1
|
Contreras P, Oviedo C, Soto-Ramírez R, Vásquez-Sandoval C, Navarrete J, Dantagnan P. Impacts of conventional and industrial wastewaters-based media on biomass production, nutrient dynamics, and fatty acid profile in a thraustochytrid culture. Prep Biochem Biotechnol 2025:1-14. [PMID: 40183144 DOI: 10.1080/10826068.2025.2484606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
The rising demand for polyunsaturated fatty acids, coupled with the decline of traditional fish-based sources, highlights Ulkenia visurgensis Lng2, a newly isolated thraustochytrid strain, as a promising alternative for sustainable polyunsaturated fatty acids production. Using Response Surface Methodology to optimize medium composition and culture conditions, biomass production was improved to 11.64 g/L-120% higher than previous studies-with 35% of the biomass consisting of total lipids. Of the total fatty acids, 40% corresponded to polyunsaturated fatty acids, including 27% of docosahexaenoic acid, 4% of eicosapentaenoic acid, and 7% of arachidonic acid. Alternative media, such as wastewaters from corn and fish meal processing, were also evaluated. Biomass yields in wastewaters-based media (30% v/v) were lower due to limited nutrient availability, achieving between 2.96 g/L and 2.28 g/L, with the strain showing mostly around 8% carbon and nitrogen assimilation. Morphological changes, including increased vegetative and multinucleated cells, were also observed. Lipid content decreased in wastewater-based cultures, yet PUFAs constituted 47% of total fatty acids, with EPA nearly doubling, DHA remaining stable and decreased ARA content. These results shed light on how U. visurgensis Lng2 adapts to nutrient-limited environments and offer valuable insights for developing sustainable PUFA production using industrial by-products as alternative media.
Collapse
Affiliation(s)
- Pedro Contreras
- Departamento de Ingeniería en Maderas, Facultad de Ingeniería, Universidad del Bio-Bio, Concepción, Chile
| | - Claudia Oviedo
- Departamento de Química, Facultad de Ciencias, Universidad del Bío-Bío, Concepción, Chile
| | | | - Cinthia Vásquez-Sandoval
- Departamento de Ingeniería en Maderas, Facultad de Ingeniería, Universidad del Bio-Bio, Concepción, Chile
| | - José Navarrete
- Departamento de Ingeniería en Maderas, Facultad de Ingeniería, Universidad del Bio-Bio, Concepción, Chile
| | - Patricio Dantagnan
- Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| |
Collapse
|
2
|
Djoundi AR, Morançais M, Mossion A, Ragueneau E, Rabesaotra V, Farasoa HR, Ramanandraibe VV, Dumay J. Seasonal Variation in the Biochemical Composition and Fatty Acid Profiles of the Red Alga Halymenia durvillei from Ngazidja (Comoros). Molecules 2025; 30:1232. [PMID: 40142008 PMCID: PMC11946709 DOI: 10.3390/molecules30061232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
The study of Comorian red alga Halymenia durvillei showed a significant biochemical composition with high ash and polysaccharide content and the presence of n-3 and n-6 essential fatty acid molecules. Seasonal monitoring showed a real change in biochemical composition depending on the harvesting period. On an annual average basis, the algae contained 35.59 ± 2.55% dw ashes, 0.7 ± 0.19% dw soluble proteins, 0.27 ± 0.02% dw total lipids, and 35.09 ± 6.14% dw polysaccharides. The pigment composition was 130 µg/g dw R-phycoerythrin, 1.49 µg/g dw chlorophyll a, and 0.09 µg/g dw carotenoids. The most abundant fatty acid identified was palmitic acid (C16:0), which accounted for almost 43.33% of total fatty acids. Oleic acid (C18:1n-9) was the most abundant unsaturated fatty acid, at 11.58%. Linoleic acid (C18:2n-6) was reported to be the most abundant polyunsaturated fatty acid in Halymenia durvillei. The fatty acid profile was also characterized by arachidonic acid (C20:4n-6) and eicosapentaenoic acid (C20:5n-3).
Collapse
Affiliation(s)
- Ahmed Radjabou Djoundi
- Institut des Substances et Organismes de la Mer, Nantes Université, ISOMer, UR 2160, F-44000 Nantes, France; (A.R.D.); (M.M.); (A.M.); (E.R.); (V.R.)
- Laboratoire de Chimie et Valorisation des Produits Naturelles (LCVPN), Université d’Antananarivo, 101 Antananarivo, Antananarivo P.O. Box 906, Madagascar; (H.R.F.); (V.V.R.)
| | - Michèle Morançais
- Institut des Substances et Organismes de la Mer, Nantes Université, ISOMer, UR 2160, F-44000 Nantes, France; (A.R.D.); (M.M.); (A.M.); (E.R.); (V.R.)
| | - Aurélie Mossion
- Institut des Substances et Organismes de la Mer, Nantes Université, ISOMer, UR 2160, F-44000 Nantes, France; (A.R.D.); (M.M.); (A.M.); (E.R.); (V.R.)
| | - Emilie Ragueneau
- Institut des Substances et Organismes de la Mer, Nantes Université, ISOMer, UR 2160, F-44000 Nantes, France; (A.R.D.); (M.M.); (A.M.); (E.R.); (V.R.)
| | - Vony Rabesaotra
- Institut des Substances et Organismes de la Mer, Nantes Université, ISOMer, UR 2160, F-44000 Nantes, France; (A.R.D.); (M.M.); (A.M.); (E.R.); (V.R.)
| | - Helga Rim Farasoa
- Laboratoire de Chimie et Valorisation des Produits Naturelles (LCVPN), Université d’Antananarivo, 101 Antananarivo, Antananarivo P.O. Box 906, Madagascar; (H.R.F.); (V.V.R.)
| | - Vestalys Voahangy Ramanandraibe
- Laboratoire de Chimie et Valorisation des Produits Naturelles (LCVPN), Université d’Antananarivo, 101 Antananarivo, Antananarivo P.O. Box 906, Madagascar; (H.R.F.); (V.V.R.)
| | - Justine Dumay
- Institut des Substances et Organismes de la Mer, Nantes Université, ISOMer, UR 2160, F-44000 Nantes, France; (A.R.D.); (M.M.); (A.M.); (E.R.); (V.R.)
| |
Collapse
|
3
|
Mandal AK, Parida S, Behera AK, Adhikary SP, Lukatkin AA, Lukatkin AS, Jena M. Seaweed in the Diet as a Source of Bioactive Metabolites and a Potential Natural Immunity Booster: A Comprehensive Review. Pharmaceuticals (Basel) 2025; 18:367. [PMID: 40143143 PMCID: PMC11945151 DOI: 10.3390/ph18030367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/15/2025] [Accepted: 02/19/2025] [Indexed: 03/28/2025] Open
Abstract
Seaweed plays an essential role in the survival of marine life, provides habitats and helps in nutrient recycling. It is rich in valuable nutritious compounds such as pigments, proteins, polysaccharides, minerals, vitamins, omega-rich oils, secondary metabolites, fibers and sterols. Pigments like fucoxanthin and astaxanthin and polysaccharides like laminarin, fucoidan, galactan and ulvan possess immune-modulatory and immune-enhancing properties. Moreover, they show antioxidative, antidiabetic, anticancer, anti-inflammatory, antiproliferative, anti-obesity, antimicrobial, anticoagulation and anti-aging properties and can prevent diseases such as Alzheimer's and Parkinson's and cardiovascular diseases. Though seaweed is frequently consumed by Eastern Asian countries like China, Japan, and Korea and has gained the attention of Western countries in recent years due to its nutritional properties, its consumption on a global scale is very limited because of a lack of awareness. Thus, to incorporate seaweed into the global diet and to make it familiar as a functional food, issues such as large-scale cultivation, processing, consumer acceptance and the development of seaweed-based food products need to be addressed. This review is intended to give a brief overview of the present status of seaweed, its nutritional value and its bioactive metabolites as functional foods for human health and diseases owing to its immunity-boosting potential. Further, seaweed as a source of sustainable food and its prospects along with its issues are discussed in this review.
Collapse
Affiliation(s)
- Amiya Kumar Mandal
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India; (A.K.M.); (S.P.); (A.K.B.)
| | - Sudhamayee Parida
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India; (A.K.M.); (S.P.); (A.K.B.)
| | - Akshaya Kumar Behera
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India; (A.K.M.); (S.P.); (A.K.B.)
| | - Siba Prasad Adhikary
- Department of Biotechnology, Institute of Science, Visva-Bharati, Santiniketan 731235, West Bengal, India;
| | - Andrey A. Lukatkin
- Department of Cytology, Histology and Embryology with Courses in Medical Biology and Molecular Cell Biology, N.P. Ogarev Mordovia State University, Bolshevistskaja Str., 68, Saransk 430005, Russia;
| | | | - Mrutyunjay Jena
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India; (A.K.M.); (S.P.); (A.K.B.)
| |
Collapse
|
4
|
Zhou N, Zhao M, Sun X, Hu C, Xu N. Comparative evaluation of the flavor characteristics and nutritional value of different varieties of Gracilariopsis lemaneiformis by sensory flavor chemistry. Food Chem X 2025; 26:102332. [PMID: 40123873 PMCID: PMC11930211 DOI: 10.1016/j.fochx.2025.102332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/18/2025] [Accepted: 02/25/2025] [Indexed: 03/25/2025] Open
Abstract
Gracilariopsis lemaneiformis is an important edible marine alga, currently recognized as the second most productive seaweed in China. In this study, the flavor and nutritional components of three varieties of G. lemaneiformis-981, LuLong No. 1, and NB-18 were investigated using sensory flavor chemistry, emphasizing their potential flavor properties and health benefits. The e-tongue and e-nose profiles of G. lemaneiformis were analyzed for the first time, revealing significant differences between NB-18 and the other two varieties. Free amino acids, 5'-nucleotides, and volatile compounds (VOCs) were also evaluated. NB-18 exhibited significantly lower levels of VOCs and higher content of Glu, contributing to its superior sensory characteristics. Furthermore, it demonstrated a higher proportion of polyunsaturated fatty acids (PUFAs) and the lowest trans-fatty acid content. In conclusion, NB-18 stands out as a nutrient-rich, high-protein seaweed with excellent flavor and considerable market value, providing a strong basis for future large-scale promotion and cultivation.
Collapse
Affiliation(s)
- Na Zhou
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China.
| | - Mengyao Zhao
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China.
| | - Xue Sun
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China.
| | - Chaoyang Hu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China.
| | - Nianjun Xu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China.
| |
Collapse
|
5
|
Darko CNS, Ampiaw FA, Agyei-Tuffour B, Goosen NJ, Tuvikene R. Seaweeds and derived bioactive compounds as food alternatives: Current status and future perspective in Africa. Food Chem 2025; 464:141720. [PMID: 39486288 DOI: 10.1016/j.foodchem.2024.141720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 10/10/2024] [Accepted: 10/18/2024] [Indexed: 11/04/2024]
Abstract
The urgency for food security and diversification has necessitated extensive exploration of all potential food options. Seaweeds, now considered potential functional foods are widely consumed across Asia and parts of Europe. In Africa, reports on consumption trends and food-related applications are scarce. About only 1% of the annually harvested ∼120,000 (fresh weight) tonnes of commercially useful eucheumatoids are utilized locally in the continent's top-producing country, Tanzania. Ultimately, the intensification of current efforts shall promote up-scaling of the seaweed industry. In this review, we have discussed the nutritional profile and nutraceutical potential of commercially viable species, paying attention to consumer safety measures. Also, prospective food-related application of seaweeds based on current international and local African consumption trends is reviewed. The review further addresses factors that hinder consumer acceptance in Africa and the up-scaling of the seaweed industry at large. This review aims to provide some theoretical reference for future developments and application of seaweed as food in Africa.
Collapse
Affiliation(s)
| | - Freda Akua Ampiaw
- Department of Materials Science and Engineering, School of Engineering Sciences, University of Ghana, Anne-Jiagge Road, Legon-Accra, Ghana
| | - Benjamin Agyei-Tuffour
- Department of Materials Science and Engineering, School of Engineering Sciences, University of Ghana, Anne-Jiagge Road, Legon-Accra, Ghana
| | - Neill Jurgens Goosen
- Department of Chemical Engineering, Stellenbosch University, Private Bag XI, Matieland, Stellenbosch 7602, South Africa
| | - Rando Tuvikene
- School of Natural Sciences and Health, Tallinn University, Narva mnt 29, 10120 Tallinn, Estonia
| |
Collapse
|
6
|
de Vasconcelos Costa L, Paim BT, Massaut YVB, Ficagna CA, de Oliveira PV, Bonemann D, de Candido de Oliveira F, Rombaldi CV, Ribeiro AS, Wagner R, Boiago MM, da Silva AS, Zavareze E, Meinhart AD. Feeding broilers with the addition of an Ilex paraguariensis coproduct affects zootechnical performance and meat quality responses. Trop Anim Health Prod 2025; 57:39. [PMID: 39873862 DOI: 10.1007/s11250-025-04291-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/17/2025] [Indexed: 01/30/2025]
Abstract
During the harvest of Ilex paraguariensis, approximately 2-5 tons per hectare of thick stems are left on the soil surface. The outer portion of these stems, referred to as the coproduct, constitutes 30% of the total residue mass. Although this coproduct has been partially characterized in terms of its phytochemical profile, its technological applications remain unexplored. The objective of this research is to evaluate whether broilers fed with feed incorporating I. paraguariensis harvest prunings will exhibit improved zootechnical performance as well as enhanced biochemical and impacts on meat quality. One-day-old Cobb 500 broilers (n = 300) were raised for 42 days in the broiler shed at the experimental farm in housed in 2.0 m2 pens with a 10 cm layer of poultry litter and equipped with tubular feeders and nipple drinkers. They were arranged in a completely randomized design, comprising four treatments with five replicates of 15 birds each. The treatments consisted of the following diets: a basal diet (0%; the control), feed with 1% coproduct (1% treatment), feed with 2% coproduct (2% treatment), and feed with 3% coproduct (3% treatment). Broilers were assessed for zootechnical performance, intestinal morphometry, and serum biochemical properties. Additionally, meat quality was evaluated, including centesimal composition, chlorogenic acid content, antioxidant activity, metal concentration, and fatty acid profile. Chlorogenic acid was not detected in the meat of broiler chickens. The inclusion of the coproduct impacted both zootechnical performance and meat quality, with a linear effect proportional to the concentration of the additive used in the diet; that is, the worst performance was seen in chickens that consumed 3% of the co-product. It reduced feed consumption and weight gain, lowered cholesterol and triglyceride levels in broiler blood, but increased polyunsaturated fatty acids in the meat, one effect verified for the two largest inclusions (2 and 3% of the co-product). In the intestine, greater villus height and levels of reactive oxygen species were observed in the highest dose of the additive, a group of birds in which greater activity of the enzymes creatine kinase and pyruvate kinase was also observed. In general, none of the doses tested proved to be effective in enhancing productive performance; in addition, it did not increase the concentration of chlorogenic acid in the meat, which would be our hypothesis of having a nutraceutical food.
Collapse
Affiliation(s)
- Laura de Vasconcelos Costa
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Rio Grande Do Sul, Brazil
| | - Bruna Trindade Paim
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Rio Grande Do Sul, Brazil
| | - Yasmin Völz Bezerra Massaut
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Rio Grande Do Sul, Brazil
| | - Cassio Antonio Ficagna
- Department of Animal Science, State University of Santa Catarina, Udesc Chapecó, Santa Catarina, Brazil
| | | | - Daisa Bonemann
- Graduate Program in Chemistry, Center for Chemical, Pharmaceutical, and Food Sciences, Federal University of Pelotas, Rio Grande Do Sul, Brazil
| | | | - Cesar Valmor Rombaldi
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Rio Grande Do Sul, Brazil
| | - Anderson Schwingel Ribeiro
- Graduate Program in Chemistry, Center for Chemical, Pharmaceutical, and Food Sciences, Federal University of Pelotas, Rio Grande Do Sul, Brazil
| | - Roger Wagner
- Department of Food Technology and Science, Federal University of Santa Maria, Rio Grande Do Sul, Brazil
| | - Marcel Manente Boiago
- Department of Animal Science, State University of Santa Catarina, Udesc Chapecó, Santa Catarina, Brazil
| | | | - Elessandra Zavareze
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Rio Grande Do Sul, Brazil
| | - Adriana Dillenburg Meinhart
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Rio Grande Do Sul, Brazil.
| |
Collapse
|
7
|
Fehri NE, Contò M, Castrica M, Quattrone A, Renzi G, Di Giovanni S, Agradi S, Vigo D, Brecchia G, Menchetti L, Balzaretti CM, Beqiraj D, Andoni E, Curone G, Failla S. Effects of Diets Containing Extruded Linseed and Padina pavonica Algae on Meat Rabbit: Carcass Performance and Meat Quality. Foods 2025; 14:274. [PMID: 39856940 PMCID: PMC11764711 DOI: 10.3390/foods14020274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
This study investigated the effects of dietary supplementation with extruded linseed (ELS) and Padina pavonica algae extract (PP) on rabbit carcass and meat quality. Ninety-six rabbit carcasses from two production cycles were analyzed. In the first cycle (C1), rabbits were fed a control diet (1CNT), the same diet supplemented with 5% ELS (1ELS5%), and supplemented with 3.5% ELS and 0.2% PP (1LPP3.5%). In the second cycle (C2), the diets varied in composition and supplementation levels: a different control diet (2CNT), the same diet with 5% ELS (2ELS5%), and with 5% ELS and 0.2% PP (2LPP5%). Meat analyses were performed on Longissimus thoracis et lumborum (LTL) muscle for physical properties and on thigh meat (THM) for proximate composition, vitamin E, coenzyme-Q10, cholesterol, fatty acid profile, and mineral content. No significant differences in LTL physical quality were observed in C1, although LTL was brighter in C2 (p < 0.001). THM in C2 had higher fat content (p < 0.001). Dietary supplementation with ELS and PP extract significantly increased polyunsaturated fatty acids (n-3 PUFAs) and improved the n-6/n-3 ratio (p < 0.001) in rabbit meat, demonstrating their positive impact on meat quality.
Collapse
Affiliation(s)
- Nour Elhouda Fehri
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (N.E.F.); (A.Q.); (D.V.); (G.B.); (C.M.B.); (G.C.)
| | - Michela Contò
- Consiglio per la Ricerca in Agricoltura e l’Analisi Dell’Economia Agraria (CREA), Centro di Ricerca Zootecnia e Acquacoltura, Research Centre for Animal Production and Aquaculture, Via Salaria 31, 00015 Rome, Italy; (M.C.); (G.R.); (S.D.G.); (S.F.)
| | - Marta Castrica
- Department of Comparative Biomedicine and Food Science, University of Padova, Agripolis, Viale dell’Univesità 16, 35020 Legnaro, Italy
| | - Alda Quattrone
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (N.E.F.); (A.Q.); (D.V.); (G.B.); (C.M.B.); (G.C.)
| | - Gianluca Renzi
- Consiglio per la Ricerca in Agricoltura e l’Analisi Dell’Economia Agraria (CREA), Centro di Ricerca Zootecnia e Acquacoltura, Research Centre for Animal Production and Aquaculture, Via Salaria 31, 00015 Rome, Italy; (M.C.); (G.R.); (S.D.G.); (S.F.)
| | - Sabrina Di Giovanni
- Consiglio per la Ricerca in Agricoltura e l’Analisi Dell’Economia Agraria (CREA), Centro di Ricerca Zootecnia e Acquacoltura, Research Centre for Animal Production and Aquaculture, Via Salaria 31, 00015 Rome, Italy; (M.C.); (G.R.); (S.D.G.); (S.F.)
| | - Stella Agradi
- Department of Veterinary Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy;
| | - Daniele Vigo
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (N.E.F.); (A.Q.); (D.V.); (G.B.); (C.M.B.); (G.C.)
| | - Gabriele Brecchia
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (N.E.F.); (A.Q.); (D.V.); (G.B.); (C.M.B.); (G.C.)
| | - Laura Menchetti
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica, Italy;
| | - Claudia Maria Balzaretti
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (N.E.F.); (A.Q.); (D.V.); (G.B.); (C.M.B.); (G.C.)
| | - Doriana Beqiraj
- Faculty of Veterinary Medicine, Agricultural University of Tirana, Kodër Kamëz, 1029 Tirana, Albania; (D.B.); (E.A.)
| | - Egon Andoni
- Faculty of Veterinary Medicine, Agricultural University of Tirana, Kodër Kamëz, 1029 Tirana, Albania; (D.B.); (E.A.)
| | - Giulio Curone
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (N.E.F.); (A.Q.); (D.V.); (G.B.); (C.M.B.); (G.C.)
| | - Sebastiana Failla
- Consiglio per la Ricerca in Agricoltura e l’Analisi Dell’Economia Agraria (CREA), Centro di Ricerca Zootecnia e Acquacoltura, Research Centre for Animal Production and Aquaculture, Via Salaria 31, 00015 Rome, Italy; (M.C.); (G.R.); (S.D.G.); (S.F.)
| |
Collapse
|
8
|
Gnayem N, Unis R, Gnaim R, Chemodanov A, Israel Á, Gnaim J, Golberg A. Fatty Acid Content and Profile in Ulva lactuca in Response to Exposure to Variable Growth Conditions in Indoor Photobioreactors. Life (Basel) 2025; 15:57. [PMID: 39859998 PMCID: PMC11766515 DOI: 10.3390/life15010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Seaweed presents a sustainable alternative source of valuable fatty acids (FAs) involving omega-3 (n-3) and omega-6 (n-6). As such, there is great potential to reduce pressure on wild fish populations, helping to combat overfishing and its associated global impacts. This study explored the effect of various environmental factors on the FA content and profile of Ulva lactuca using indoor photobioreactors. The taxonomic identity of U. lactuca was confirmed through DNA sequencing using 3 markers (rbcL, ITS, and tufa). The effects of temperature (8, 20, and 30 °C), seawater salinity (3.5, 3.0, 2.5, and 2.0% w/v), nutrient type and concentration (0 or 6.4 ppm, consisting of 50% w/w N-NO3, 50% w/w N-NH4, and 0-1 ppm P-PO4), and irradiance (50, 100, and 150 μmol photons m-2 s-1) were evaluated. This study assessed their influence on U. lactuca's biomass production rate (BPR), dry weight (DW), ash content (AC), and FA composition after 7 and 21 days. The results revealed that after 21 days, the polyunsaturated FA (PUFA) content decreased with the increasing seawater salinity (i.e., 38.9% ± 0.7, 33.8% ± 0.4, and 27.0% ± 0.4, and 6.6% ± 0.1 for a salinity of 2.0, 2.5, 3.0, and 3.5% w/v, respectively). The content of n-3 after 21 days increased significantly under the following conditions: 8 °C, a salinity of 2.5% w/v, 6.4 ppm of nitrogen without the addition of phosphorous, and an irradiation of 50 and 150 μmol photons m-2 s-1, affording a low n-6/n-3 proportion that fits a desirable level of an n6/n3 ratio (1-10) for a balanced nutritional diet.
Collapse
Affiliation(s)
- Nabeel Gnayem
- Department of Environmental Studies, Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
- The Triangle Regional Research and Development Center, Kfar Qari 3007500, Israel
| | - Razan Unis
- Department of Environmental Studies, Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
- The Triangle Regional Research and Development Center, Kfar Qari 3007500, Israel
| | - Rima Gnaim
- Department of Environmental Studies, Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
- The Triangle Regional Research and Development Center, Kfar Qari 3007500, Israel
| | - Alexander Chemodanov
- Department of Environmental Studies, Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Álvaro Israel
- Israel Oceanographic and Limnological Research Institute, Haifa 3109701, Israel
| | - Jallal Gnaim
- The Triangle Regional Research and Development Center, Kfar Qari 3007500, Israel
| | - Alexander Golberg
- Department of Environmental Studies, Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
| |
Collapse
|
9
|
Ahmad S, Singh A, Akram W, Upadhyay A, Abrol GS. Algal lipids: A review on current status and future prospects in food processing. J Food Sci 2025; 90:e17618. [PMID: 39786345 DOI: 10.1111/1750-3841.17618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/30/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025]
Abstract
The consumer demand for functional foods derived from natural sources has been enhanced due to health-promoting effects. Algae are widely available globally as a sustainable source of proteins, lipids, and carbohydrates. Algal lipids are underexplored natural sources that exhibit several nutraceutical effects and applications in fortification, cosmetics, and pharmaceuticals. Both macro- and microalgae are composed of high-quality lipids. These latter involve polar lipids, nonpolar lipids, and essential fatty acids. Therefore, this review aimed to bring out knowledge on the chemistry of various lipids isolated and identified from micro- and macroalgae. Further, their extraction using traditional thermal (solid-liquid, and liquid-liquid) and advanced nonthermal (supercritical fluid, microwave-, ultrasound-, and enzyme-assisted) techniques has been explored. Along with this, bioactivities of algal lipids have been discussed. This study explored algal lipids in advancing sustainable food processing technologies that contribute positively to environmental sustainability and global health, in line with United Nations Sustainable Development GroupUnited Nations Sustainable Development Group UNSDGs.
Collapse
Affiliation(s)
- Sameer Ahmad
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, India
| | - Amit Singh
- Department of Postharvest Technology, Banda University of Agriculture & Technology, Banda, Uttar Pradesh, India
| | - Wasim Akram
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Ashutosh Upadhyay
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management Kundli, Sonipat, Haryana, India
| | - Ghan Shyam Abrol
- Department of Post-Harvest Technology, Rani Lakshmi Bai Central Agricultural University, Jhansi, Uttar Pradesh, India
| |
Collapse
|
10
|
Matos M, Custódio L, Reis CP. Marine Invasive Algae's Bioactive Ingredients as a Sustainable Pathway in Cosmetics: The Azores Islands as a Case Study. Mar Drugs 2024; 22:575. [PMID: 39728149 DOI: 10.3390/md22120575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
Marine invasive species pose significant ecological, economic, and social challenges, disrupting native ecosystems, outcompeting local species and altering biodiversity. The spread of these species is largely driven by global trade, shipping, and climate change, which allow non-native species to establish themselves in new environments. Current management strategies, including early detection, rapid response, and biosecurity measures, have had some success, but the complexity and scale of the problem require continuous monitoring. This review explores the possibility of using some marine invasive species as skincare ingredients and explores the Azorean islands as a case study for the valorization of biomass. Additionally, this review addresses legislative barriers that delay the development of sustainable cosmetic markets from invasive species, highlighting the regulatory landscape as a critical area. It concludes that marine invasive species present a regional and global problem that requires regional and global solutions. Such solutions strongly need to address environmental impacts and net socioeconomic benefits, but such solutions must also consider all regional differences, technical capacities and financial resources available. Thus, as a future perspective, strategies should emphasize the need for international collaboration and the development of more effective policies to prevent the spread of invasive species. There is still much work to be completed. By working together, the biodiversity for future generations will be better monitored and explored.
Collapse
Affiliation(s)
- Marta Matos
- Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Luísa Custódio
- Centre of Marine Sciences, (CCMAR/CIMAR LA), Faculty of Sciences and Technology, University of Algarve, Campus of Gambelas, Ed. 7, 8005-139 Faro, Portugal
| | - Catarina Pinto Reis
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
11
|
Behera M, Singh L, Pradhan B, Behera KC. Seaweed-Derived Bioactive Compounds: Potent Modulators in Breast Cancer Therapy. Chem Biodivers 2024:e202401613. [PMID: 39652742 DOI: 10.1002/cbdv.202401613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 12/07/2024] [Accepted: 12/09/2024] [Indexed: 12/18/2024]
Abstract
Cancer remains a major global health concern, with breast cancer being particularly challenging. To address this, new therapeutic strategies are being explored, including natural alternatives. Seaweeds, rich in bioactive compounds, have gained attention for their therapeutic potential. Traditionally valued for their nutritional content, seaweed-derived compounds such as polysaccharides, polyphenols, sterols, vitamins, minerals, and carotenoids have shown anticancer properties. These compounds can modulate key cellular processes like apoptosis, angiogenesis, and inflammation-crucial in cancer progression. Their antioxidant, anti-inflammatory, and immunomodulatory effects make them promising candidates for complementary cancer therapies. Key bioactive components like fucoidans, laminarins, phlorotannins, and carotenoids exhibit antiproliferative, proapoptotic, antiangiogenic, and antimetastatic properties. Recent studies focus on the ability of these compounds to induce apoptosis in cancer cells. This review highlights the chemical constituents of various seaweed species with antitumor activity, their mechanisms of action, and the potential for integration into cancer treatments. It also addresses challenges in clinical applications and outlines future research directions for leveraging these marine resources in breast cancer therapy.
Collapse
Affiliation(s)
- Maheswari Behera
- Department of Botany, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - Lakshmi Singh
- Department of Botany, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | | | | |
Collapse
|
12
|
Montone CM, Cavaliere C, Cerrato A, Laganà A, Piovesana S, Taglioni E, Capriotti AL. Detailed lipid investigation of edible seaweeds by photochemical derivatization and untargeted lipidomics. Anal Bioanal Chem 2024; 416:6269-6282. [PMID: 39392507 PMCID: PMC11541411 DOI: 10.1007/s00216-024-05573-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024]
Abstract
Seaweeds are macrophytic algae that have been gaining interest as alternative healthy foods, renewable drug sources, and climate change mitigation agents. In terms of their nutritional value, seaweeds are renowned for their high content of biologically active polyunsaturated fatty acids. However, little is known about the regiochemistry-the geometry and position of carbon-carbon double bonds-of free and conjugated fatty acids in seaweeds. In the present work, a detailed characterization of the seaweed lipidome was achieved based on untargeted HRMS-based analysis and lipid derivatization with a photochemical aza-Paternò-Büchi reaction. A triple-data processing strategy was carried out to achieve high structural detail on the seaweed lipidome, i.e., (i) a first data processing workflow with all samples for aligning peak and statistical analysis that led to the definition of lipid sum compositions (e.g., phosphatidylglycerol (PG) 34:1), (ii) a second data processing workflow in which the samples of each seaweed were processed separately to annotate molecular lipids with known fatty acyl isomerism (e.g., PG 16:0_18:1), and (iii) the annotation of lipid regioisomers following MS/MS annotation of the lipid derivatives obtained following the aza-Paternò-Büchi reaction (e.g., PG 16:0_18:1 ω-9). Once the platform was set up, the lipid extracts from 8 seaweed species from different seaweed families were characterized, describing over 900 different lipid species, and information on the regiochemistry of carbon-carbon double bonds uncovered unknown peculiarities of seaweeds belonging to different families. The overall analytical approach helped to fill a gap in the knowledge of the nutritional composition of seaweeds.
Collapse
Affiliation(s)
- Carmela Maria Montone
- Department of Chemistry, Sapienza University of Rome, Università Di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Chiara Cavaliere
- Department of Chemistry, Sapienza University of Rome, Università Di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Andrea Cerrato
- Department of Chemistry, Sapienza University of Rome, Università Di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Aldo Laganà
- Department of Chemistry, Sapienza University of Rome, Università Di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Susy Piovesana
- Department of Chemistry, Sapienza University of Rome, Università Di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Enrico Taglioni
- Department of Chemistry, Sapienza University of Rome, Università Di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Anna Laura Capriotti
- Department of Chemistry, Sapienza University of Rome, Università Di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185, Rome, Italy
| |
Collapse
|
13
|
Januário AP, Félix C, Félix R, Shiels K, Murray P, Valentão P, Lemos MFL. Exploring the Therapeutical Potential of Asparagopsis armata Biomass: A Novel Approach for Acne Vulgaris Treatment. Mar Drugs 2024; 22:489. [PMID: 39590768 PMCID: PMC11595352 DOI: 10.3390/md22110489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/28/2024] Open
Abstract
Acne vulgaris, a high-prevalence skin condition afflicting people, persists as a significant challenge in the absence of effective treatments and emerging antibiotic resistance. To address this pressing concern, exploration of innovative approaches is of the utmost importance. Asparagopsis armata, an invasive red seaweed renowned for its diverse array of bioactive compounds, emerges as a promising candidate. This study seeks to elucidate the potential utility of A. armata biomass in the treatment of acne vulgaris. Crude extracts were obtained through solid-liquid extraction, and fractions were obtained using liquid-liquid extraction. The analyzed bioactivities included antioxidant, antimicrobial, and anti-inflammatory. Also, chemical characterization was performed to identify free fatty acids and compounds through LC-MS and elements. The present findings unveil compelling attributes, including anti-Cutibacterium acnes activity, cytotoxic and non-cytotoxic effects, antioxidant properties, and its ability to reduce nitric oxide production with consequent anti-inflammatory potential. Additionally, chemical characterization provides insights into its mineral elements, free fatty acids, and diverse compounds. The observed antimicrobial efficacy may be linked to halogenated compounds and fatty acids. Cytoprotection appears to be associated with the presence of glycerolipids and glycosylated metabolites. Furthermore, its antioxidant activity, coupled with anti-inflammatory properties, can be attributed to phenolic compounds, such as flavonoids. This study underscores the potential of A. armata as a natural ingredient in skincare formulations, offering an important contribution to the ongoing battle against acne vulgaris.
Collapse
Affiliation(s)
- Adriana P. Januário
- MARE—Marine and Environmental Sciences Centre, ARNET—Aquatic Research Network Associated Laboratory, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (C.F.); (R.F.)
- LAVQ—Associated Laboratory for Green Chemistry, REQUIMTE—Network of Chemistry and Technology, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal;
| | - Carina Félix
- MARE—Marine and Environmental Sciences Centre, ARNET—Aquatic Research Network Associated Laboratory, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (C.F.); (R.F.)
| | - Rafael Félix
- MARE—Marine and Environmental Sciences Centre, ARNET—Aquatic Research Network Associated Laboratory, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (C.F.); (R.F.)
- LAVQ—Associated Laboratory for Green Chemistry, REQUIMTE—Network of Chemistry and Technology, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal;
| | - Katie Shiels
- LIFE—Health and Wellbeing Biosciences Research Institute, Shannon Applied Biotechnology Centre, Technological University of the Shannon, Moylish Park, V94 E8YF Limerick, Ireland; (K.S.); (P.M.)
| | - Patrick Murray
- LIFE—Health and Wellbeing Biosciences Research Institute, Shannon Applied Biotechnology Centre, Technological University of the Shannon, Moylish Park, V94 E8YF Limerick, Ireland; (K.S.); (P.M.)
| | - Patrícia Valentão
- LAVQ—Associated Laboratory for Green Chemistry, REQUIMTE—Network of Chemistry and Technology, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal;
| | - Marco F. L. Lemos
- MARE—Marine and Environmental Sciences Centre, ARNET—Aquatic Research Network Associated Laboratory, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (C.F.); (R.F.)
| |
Collapse
|
14
|
Yadav R, Nigam A, Mishra R, Gupta S, Chaudhary AA, Khan SUD, almuqri EA, Ahmed ZH, Rustagi S, Singh DP, Kumar S. Novel Therapeutic Approach for Obesity: Seaweeds as an Alternative Medicine with the Latest Conventional Therapy. Med Sci (Basel) 2024; 12:55. [PMID: 39449411 PMCID: PMC11503287 DOI: 10.3390/medsci12040055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
The prevalence of overweight and obesity is increasing worldwide. Common comorbidities related to obesity, significantly polygenic disorders, cardiovascular disease, and heart conditions affect social and monetary systems. Over the past decade, research in drug discovery and development has opened new paths for alternative and conventional medicine. With a deeper comprehension of its underlying mechanisms, obesity is now recognized more as a chronic condition rather than merely a result of lifestyle choices. Nonetheless, addressing it solely through lifestyle changes is challenging due to the intricate nature of energy regulation dysfunction. The Federal Drug Administration (FDA) has approved six medications for the management of overweight and obesity. Seaweed are plants and algae that grow in oceans, rivers, and lakes. Studies have shown that seaweed has therapeutic potential in the management of body weight and obesity. Seaweed compounds such as carotenoids, xanthophyll, astaxanthin, fucoidans, and fucoxanthin have been demonstrated as potential bioactive components in the treatment of obesity. The abundance of natural seaweed bioactive compounds has been explored for their therapeutic potential for treating obesity worldwide. Keeping this view, this review covered the latest developments in the discovery of varied anti-obese seaweed and its bioactive components for the management of obesity.
Collapse
Affiliation(s)
- Rajesh Yadav
- Department of Dialysis Technology, Sharda School of Allied Health Science, Sharda University, Greater Noida 201310, Uttar Pradesh, India
- Department of Physiology, All India Institute of Medical Science, New Delhi 110029, India
| | - Ankita Nigam
- Department of Physiotherapy, Sharda School of Allied Health Science, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Richa Mishra
- Department of Computer Engineering, Parul Institute of Engineering and Technology (PIET), Parul University, Ta. Waghodia, Vadodara 391760, Gujarat, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Salah-Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Eman Abdullah almuqri
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Zakir Hassain Ahmed
- Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11632, Saudi Arabia
| | - Sarvesh Rustagi
- Department of Food Technology, School of Applied and Life Science, Uttaranchal University, Dehradun 248007, Uttarakhand, India
| | - Deependra Pratap Singh
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun 248002, Uttarakhand, India
| | - Sanjay Kumar
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| |
Collapse
|
15
|
Smolińska K, Szopa A, Sobczyński J, Serefko A, Dobrowolski P. Nutritional Quality Implications: Exploring the Impact of a Fatty Acid-Rich Diet on Central Nervous System Development. Nutrients 2024; 16:1093. [PMID: 38613126 PMCID: PMC11013435 DOI: 10.3390/nu16071093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024] Open
Abstract
Given the comprehensive examination of the role of fatty acid-rich diets in central nervous system development in children, this study bridges significant gaps in the understanding of dietary effects on neurodevelopment. It delves into the essential functions of fatty acids in neurodevelopment, including their contributions to neuronal membrane formation, neuroinflammatory modulation, neurogenesis, and synaptic plasticity. Despite the acknowledged importance of these nutrients, this review reveals a lack of comprehensive synthesis in current research, particularly regarding the broader spectrum of fatty acids and their optimal levels throughout childhood. By consolidating the existing knowledge and highlighting critical research gaps, such as the effects of fatty acid metabolism on neurodevelopmental disorders and the need for age-specific dietary guidelines, this study sets a foundation for future studies. This underscores the potential of nutritional strategies to significantly influence neurodevelopmental trajectories, advocating an enriched academic and clinical understanding that can inform dietary recommendations and interventions aimed at optimizing neurological health from infancy.
Collapse
Affiliation(s)
- Katarzyna Smolińska
- Chronic Wounds Laboratory, Medical University of Lublin, Chodźki St. 7, 20-093 Lublin, Poland;
| | - Aleksandra Szopa
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, Chodźki St. 1, 20-093 Lublin, Poland; (A.S.); (J.S.); (A.S.)
| | - Jan Sobczyński
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, Chodźki St. 1, 20-093 Lublin, Poland; (A.S.); (J.S.); (A.S.)
| | - Anna Serefko
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, Chodźki St. 1, 20-093 Lublin, Poland; (A.S.); (J.S.); (A.S.)
| | - Piotr Dobrowolski
- Department of Functional Anatomy and Cytobiology, Maria Curie Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland
| |
Collapse
|
16
|
Hronek M, Kovařík M. Omega-3 fatty acids in nutrition and supplementation. CESKA A SLOVENSKA FARMACIE : CASOPIS CESKE FARMACEUTICKE SPOLECNOSTI A SLOVENSKE FARMACEUTICKE SPOLECNOSTI 2024; 73:164-167. [PMID: 39937638 DOI: 10.36290/csf.2024.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
Omega-3 fatty acids in nutrition and supplementation Omega-3 fatty acids (n-3 PUFAs) have gained significant attention in the field of nutrition and health due to their many positive effects. This article provides a review of n-3 PUFAs, including their definition, classification, structural and functional characteristics, as well as their importance in nutrition and supplementation. In addition, it describes nutritional sources, discusses maximum doses, and describes recommended daily doses.
Collapse
|
17
|
Adarshan S, Sree VSS, Muthuramalingam P, Nambiar KS, Sevanan M, Satish L, Venkidasamy B, Jeelani PG, Shin H. Understanding Macroalgae: A Comprehensive Exploration of Nutraceutical, Pharmaceutical, and Omics Dimensions. PLANTS (BASEL, SWITZERLAND) 2023; 13:113. [PMID: 38202421 PMCID: PMC10780804 DOI: 10.3390/plants13010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/17/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024]
Abstract
Driven by a surge in global interest in natural products, macroalgae or seaweed, has emerged as a prime source for nutraceuticals and pharmaceutical applications. Characterized by remarkable genetic diversity and a crucial role in marine ecosystems, these organisms offer not only substantial nutritional value in proteins, fibers, vitamins, and minerals, but also a diverse array of bioactive molecules with promising pharmaceutical properties. Furthermore, macroalgae produce approximately 80% of the oxygen in the atmosphere, highlighting their ecological significance. The unique combination of nutritional and bioactive attributes positions macroalgae as an ideal resource for food and medicine in various regions worldwide. This comprehensive review consolidates the latest advancements in the field, elucidating the potential applications of macroalgae in developing nutraceuticals and therapeutics. The review emphasizes the pivotal role of omics approaches in deepening our understanding of macroalgae's physiological and molecular characteristics. By highlighting the importance of omics, this review also advocates for continued exploration and utilization of these extraordinary marine organisms in diverse domains, including drug discovery, functional foods, and other industrial applications. The multifaceted potential of macroalgae warrants further research and development to unlock their full benefits and contribute to advancing global health and sustainable industries.
Collapse
Affiliation(s)
- Sivakumar Adarshan
- Department of Biotechnology, Alagappa University, Karaikudi 630003, Tamil Nadu, India;
| | - Vairavel Sivaranjani Sivani Sree
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, Tamil Nadu, India; (V.S.S.S.); (K.S.N.); (M.S.)
| | - Pandiyan Muthuramalingam
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52725, Republic of Korea;
- Department of Oral and Maxillofacial Surgery, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College and Hospitals, Saveetha University, Chennai 600077, Tamil Nadu, India;
| | - Krishnanjana S Nambiar
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, Tamil Nadu, India; (V.S.S.S.); (K.S.N.); (M.S.)
| | - Murugan Sevanan
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, Tamil Nadu, India; (V.S.S.S.); (K.S.N.); (M.S.)
| | - Lakkakula Satish
- Applied Phycology and Biotechnology Division, Marine Algal Research Station, CSIR—Central Salt and Marine Chemicals Research Institute, Mandapam 623519, Tamil Nadu, India;
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College and Hospitals, Saveetha University, Chennai 600077, Tamil Nadu, India;
| | - Peerzada Gh Jeelani
- Department of Biotechnology, Microbiology & Bioinformatics, National College Trichy, Tiruchirapalli 620001, Tamil Nadu, India;
| | - Hyunsuk Shin
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52725, Republic of Korea;
| |
Collapse
|
18
|
Siddik MAB, Francis P, Rohani MF, Azam MS, Mock TS, Francis DS. Seaweed and Seaweed-Based Functional Metabolites as Potential Modulators of Growth, Immune and Antioxidant Responses, and Gut Microbiota in Fish. Antioxidants (Basel) 2023; 12:2066. [PMID: 38136186 PMCID: PMC10740464 DOI: 10.3390/antiox12122066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Seaweed, also known as macroalgae, represents a vast resource that can be categorized into three taxonomic groups: Rhodophyta (red), Chlorophyta (green), and Phaeophyceae (brown). They are a good source of essential nutrients such as proteins, minerals, vitamins, and omega-3 fatty acids. Seaweed also contains a wide range of functional metabolites, including polyphenols, polysaccharides, and pigments. This study comprehensively discusses seaweed and seaweed-derived metabolites and their potential as a functional feed ingredient in aquafeed for aquaculture production. Past research has discussed the nutritional role of seaweed in promoting the growth performance of fish, but their effects on immune response and gut health in fish have received considerably less attention in the published literature. Existing research, however, has demonstrated that dietary seaweed and seaweed-based metabolite supplementation positively impact the antioxidant status, disease resistance, and stress response in fish. Additionally, seaweed supplementation can promote the growth of beneficial bacteria and inhibit the proliferation of harmful bacteria, thereby improving gut health and nutrient absorption in fish. Nevertheless, an important balance remains between dietary seaweed inclusion level and the resultant metabolic alteration in fish. This review highlights the current state of knowledge and the associated importance of continued research endeavors regarding seaweed and seaweed-based functional metabolites as potential modulators of growth, immune and antioxidant response, and gut microbiota composition in fish.
Collapse
Affiliation(s)
- Muhammad A. B. Siddik
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia; (P.F.); (T.S.M.); (D.S.F.)
| | - Prue Francis
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia; (P.F.); (T.S.M.); (D.S.F.)
| | - Md Fazle Rohani
- Department of Aquaculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | | | - Thomas S. Mock
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia; (P.F.); (T.S.M.); (D.S.F.)
| | - David S. Francis
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia; (P.F.); (T.S.M.); (D.S.F.)
| |
Collapse
|
19
|
Jannat K, Balakrishnan R, Han JH, Yu YJ, Kim GW, Choi DK. The Neuropharmacological Evaluation of Seaweed: A Potential Therapeutic Source. Cells 2023; 12:2652. [PMID: 37998387 PMCID: PMC10670678 DOI: 10.3390/cells12222652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
The most common neurodegenerative diseases (NDDs), such as Alzheimer's disease (AD) and Parkinson's disease (PD), are the seventh leading cause of mortality and morbidity in developed countries. Clinical observations of NDD patients are characterized by a progressive loss of neurons in the brain along with memory decline. The common pathological hallmarks of NDDs include oxidative stress, the dysregulation of calcium, protein aggregation, a defective protein clearance system, mitochondrial dysfunction, neuroinflammation, neuronal apoptosis, and damage to cholinergic neurons. Therefore, managing this pathology requires screening drugs with different pathological targets, and suitable drugs for slowing the progression or prevention of NDDs remain to be discovered. Among the pharmacological strategies used to manage NDDs, natural drugs represent a promising therapeutic strategy. This review discusses the neuroprotective potential of seaweed and its bioactive compounds, and safety issues, which may provide several beneficial insights that warrant further investigation.
Collapse
Affiliation(s)
- Khoshnur Jannat
- Department of Applied Life Sciences, Graduate School, Konkuk University, Chungju 27478, Republic of Korea; (K.J.); (J.-H.H.); (Y.-J.Y.); (G.-W.K.)
| | - Rengasamy Balakrishnan
- Department of Biotechnology, Research Institute of Inflammatory Disease (RID), College of Biomedical and Health Science, Konkuk University, Chungju 27478, Republic of Korea;
| | - Jun-Hyuk Han
- Department of Applied Life Sciences, Graduate School, Konkuk University, Chungju 27478, Republic of Korea; (K.J.); (J.-H.H.); (Y.-J.Y.); (G.-W.K.)
| | - Ye-Ji Yu
- Department of Applied Life Sciences, Graduate School, Konkuk University, Chungju 27478, Republic of Korea; (K.J.); (J.-H.H.); (Y.-J.Y.); (G.-W.K.)
| | - Ga-Won Kim
- Department of Applied Life Sciences, Graduate School, Konkuk University, Chungju 27478, Republic of Korea; (K.J.); (J.-H.H.); (Y.-J.Y.); (G.-W.K.)
| | - Dong-Kug Choi
- Department of Applied Life Sciences, Graduate School, Konkuk University, Chungju 27478, Republic of Korea; (K.J.); (J.-H.H.); (Y.-J.Y.); (G.-W.K.)
- Department of Biotechnology, Research Institute of Inflammatory Disease (RID), College of Biomedical and Health Science, Konkuk University, Chungju 27478, Republic of Korea;
| |
Collapse
|
20
|
Rogel-Castillo C, Latorre-Castañeda M, Muñoz-Muñoz C, Agurto-Muñoz C. Seaweeds in Food: Current Trends. PLANTS (BASEL, SWITZERLAND) 2023; 12:2287. [PMID: 37375912 DOI: 10.3390/plants12122287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/27/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
Edible seaweeds are an excellent source of macronutrients, micronutrients, and bioactive compounds, and they can be consumed raw or used as ingredients in food products. However, seaweeds may also bioaccumulate potentially hazardous compounds for human health and animals, namely, heavy metals. Hence, the purpose of this review is to analyze the recent trends of edible seaweeds research: (i) nutritional composition and bioactive compounds, (ii) the use and acceptability of seaweeds in foodstuffs, (iii) the bioaccumulation of heavy metals and microbial pathogens, and (iv) current trends in Chile for using seaweeds in food. In summary, while it is evident that seaweeds are consumed widely worldwide, more research is needed to characterize new types of edible seaweeds as well as their use as ingredients in the development of new food products. Additionally, more research is needed to maintain control of the presence of heavy metals to assure a safe product for consumers. Finally, the need to keep promoting the benefits of seaweed consumption is emphasized, adding value in the algae-based production chain, and promoting a social algal culture.
Collapse
Affiliation(s)
- Cristian Rogel-Castillo
- Department of Food Science and Technology, School of Pharmacy, University of Concepcion, Barrio Universitario S/N, Concepción 4070386, Chile
| | - Monica Latorre-Castañeda
- Interdisciplinary Marine Biotechnology Group (GIBMAR), Biotechnology Center, University of Concepcion, Barrio Universitario S/N, Concepción 4070386, Chile
| | - Camila Muñoz-Muñoz
- Interdisciplinary Marine Biotechnology Group (GIBMAR), Biotechnology Center, University of Concepcion, Barrio Universitario S/N, Concepción 4070386, Chile
| | - Cristian Agurto-Muñoz
- Department of Food Science and Technology, School of Pharmacy, University of Concepcion, Barrio Universitario S/N, Concepción 4070386, Chile
- Interdisciplinary Marine Biotechnology Group (GIBMAR), Biotechnology Center, University of Concepcion, Barrio Universitario S/N, Concepción 4070386, Chile
| |
Collapse
|
21
|
Geng X, Jia X, Liu L, Ma S, Liu H, Liu T. Gametophyte phase of commercial kelps, the potential food supplements for essential fatty acids and n-3 polyunsaturated fatty acids. J Food Sci 2023; 88:2411-2424. [PMID: 37167001 DOI: 10.1111/1750-3841.16596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/07/2023] [Accepted: 04/14/2023] [Indexed: 05/12/2023]
Abstract
For heteromorphic algae with alternating generations, the thallus and gametophyte phases are different morphologies in free-living life history. The thalli are popular used as traditional vegetables and herbal drugs, whereas the gametophyte phases are little involved. To better understand the functional lipids in the gametophyte phase of three commercial kelps, Saccharina japonica, Undaria pinnatifida, and Costaria costata, the contents of total lipids (TLs), fatty acid (FA) profiles, and transcriptomic analysis were performed. For the studied kelps, the TL contents in gametophyte phase were always almost twice more than those in the thallus, and the kelp species, their life stage, and the gender were critical factors affecting lipid accumulation. The gametophyte phases of U. pinnatifida and C. costata were rich in essential FA C18:2 n - 6 and C18:3 n - 3. The S. japonica gametophyte phase contained abundant C20:5 n - 3 and C18:4 n - 3, possessed an ideal ratio of n - 6/n - 3 polyunsaturated fatty acid below 1.0, and was supported by the transcriptome data which showed that the key sjD12/15 (n - 3) gene of gametophyte partially upregulated than sporophyte. The results suggested that S. japonica gametophyte phase was the worthiest of further development and utilization as a functional food. PRACTICAL APPLICATION: It is the first report on the fatty acid characteristics of three gametophyte phases of Saccharina japonica, Undaria pinnatifida, and Costaria costata and find that the S. japonica was worthy of further development and utilization as a functional food owing to its satisfactory fatty acid composition.
Collapse
Affiliation(s)
- Xicheng Geng
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, P. R. China
| | - Xuli Jia
- College of Marine Life Science, Ocean University of China, Qingdao, P. R. China
| | - Lanqing Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, P. R. China
| | - Shanpeng Ma
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, P. R. China
| | - Hongbing Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, P. R. China
- NMPA Key Laboratory for Quality Research and Evaluation of Marine Traditional Chinese Medicine, Qingdao, P. R. China
| | - Tao Liu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, P.R. China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, P.R. China
| |
Collapse
|
22
|
Arakaki N, Flores Ramos L, Oscanoa Huaynate AI, Ruíz Soto A, Ramírez ME. Biochemical and Nutritional Characterization of Edible Seaweeds from the Peruvian Coast. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091795. [PMID: 37176854 PMCID: PMC10181002 DOI: 10.3390/plants12091795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
In Peru, the number of species of edible seaweeds within the genera Chondracanthus, Porphyra (hereafter P.), Pyropia (hereafter Py.), and Ulva has not been fully established, nor is there a significant level of information available related to their chemical and nutritional composition. This study involved the biochemical analysis of species belonging to ten genera of macroalgae, known edible and some of which have the potential to be used as food, including six red (Callophyllis, Chondracanthus, Mazzaella, Porphyra, Pyropia, and Rhodymenia), two green (Ulva and Codium), and two brown (Eisenia and Lessonia) species collected along the Peruvian coast (6°-17° S). In the evaluation of 37 specimens, differences were found in the proximal composition, amino acid composition, and fatty acid profiles, which were specific to subgroups and supported their taxonomic classification, mainly at the order level. The red algae Porphyra/Pyropia (Bangiales) had the highest average percentage of protein (24.10%) and carbohydrates (59.85%) and the lowest percentage of ash (7.95%). Conversely, the brown alga Eisenia (Laminariales) had the lowest average percentage of protein, with different values related to the structure: 14.11% at the level of the frond and 9.46% at the level of the stipe. On the other hand, Bryopsidales green algae showed the highest average percentages of lipids (5.38%). The moisture percentages ranged from 4 to 16%, and no relevant significant differences were shown between the orders. The characteristic amino acids in all of the studied groups were glutamic acid, aspartic acid, alanine, and leucine. The highest average of the essential amino acids ratio was obtained for the Gigartinales red algae (48.65%), and the highest values of the essential amino acid index (EAAI) were obtained for the Ulvales, Laminariales, Gigartinales, and Rhodymeniales algae (EAAI > 0.92). The highest average relative percentage of fatty acids was obtained for polyunsaturated fatty acids, followed by saturated fatty acids. The major component of the ω6 fatty acids from red and brown algae was arachidonic acid (C20:4n - 6). The highest level of ω3 fatty acids was observed for the eicosapentaenoic acids (EPA) in red algae. The highest median ω6/ω3 ratio was displayed by the red alga Callophyllis variegata (Gigartinales). A detailed knowledge of edible seaweeds, and those considered potentially edible, would help to diversify the diet based on macroalgae in Peru.
Collapse
Affiliation(s)
- Natalia Arakaki
- Banco de Germoplasma de Organismos Acuáticos, Área Funcional de Investigaciones en Acuicultura, Instituto del Mar del Perú, Esquina Gamarra y General Valle S/N, Chucuito, Callao 07021, Peru
| | - Leenin Flores Ramos
- Laboratorio de Análisis Instrumental, Área Funcional de Investigaciones en Acuicultura, Instituto del Mar del Perú, Esquina Gamarra y General Valle S/N, Chucuito, Callao 07021, Peru
| | - Alberto Isidoro Oscanoa Huaynate
- Laboratorio de Análisis Instrumental, Área Funcional de Investigaciones en Acuicultura, Instituto del Mar del Perú, Esquina Gamarra y General Valle S/N, Chucuito, Callao 07021, Peru
| | - Anthony Ruíz Soto
- Laboratorio de Análisis Instrumental, Área Funcional de Investigaciones en Acuicultura, Instituto del Mar del Perú, Esquina Gamarra y General Valle S/N, Chucuito, Callao 07021, Peru
| | - María Eliana Ramírez
- Museo Nacional de Historia Natural, Área Botánica, Casilla 787, Santiago 8500000, Chile
| |
Collapse
|
23
|
Kamal M, Abdel-Raouf N, Alwutayd K, AbdElgawad H, Abdelhameed MS, Hammouda O, Elsayed KNM. Seasonal Changes in the Biochemical Composition of Dominant Macroalgal Species along the Egyptian Red Sea Shore. BIOLOGY 2023; 12:biology12030411. [PMID: 36979103 PMCID: PMC10045638 DOI: 10.3390/biology12030411] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/30/2023]
Abstract
Macroalgae are significant biological resources in coastal marine ecosystems. Seasonality influences macroalgae biochemical characteristics, which consequentially affect their ecological and economic values. Here, macroalgae were surveyed from summer 2017 to spring 2018 at three sites at 7 km (south) from El Qusier, 52 km (north) from Marsa Alam and 70 km (south) from Safaga along the Red Sea coast, Egypt. Across all the macroalgae collected, Caulerpa prolifera (green macroalgae), Acanthophora spicifera (red macroalgae) and Cystoseira myrica, Cystoseira trinodis and Turbinaria ornata (brown macroalgae) were the most dominant macroalgal species. These macroalgae were identified at morphological and molecular (18s rRNA) levels. Then, the seasonal variations in macroalgal minerals and biochemical composition were quantified to determine the apt period for harvesting based on the nutritional requirements for commercial utilizations. The chemical composition of macroalgae proved the species and seasonal variation. For instance, minerals were more accumulated in macroalgae C. prolifera, A. spicifera and T. ornata in the winter season, but they were accumulated in both C. myrica and C. trinodis in the summer season. Total sugars, amino acids, fatty acids and phenolic contents were higher in the summer season. Accordingly, macroalgae collected during the summer can be used as food and animal feed. Overall, we suggest the harvesting of macroalgae for different nutrients and metabolites in the respective seasons.
Collapse
Affiliation(s)
- Marwa Kamal
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Neveen Abdel-Raouf
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Khairiah Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Hamada AbdElgawad
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2020 Antwerp, Belgium
| | - Mohamed Sayed Abdelhameed
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Ola Hammouda
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Khaled N M Elsayed
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| |
Collapse
|
24
|
Jaworowska A, Murtaza A. Seaweed Derived Lipids Are a Potential Anti-Inflammatory Agent: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:730. [PMID: 36613050 PMCID: PMC9819613 DOI: 10.3390/ijerph20010730] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Chronic, low-grade inflammation is linked to the development of non-communicable diseases, including cancer, cardiovascular disease, obesity, insulin resistance, diabetes, and others which together contribute to more than 50% of deaths globally. Modulation of inflammatory responses may be a promising strategy, and n-3 long chain polyunsaturated fatty acids (n-3 LC-PUFA) may offer a new therapeutic option in inflammatory conditions. Seaweeds are characterised by high nutritional quality and are a good source of many bioactive compounds, including n-3 LC-PUFA. This review addresses the potential anti-inflammatory properties of seaweed derived lipids, and their immunomodulating mechanisms in order to identify the possible applications of seaweed as an anti-inflammatory functional food ingredient or dietary supplement. A few studies have evaluated the anti-inflammatory activity of seaweed lipids using crude lipid extracts, lipid fractions and isolated complex lipids from several seaweeds belonging to the Ochrophyta and Rhodophyta phyla, with only three Ulva rigida, Ulva sp. and Codium tomentosum within the Chlorophyta phylum. It was reported that seaweed derived lipids suppress inducible nitric oxide synthase and cyclooxygenase-2 expression and reduce nuclear factor κB p100 and myeloid differentiation primary response 88 protein levels leading to the downregulation of the production of several pro-inflammatory cytokines and nitric oxide. Further investigations are required to unravel the complex mechanisms underlying their preventive action against chronic inflammation and their potential use as a new functional food ingredient and/or health supplement.
Collapse
Affiliation(s)
| | - Aliza Murtaza
- School of Science, University of Greenwich, Chatham ME4 4TG, UK
| |
Collapse
|
25
|
Use of seaweed powder (Undaria sp.) as a functional ingredient in low-fat pork burgers. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Gowda SGB, Yifan C, Gowda D, Tsuboi Y, Chiba H, Hui SP. Analysis of Antioxidant Lipids in Five Species of Dietary Seaweeds by Liquid Chromatography/Mass Spectrometry. Antioxidants (Basel) 2022; 11:antiox11081538. [PMID: 36009257 PMCID: PMC9404842 DOI: 10.3390/antiox11081538] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Seaweeds are a good source of bioactive lipids and are known for their nutritional benefits, making them a valuable food source. Despite their dietary significance and nutritional importance, there are limited reports on comprehensive lipidome analysis of lipids with antioxidant properties. Therefore, this study aimed to compare the lipid profiles of five commonly consumed Japanese dietary seaweeds using non-targeted liquid chromatography/mass spectrometry (LC/MS). A total, of 304 molecular species from four major lipid classes were detected and characterized by MS/MS analysis. Multivariate statistical analysis revealed distinct lipid molecular compositions in kombu and sea mustard compared to hijiki, mozuku, and laver seaweeds. Kombu has been shown to contain large amounts of antioxidants, such as polyunsaturated fatty acids (PUFAs), and a high health promotion index compared to other seaweeds. Hierarchical cluster correlations indicated the predominance of glycerophospholipids (GPs) and glycerolipids (GLs) in sea mustard and kombu. As a result, dietary seaweeds have great potential as antioxidants and health-promoting foods for human consumption due to their high levels of PUFA-rich GPs and GLs. Unsaturated triacylglycerols are predominant in hijiki, whereas other health-beneficial lipids, such as monogalactosyldiacylglycerol and sulfoquinovosyl diacylglycerols, are predominant in sea mustard. This study provides a detailed characterization of lipids and their comparative fingerprints in seaweeds, demonstrating the potential use of dietary seaweeds in biotechnological and industrial applications involving the development of functional food products.
Collapse
Affiliation(s)
- Siddabasave Gowda B. Gowda
- Faculty of Health Sciences, Hokkaido University, Kita 12, Nishi 5, Sapporo 0600812, Japan
- Graduate School of Global Food Resources, Hokkaido University, Kita 9, Nishi 9, Sapporo 0600809, Japan
| | - Chen Yifan
- Faculty of Health Sciences, Hokkaido University, Kita 12, Nishi 5, Sapporo 0600812, Japan
| | - Divyavani Gowda
- Faculty of Health Sciences, Hokkaido University, Kita 12, Nishi 5, Sapporo 0600812, Japan
| | - Yui Tsuboi
- Graduate School of Health Sciences, Hokkaido University, Kita 12, Nishi 5, Sapporo 0600812, Japan
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Nakanuma, Nishi-4-3-1-15, Higashi-ku, Sapporo 0070894, Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Kita 12, Nishi 5, Sapporo 0600812, Japan
- Correspondence: ; Tel.: +81-11-706-3693
| |
Collapse
|
27
|
Pardilhó S, Cotas J, Pereira L, Oliveira MB, Dias JM. Marine macroalgae in a circular economy context: A comprehensive analysis focused on residual biomass. Biotechnol Adv 2022; 60:107987. [DOI: 10.1016/j.biotechadv.2022.107987] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 04/21/2022] [Accepted: 05/17/2022] [Indexed: 02/06/2023]
|
28
|
A Comparative Study of the Fatty Acids and Monosaccharides of Wild and Cultivated Ulva sp. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10020233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is a need to find new possible raw food sources with interesting nutritional values. One of the most unexploited sources are seaweeds. Thus, Ulva sp. is a green edible seaweed that shows a high growth rate in nature and can support drastic abiotic changes, such as temperature and salinity. This work aims to determine the main nutritional compounds, fatty acids (FAs) and monosaccharides profiles of Ulva sp. (collected from Mondego estuary, Portugal), to identify the potential of this seaweed as a food source. The present study also highlights the potential of controlled and semi-controlled cultivation systems in Ulva sp. profiles. The results showed that the controlled cultivation systems had higher essential FA and monosaccharide content than the semi-controlled cultivation systems. However, they are in some cases identical to wild individuals of Ulva sp., supporting that cultivation of Ulva sp. can be a key for food safety. It is crucial to control the associated risks of contamination that can occur in wild specimens.
Collapse
|
29
|
Nutritional Therapy in Persons Suffering from Psoriasis. Nutrients 2021; 14:nu14010119. [PMID: 35010995 PMCID: PMC8747310 DOI: 10.3390/nu14010119] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/20/2021] [Accepted: 12/24/2021] [Indexed: 01/19/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease. Immunological, genetic, and environmental factors, including diet, play a part in the pathogenesis of psoriasis. Metabolic syndrome or its components are frequent co-morbidities in persons with psoriasis. A change of eating habits can improve the quality of life of patients by relieving skin lesions and by reducing the risk of other diseases. A low-energy diet is recommended for patients with excess body weight. Persons suffering from psoriasis should limit the intake of saturated fatty acids and replace them with polyunsaturated fatty acids from the omega-3 family, which have an anti-inflammatory effect. In diet therapy for persons with psoriasis, the introduction of antioxidants such as vitamin A, vitamin C, vitamin E, carotenoids, flavonoids, and selenium is extremely important. Vitamin D supplementation is also recommended. Some authors suggest that alternative diets have a positive effect on the course of psoriasis. These diets include: a gluten-free diet, a vegetarian diet, and a Mediterranean diet. Diet therapy for patients with psoriasis should also be tailored to pharmacological treatment. For instance, folic acid supplementation is introduced in persons taking methotrexate. The purpose of this paper is to discuss in detail the nutritional recommendations for persons with psoriasis.
Collapse
|
30
|
Januário AP, Félix R, Félix C, Reboleira J, Valentão P, Lemos MFL. Red Seaweed-Derived Compounds as a Potential New Approach for Acne Vulgaris Care. Pharmaceutics 2021; 13:pharmaceutics13111930. [PMID: 34834345 PMCID: PMC8623078 DOI: 10.3390/pharmaceutics13111930] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Acne vulgaris (AV) is a chronic skin disease of the pilosebaceous unit affecting both adolescents and adults. Its pathophysiology includes processes of inflammation, increased keratinization, sebum production, hormonal dysregulation, and bacterial Cutibacterium acnes proliferation. Common AV has been treated with antibiotics since the 1960s, but strain resistance has emerged and is of paramount concern. Macroalgae are known producers of substances with bioactive properties, including anti-viral, antibacterial, antioxidant, and anti-inflammatory properties, among several others. In particular, red algae are rich in bioactive compounds such as polysaccharides, phenolic compounds, lipids, sterols, alkaloids, and terpenoids, conferring them antioxidant, antimicrobial, and anti-inflammatory activities, among others. Thus, the exploration of compounds from marine resources can be an appealing approach to discover new treatment options against AV. The aim of this work is to provide an overview of the current knowledge of the potentialities of red macroalgae in the treatment of AV by reviewing the main therapeutic targets of this disease, and then the existence of compounds or extracts with bioactive properties against them.
Collapse
Affiliation(s)
- Adriana P. Januário
- MARE—Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (R.F.); (C.F.); (J.R.)
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal;
- Correspondence: (A.P.J.); (M.F.L.L.)
| | - Rafael Félix
- MARE—Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (R.F.); (C.F.); (J.R.)
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal;
| | - Carina Félix
- MARE—Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (R.F.); (C.F.); (J.R.)
| | - João Reboleira
- MARE—Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (R.F.); (C.F.); (J.R.)
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal;
| | - Marco F. L. Lemos
- MARE—Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (R.F.); (C.F.); (J.R.)
- Correspondence: (A.P.J.); (M.F.L.L.)
| |
Collapse
|
31
|
Chondracanthus teedei var. lusitanicus: The Nutraceutical Potential of an Unexploited Marine Resource. Mar Drugs 2021; 19:md19100570. [PMID: 34677469 PMCID: PMC8539408 DOI: 10.3390/md19100570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 12/14/2022] Open
Abstract
Presently, there is a high demand for nutritionally enhanced foods, so it is a current challenge to look at new raw food sources that can supplement beneficially the human diet. The nutritional profile and key secondary metabolites of red seaweeds (Rhodophyta) are gaining interest because of this challenge. In this context, the possible use of the red seaweed Chondracanthus teedei var. lusitanicus (Gigartinales) as a novel nutraceutical source was investigated. As a result, we highlight the high mineral content of this seaweed, representing 29.35 g 100 g−1 of its dry weight (DW). Despite the low levels of calcium and phosphorus (0.26 and 0.20 g 100 g−1 DW, respectively), this seaweed is an interesting source of nitrogen and potassium (2.13 and 2.29 g−1 DW, accordingly). Furthermore, the high content of carbohydrates (56.03 g 100 g−1 DW), which acts as dietary fibers, confers a low caloric content of this raw food source. Thus, this study demonstrates that C. teedei var. lusitanicus is in fact an unexploited potential resource with the capability to provide key minerals to the human diet with promising nutraceutical properties.
Collapse
|
32
|
Lytou AE, Schoina E, Liu Y, Michalek K, Stanley MS, Panagou EZ, Nychas GJE. Quality and Safety Assessment of Edible Seaweeds Alaria esculenta and Saccharina latissima Cultivated in Scotland. Foods 2021; 10:foods10092210. [PMID: 34574321 PMCID: PMC8472205 DOI: 10.3390/foods10092210] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 12/14/2022] Open
Abstract
Within Europe over the last 10 years, there has been an increase in seaweeds cultivated for human consumption. For food safety reasons, it is important to assess the microbiological and nutritional quality of the biomass. The fresh and dried edible seaweeds Alaria esculenta and Saccharina latissima were assessed over two consecutive years for the presence of microorganisms. Seaweed samples supplied from Scotland were stored under isothermal conditions for specific time intervals depending on the sample’s condition (fresh, dried or rehydrated). During storage, microbiological analyses were performed for the enumeration of Total Viable Counts (TVC), Pseudomonas spp., Enterobacteriaceae and Bacillus spp., as well as yeasts and molds. Additionally, bacterial colonies from the Marine Agar growth medium were isolated and subjected to PCR-RAPD analysis for characterization of the bacterial diversity of seaweeds. Bacterial isolates with different fingerprint patterns were further subjected to sequencing (16S rDNA, V1–V4 region). The presence of human pathogenic bacteria was also investigated. Results showed that the initial population of TVC was differentiated depending on the year of seaweed harvest, being closer to the enumeration limit (1.0 log CFU/g) in fresh samples from 2020 and higher in samples from 2019 (6.7 and 3.9 log CFU/g in A. esculenta and S. latissima, respectively). DNA-based analysis revealed the presence of Psychrobacter, Cobetia and Pseudomonas species in A. esculenta, while Psychrobacter and Micrococcus species were present in S. latissima.
Collapse
Affiliation(s)
- Anastasia E. Lytou
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece; (A.E.L.); (E.S.); (E.Z.P.)
| | - Eirini Schoina
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece; (A.E.L.); (E.S.); (E.Z.P.)
| | - Yunge Liu
- Department of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China;
| | - Kati Michalek
- Scottish Association for Marine Science (SAMS), Oban PA37 1QA, UK; (K.M.); (M.S.S.)
| | - Michele S. Stanley
- Scottish Association for Marine Science (SAMS), Oban PA37 1QA, UK; (K.M.); (M.S.S.)
| | - Efstathios Z. Panagou
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece; (A.E.L.); (E.S.); (E.Z.P.)
| | - George-John E. Nychas
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece; (A.E.L.); (E.S.); (E.Z.P.)
- Correspondence: ; Tel.: +30-210-529-4938
| |
Collapse
|
33
|
Extraction of Fatty Acids and Phenolics from Mastocarpus stellatus Using Pressurized Green Solvents. Mar Drugs 2021; 19:md19080453. [PMID: 34436292 PMCID: PMC8399028 DOI: 10.3390/md19080453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 02/07/2023] Open
Abstract
Polyunsaturated fatty acids are well known for their protective properties in relation to different skin diseases. Although seaweeds possess a low lipid fraction, they could act as an alternative renewable source of polyunsaturated fatty acids whenever other valuable seaweed components are also valorized. In this study, a biorefinery process using Mastocarpus stellatus as a model seaweed was proposed. The process started with the supercritical carbon dioxide extraction of the lipid and phenolic fractions. The influence of pressure during extraction with pure supercritical CO2 was studied while operating at a selected temperature and solvent flow rate. Kinetic data obtained during the ethanol-modified supercritical CO2 extraction were fitted to the spline model. Sequential processing was proposed with (i) pure CO2 to obtain a product with 30% PUFA content and ω-3:ω-6 ratio 1:1, (ii) ethanol-modified CO2 to extract phenolics, and (iii) microwave-assisted subcritical water extraction operating under previously optimized conditions for the extraction of phenolics, carrageenan and protein fractions. The composition of the supercritical extracts showed potential for use in both dietary and topical applications in skin care products. The remaining solids are suitable for the extraction of other valuable fractions.
Collapse
|