang RC, Olynyk JK, Keelan JA, Newnham JP, Hart RJ. Associations between Prenatal Exposure to Phthalates and Features of the Metabolic Syndrome in Males from Childhood into Adulthood. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15244. [PMID: 36429961 PMCID: PMC9690816 DOI: 10.3390/ijerph192215244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Phthalate metabolites are detectable within the majority of the population. Evidence suggests that a prenatal exposure to phthalates may be associated with the subsequent risks of obesity and elevated blood pressure. We hypothesised that a prenatal exposure to phthalates would lead to an increase in adverse cardiometabolic parameters through childhood and adulthood. The maternal serum phthalate measurements from the stored samples taken from Gen1 mothers at 18 and 34 weeks gestation were examined in relation to the cardiometabolic measures in 387 male offspring from the Raine Study. Data from the Gen2 follow-ups between 3 and 27 years were used. The primary outcomes were analysed longitudinally using linear mixed models for the repeated measures. Non-alcoholic fatty liver disease (NAFLD) was assessed at 17 years using logistic regression. A consistent positive relationship was observed between a prenatal exposure to mono-carboxy-iso-octyl phthalate (MCiOP) through adolescence into adulthood with systolic blood pressure. There were no other consistent cardiovascular associations. Mid-levels of prenatal exposures to Mono-n-butyl phthalate (MnBP) were associated with a greater incidence of NAFLD. Detectable Mono-3-carboxypropyl phthalate (MCPP) was associated with a lower serum HDL-C through late childhood into adulthood, while a higher prenatal exposure to mono-iso-butyl phthalate (MiBP), was associated with a higher LDL-C at 22 years of age. A mid-level prenatal exposure to mono-2-ethylhexyl phthalate (MEHP) metabolites was associated with higher insulin in adulthood, while a higher prenatal exposure to the sum of the Di-(2-ethyl-hexyl) phthalate (DEHP) and Di-iso-nonyl phthalate (DiNP) metabolites was associated with higher fasting serum glucose in adulthood. In conclusion, our study demonstrated that higher prenatal phthalate exposures to some phthalate metabolites was associated with some adverse metabolic profiles through adolescence into adulthood, although the consistent themes were limited to a few metabolites and the outcomes of systolic blood pressure, fasting insulin and glucose.
Collapse
Affiliation(s)
- Ye’elah E. Berman
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, WA 6008, Australia
| | - Dorota A. Doherty
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, WA 6008, Australia
| | - Trevor A. Mori
- Medical School, University of Western Australia, Crawley, WA 6009, Australia
| | - Lawrence J. Beilin
- Medical School, University of Western Australia, Crawley, WA 6009, Australia
| | - Oyekoya T. Ayonrinde
- Medical School, University of Western Australia, Crawley, WA 6009, Australia
- Department of Gastroenterology and Hepatology, Fiona Stanley Hospital, Murdoch, WA 6150, Australia
| | - Leon A. Adams
- Medical School, University of Western Australia, Crawley, WA 6009, Australia
- Department of Hepatology, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia
| | - Rae-Chi Huang
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
- Telethon Kids Institute, University of Western Australia, Nedlands, WA 6009, Australia
| | - John K. Olynyk
- Department of Gastroenterology and Hepatology, Fiona Stanley Hospital, Murdoch, WA 6150, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Jeffrey A. Keelan
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, WA 6008, Australia
| | - John P. Newnham
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, WA 6008, Australia
| | - Roger J. Hart
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, WA 6008, Australia
| |
Collapse
|
14
|
Güil-Oumrait N, Cano-Sancho G, Montazeri P, Stratakis N, Warembourg C, Lopez-Espinosa MJ, Vioque J, Santa-Marina L, Jimeno-Romero A, Ventura R, Monfort N, Vrijheid M, Casas M. Prenatal exposure to mixtures of phthalates and phenols and body mass index and blood pressure in Spanish preadolescents. ENVIRONMENT INTERNATIONAL 2022; 169:107527. [PMID: 36126421 DOI: 10.1016/j.envint.2022.107527] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/29/2022] [Accepted: 09/14/2022] [Indexed: 05/22/2023]
Abstract
BACKGROUND Pregnant women are simultaneously exposed to several non-persistent endocrine-disrupting chemicals, which may influence the risk of childhood obesity and cardiovascular diseases later in life. Previous prospective studies have mostly examined single-chemical effects, with inconsistent findings. We assessed the association between prenatal exposure to phthalates and phenols, individually and as a mixture, and body mass index (BMI) and blood pressure (BP) in preadolescents. METHODS We used data from the Spanish INMA birth cohort study (n = 1,015), where the 1st and 3rd- trimester maternal urinary concentrations of eight phthalate metabolites and six phenols were quantified. At 11 years of age, we calculated BMI z-scores and measured systolic and diastolic BP. We estimated individual chemical effects with linear mixed models and joint effects of the chemical mixture with hierarchical Bayesian kernel machine regression (BKMR). Analyses were stratified by sex and by puberty status. RESULTS In single-exposure models, benzophenone-3 (BP3) was nonmonotonically associated with higher BMI z-score (e.g. Quartile (Q) 3: β = 0.23 [95% CI = 0.03, 0.44] vs Q1) and higher diastolic BP (Q2: β = 1.27 [0.00, 2.53] mmHg vs Q1). Methyl paraben (MEPA) was associated with lower systolic BP (Q4: β = -1.67 [-3.31, -0.04] mmHg vs Q1). No consistent associations were observed for the other compounds. Results from the BKMR confirmed the single-exposure results and showed similar patterns of associations, with BP3 having the highest importance in the mixture models, especially among preadolescents who reached puberty status. No overall mixture effect was found, except for a tendency of higher BMI z-score and lower systolic BP in girls. CONCLUSIONS Prenatal exposure to UV-filter BP3 may be associated with higher BMI and diastolic BP during preadolescence, but there is little evidence for an overall phthalate and phenol mixture effect.
Collapse
Affiliation(s)
- Nuria Güil-Oumrait
- ISGlobal, Barcelona, Spain; Pompeu Fabra University (UPF), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | | | - Parisa Montazeri
- ISGlobal, Barcelona, Spain; Pompeu Fabra University (UPF), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Nikos Stratakis
- ISGlobal, Barcelona, Spain; Pompeu Fabra University (UPF), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Charline Warembourg
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Maria-Jose Lopez-Espinosa
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; FISABIO-Universitat Jaume I-Universitat de Valencia, Valencia, Spain; Faculty of Nursing and Chiropody, University of Valencia, Valencia, Spain
| | - Jesús Vioque
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Universidad Miguel Hernández, Alicante, Spain
| | - Loreto Santa-Marina
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Biodonostia, Health Research Institute, Donostia, Gipuzkoa, Spain; Department of Health of the Basque Government, Subdirectorate of Public Health of Gipuzkoa, Spain
| | - Alba Jimeno-Romero
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Biodonostia, Health Research Institute, Donostia, Gipuzkoa, Spain; Preventive Medicine and Public Health Department, University of the Basque Country, Leioa, Bizkaia, Spain
| | - Rosa Ventura
- Catalonian Antidoping Laboratory, Doping Control Research Group, IMIM, Barcelona, Spain
| | - Nuria Monfort
- Catalonian Antidoping Laboratory, Doping Control Research Group, IMIM, Barcelona, Spain
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain; Pompeu Fabra University (UPF), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Maribel Casas
- ISGlobal, Barcelona, Spain; Pompeu Fabra University (UPF), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| |
Collapse
|
15
|
Freire C, Castiello F, Lopez-Espinosa MJ, Beneito A, Lertxundi A, Jimeno-Romero A, Vrijheid M, Casas M. Association of prenatal phthalate exposure with pubertal development in Spanish boys and girls. ENVIRONMENTAL RESEARCH 2022; 213:113606. [PMID: 35716812 DOI: 10.1016/j.envres.2022.113606] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/18/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Phthalates are widespread, anti-androgenic chemicals known to alter early development, with possible impact on puberty timing. AIM To investigate the association of prenatal phthalate exposure with pubertal development in boys and girls. METHODS Urinary metabolites of six different phthalate diesters (DEP, DiBP, DnBP, BBzP, DEHP, and DiNP) and non-phthalate plasticizer DINCH® were quantified in two urine samples collected during pregnancy from mothers participating in the INMA Spanish cohort study. Pubertal assessment of their children at age 7-10 years (409 boys, 379 girls) was conducted using the parent-reported Pubertal Development Scale. Modified Poisson and Weighted Quantile Sum (WQS) regression was employed to examine associations between prenatal phthalates and risk of puberty onset, adrenarche, and gonadarche. Effect modification by child weight status was explored by stratified analysis. RESULTS Prenatal exposure to DEHP was associated with higher risk of puberty onset (relative risk [RR] = 1.32, 95% CI = 1.09-1.59 per each log-unit increase in concentrations) and gonadarche (RR = 1.23, 95% CI = 1.00-1.50) in boys and higher risk of adrenarche (RR = 1.25, 95% CI = 1.03-1.51) in girls at age 7-10 years. In boys, prenatal exposure to DEP, DnBP, and DEHP was also associated with higher risk of adrenarche or gonadarche (RRs = 1.49-1.80) in those with normal weight, and BBzP and DINCH® exposure with lower risk of adrenarche (RR = 0.49, 95% CI = 0.27-0.89 and RR = 0.47, 95% CI = 0.24-0.90, respectively) in those with overweight/obesity. In girls, DiBP, DnBP, and DINCH® were associated with slightly higher risk of gonadarche (RRs = 1.14-1.19) in those with overweight/obesity. In the WQS model, the phthalate mixture was not associated with puberty in boys or girls. CONCLUSION Prenatal exposure to certain phthalates was associated with pubertal development at age 7-10 years, especially earlier puberty in boys with normal weight and girls with overweight/obesity. However, there was no evidence of effect of the phthalate mixture on advancing or delaying puberty in boys or girls.
Collapse
Affiliation(s)
- Carmen Freire
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Biomedical Research Centre, University of Granada, 18016, Granada, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain.
| | - Francesca Castiello
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Pediatrics Unit, San Cecilio University Hospital, 18016, Granada, Spain.
| | - Maria-Jose Lopez-Espinosa
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Jaume I University-University of Valencia, 46020, Valencia, Spain; Department of Nursing, Faculty of Nursing and Chiropody, University of Valencia, 46010, Valencia, Spain.
| | - Andrea Beneito
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Jaume I University-University of Valencia, 46020, Valencia, Spain.
| | - Aitana Lertxundi
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Department of Preventive Medicine and Public Health, University of the Basque Country (UPV/EHU), 48940, Leioa, Bizkaia, Spain; BIODONOSTIA Health Research Institute, 20014, San Sebastián, Spain.
| | - Alba Jimeno-Romero
- Department of Preventive Medicine and Public Health, University of the Basque Country (UPV/EHU), 48940, Leioa, Bizkaia, Spain; BIODONOSTIA Health Research Institute, 20014, San Sebastián, Spain.
| | - Martine Vrijheid
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; ISGlobal, 08036, Barcelona, Spain; Universitat Pompeu Fabra, 08005, Barcelona, Spain.
| | - Maribel Casas
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; ISGlobal, 08036, Barcelona, Spain; Universitat Pompeu Fabra, 08005, Barcelona, Spain.
| |
Collapse
|
16
|
Predieri B, Alves CAD, Iughetti L. New insights on the effects of endocrine-disrupting chemicals on children. J Pediatr (Rio J) 2022; 98 Suppl 1:S73-S85. [PMID: 34921754 PMCID: PMC9510934 DOI: 10.1016/j.jped.2021.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Endocrine disrupting chemicals (EDCs) are present in many areas and materials of the common life, and exposure to these chemicals can occur from products to personal care, from air and food. This review aims to summarize the more recent epidemiological findings for the impact of EDCs on endocrine system health in children, including effects in growth, metabolism, sexual development, and reproduction. SOURCES The MEDLINE database (PubMed) was searched on August 24th, 2021, filtering for EDCs, endocrine disruptors, children, and humans. SUMMARY OF THE FINDINGS Intrauterine exposure of EDCs can have transgenerational effects, thus laying the foundation for disease in later life. The dose-response relationship may not always be predictable as even low-level exposures that may occur in everyday life can have significant effects on a susceptible individual. Although individual compounds have been studied in detail, the effects of a combination of these chemicals are yet to be studied to understand the real-life situation where human beings are exposed to a "cocktail effect" of these EDCs. Epidemiological studies in humans suggest EDCs' effects on prenatal growth, thyroid function, glucose metabolism, obesity, puberty, and fertility mainly through epigenetic mechanisms. CONCLUSIONS EDCs cause adverse effects in animals, and their effects on human health are now known and irrefutable. Because people are typically exposed to multiple endocrine disruptors, assessing public health effects is difficult. Legislation to ban EDCs and protect especially pregnant women and young children is required and needs to be revised and adjusted to new developments on a regular basis.
Collapse
Affiliation(s)
- Barbara Predieri
- University of Modena and Reggio Emilia, Department of Medical and Surgical Sciences of the Mothers, Children and Adults, Pediatric Unit, Modena, Italy
| | - Crésio A D Alves
- Universidade Federal da Bahia (UFBA), Faculdade de Medicina, Hospital Universitário Prof. Edgard Santos, Unidade de Endocrinologia Pediátrica, Salvador, BA, Brazil
| | - Lorenzo Iughetti
- University of Modena and Reggio Emilia, Department of Medical and Surgical Sciences of the Mothers, Children and Adults, Pediatric Unit, Modena, Italy.
| |
Collapse
|
17
|
Siegel EL, Kezios KL, Houghton L, Pereira-Eshraghi C, Cirillo P, Cohn BA, Factor-Litvak P. Could maternal thyroid function during pregnancy affect daughters' age at menarche through child growth? A mediation analysis. Reprod Toxicol 2022; 107:33-39. [PMID: 34808459 PMCID: PMC8760156 DOI: 10.1016/j.reprotox.2021.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/04/2021] [Accepted: 11/11/2021] [Indexed: 01/03/2023]
Abstract
Early menarche is associated with adverse health outcomes during adolescence as well as breast and other reproductive cancers later in adulthood. However, the causes of early menarche and the pathways through which they operate are not fully understood. Though maternal thyroid function during pregnancy affects child growth, and rapid childhood growth is associated with a decreased age at menarche, the relationship between prenatal maternal thyroid function and daughters' age at menarche has not been examined. We conducted a mediation analysis in a historical cohort of 260 mother-child pairs to estimate the total and indirect effects of maternal prenatal thyroid function on daughters' age at menarche. No association was observed between thyroid stimulating hormone (TSH) or anti-thyroid peroxidase antibodies (ATPO) and daughters' age at menarche. Using a sample-specific, a-priori cutoff at the 10th percentile, low levels of maternal free thyroxine (FT4) were associated with earlier daughter age at menarche, with a hazard ratio (95 % CI) of 1.70 (1.02, 2.84) comparing the bottom 10th percentile with the top 90th percentile of exposure levels. Higher maternal FT4 was associated with rapid child weight gain from ages 5-9, and rapid child weight gain from ages 5-9 was associated with earlier age at menarche; the estimated indirect effect of this pathway was null. While maternal FT4 is associated with earlier age at menarche in daughters, this is not mediated by rapid weight gain in our study population, suggesting that maternal FT4 is operating through a different pathway.
Collapse
Affiliation(s)
- Eva L Siegel
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 W 168th St, New York, NY, USA, 10032,corresponding author: . 722 W 168th St. New York, NY, 10032
| | - Katrina L Kezios
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 W 168th St, New York, NY, USA, 10032
| | - Lauren Houghton
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 W 168th St, New York, NY, USA, 10032
| | - Camila Pereira-Eshraghi
- Department of Pediatric Endocrinology, Diabetes and Metabolism, Columbia University Irving Medical Center, 622 W 168th St, New York, NY, USA, 10032
| | - Piera Cirillo
- Child Health and Development Studies, Center for Research on Women’s and Children’s Health, Public Health Institute, 555 12th Street, Suite 290, Oakland, CA, USA, 94607
| | - Barbara A Cohn
- Child Health and Development Studies, Center for Research on Women’s and Children’s Health, Public Health Institute, 555 12th Street, Suite 290, Oakland, CA, USA, 94607
| | - Pam Factor-Litvak
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 W 168th St, New York, NY, USA, 10032
| |
Collapse
|
18
|
Phthalates and Their Impacts on Human Health. Healthcare (Basel) 2021; 9:healthcare9050603. [PMID: 34069956 PMCID: PMC8157593 DOI: 10.3390/healthcare9050603] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 12/13/2022] Open
Abstract
Phthalates are a series of widely used chemicals that demonstrate to be endocrine disruptors and are detrimental to human health. Phthalates can be found in most products that have contact with plastics during producing, packaging, or delivering. Despite the short half-lives in tissues, chronic exposure to phthalates will adversely influence the endocrine system and functioning of multiple organs, which has negative long-term impacts on the success of pregnancy, child growth and development, and reproductive systems in both young children and adolescents. Several countries have established restrictions and regulations on some types of phthalates; however, we think that more countries should establish constraints or substitute measures for phthalates to reduce health risks. This article aims to summarize the adverse impacts of phthalates on human health, analyze the toxicity mechanism, assess the risks, and finally provide feasible strategies to reduce exposure of the public to phthalates.
Collapse
|