1
|
van Larebeke N, Colles A, Leermakers M, Den Hond E, Voorspoels S, Goderis L, Schoeters G. Organic food and internal exposure to pollutants among Flemish adolescents. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:1315-1336. [PMID: 39196262 DOI: 10.1080/19440049.2024.2386143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/06/2024] [Accepted: 07/21/2024] [Indexed: 08/29/2024]
Abstract
Contrary to the initial hypothesis, Flemish adolescents who reported consuming organic food at least 7.5 times per week did not exhibit reduced internal exposure to the tested recently used pesticides. After adjustment for gender, age, country of origin, socioeconomic status, body mass index, consumption of high-fat foods and foods linked to organic food consumption, and concerning organochlorine derivatives and lead, additional adjustment for the duration of breastfeeding expressed in weeks, they displayed slightly elevated internal exposure to organochlorine derivatives, lead, methyl arsenate, and toxic relevant arsenic. A comparison was also made between the correlation of internal exposure to pollutants with the frequency of organic food consumption on one hand and the total consumption of equivalent products from all sources on the other. Regarding potatoes, vegetables, and fruits, no clear trends were observed. Regarding eggs, there was a trend towards higher internal exposures with organic food consumption, significant for trans-nonachlor, PCB118, and 2,4-dichlorophenoxyacetic acid, and marginally significant for glyphosate. For dairy, there was a trend towards higher internal exposures with organic food consumption, significant for perfluorononanoic acid and marginally significant for PCB153. Regarding nuts and seeds, the higher internal exposure to dichlorophenoxyacetic acid and the lower exposure to 3-phenoxybenzoic acid were marginally significant, while there was also a trend towards higher internal exposure to other pollutants with organic food consumption, significant for PCB118, PCB153, and sum PCBs, and marginally significant for trans-nonachlor. Concerning breakfast cereals and muesli, no clear trends were observed.
Collapse
Affiliation(s)
- Nicolas van Larebeke
- Archeology, Environmental Changes and Geochemistry, Vrije Universiteit Brussel, Brussels, Belgium
- Ghent University Hospital, Study Centre for Carcinogenesis and Primary Prevention of Cancer, Ghent, Belgium
| | - Ann Colles
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Martine Leermakers
- Archeology, Environmental Changes and Geochemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Stefan Voorspoels
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Lode Goderis
- Department Public Health and Primary Care, Centre for Environment and Health, Catholic University Leuven, Leuven, Belgium
- IDEWE, External Service for Prevention and Protection at Work, Heverlee, Belgium
| | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
- Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
2
|
Rodríguez-Carrillo A, Verheyen VJ, Van Nuijs ALN, Fernández MF, Remy S. Brain-derived neurotrophic factor (BDNF): an effect biomarker of neurodevelopment in human biomonitoring programs. FRONTIERS IN TOXICOLOGY 2024; 5:1319788. [PMID: 38268968 PMCID: PMC10806109 DOI: 10.3389/ftox.2023.1319788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024] Open
Abstract
The present narrative review summarizes recent findings focusing on the role of brain-derived neurotrophic factor (BDNF) as a biomarker of effect for neurodevelopmental alterations during adolescence, based on health effects of exposure to environmental chemical pollutants. To this end, information was gathered from the PubMed database and the results obtained in the European project Human Biomonitoring for Europe (HBM4EU), in which BDNF was measured at two levels of biological organization: total BDNF protein (serum) and BDNF gene DNA methylation (whole blood) levels. The obtained information is organized as follows. First, human biomonitoring, biomarkers of effect and the current state of the art on neurodevelopmental alterations in the population are presented. Second, BDNF secretion and mechanisms of action are briefly explained. Third, previous studies using BDNF as an effect biomarker were consulted in PubMed database and summarized. Finally, the impact of bisphenol A (BPA), metals, and non-persistent pesticide metabolites on BDNF secretion patterns and its mediation role with behavioral outcomes are addressed and discussed. These findings were obtained from three pilot studies conducted in HBM4EU project. Published findings suggested that exposure to some chemical pollutants such as fine particle matter (PM), PFAS, heavy metals, bisphenols, and non-persistent pesticides may alter circulating BDNF levels in healthy population. Therefore, BDNF could be used as a valuable effect biomarker to investigate developmental neurotoxicity of some chemical pollutants.
Collapse
Affiliation(s)
- Andrea Rodríguez-Carrillo
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
- Toxicological Centre, University of Antwerp, Universiteitsplein, Wilrijk, Belgium
| | - Veerle J. Verheyen
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | | | - Mariana F. Fernández
- Biomedical Research Center and School of Medicine, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), University of Granada, Granada, Spain
| | - Sylvie Remy
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| |
Collapse
|
3
|
Ubong D, Stewart L, Sepai O, Knudsen LE, Berman T, Reynders H, Van Campenhout K, Katsonouri A, Van Nieuwenhuyse A, Ingelido AM, Castaño A, Pedraza-Díaz S, Eiríksdóttir ÁV, Thomsen C, Hartmann C, Gjorgjev D, De Felip E, Tolonen H, Santonen T, Klanova J, Norström K, Kononenko L, Silva MJ, Uhl M, Kolossa-Gehring M, Apel P, Jõemaa M, Jajcaj M, Estokova M, Luijten M, Lebret E, von Goetz N, Holcer NJ, Probst-Hensch N, Cavaleiro R, Barouki R, Tarroja E, Balčienė RM, Strumylaite L, Latvala S, Namorado S, Szigeti T, Ingi Halldorsson T, Olafsdottir K, Wasowicz W. Application of human biomonitoring data to support policy development, raise awareness and environmental public health protection among countries within the HBM4EU project. Int J Hyg Environ Health 2023; 251:114170. [PMID: 37207539 DOI: 10.1016/j.ijheh.2023.114170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 05/21/2023]
Abstract
Most countries have acknowledged the importance of assessing and quantifying their population's internal exposure from chemicals in air, water, soil, food and other consumer products due to the potential health and economic impact. Human biomonitoring (HBM) is a valuable tool which can be used to quantify such exposures and effects. Results from HBM studies can also contribute to improving public health by providing evidence of individuals' internal chemical exposure as well as data to understand the burden of disease and associated costs thereby stimulating the development and implementation of evidence-based policy. To have a holistic view on HBM data utilisation, a multi-case research approach was used to explore the use of HBM data to support national chemical regulations, protect public health and raise awareness among countries participating in the HBM4EU project. The Human Biomonitoring for Europe (HBM4EU) Initiative (https://www.hbm4eu.eu/) is a collaborative effort involving 30 countries, the European Environment Agency (EEA) and the European Commission (contracting authority) to harmonise procedures across Europe and advance research into the understanding of the health impacts of environmental chemical exposure. One of the aims of the project was to use HBM data to support evidence based chemical policy and make this information timely and directly available for policy makers and all partners. The main data source for this article was the narratives collected from 27 countries within the HBM4EU project. The countries (self-selection) were grouped into 3 categories in terms of HBM data usage either for public awareness, policy support or for the establishment HBM programme. Narratives were analysed/summarised using guidelines and templates that focused on ministries involved in or advocating for HBM; steps required to engage policy makers; barriers, drivers and opportunities in developing a HBM programme. The narratives reported the use of HBM data either for raising awareness or addressing environmental/public health issues and policy development. The ministries of Health and Environment were reported to be the most prominent entities advocating for HBM, the involvement of several authorities/institutions in the national hubs was also cited to create an avenue to interact, discuss and gain the attention of policy makers. Participating in European projects and the general population interest in HBM studies were seen as drivers and opportunities in developing HBM programmes. A key barrier that was cited by countries for establishing and sustaining national HBM programmes was funding which is mainly due to the high costs associated with the collection and chemical analysis of human samples. Although challenges and barriers still exist, most countries within Europe were already conversant with the benefits and opportunities of HBM. This article offers important insights into factors associated with the utilisation of HBM data for policy support and public awareness.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Dragan Gjorgjev
- Institute of Public Health, Republic of North Macedonia, Macedonia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Socianu S, Bopp SK, Govarts E, Gilles L, Buekers J, Kolossa-Gehring M, Backhaus T, Franco A. Chemical Mixtures in the EU Population: Composition and Potential Risks. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19106121. [PMID: 35627658 PMCID: PMC9141134 DOI: 10.3390/ijerph19106121] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023]
Abstract
Regulating chemical mixtures is a complex scientific and policy task. The aim of this study was to investigate typical mixtures and their potential risks based on internal exposure levels in the European population. Based on human biomonitoring (HBM) data made available via the HBM4EU project, we derived generic mixtures representative of a median (P50) and a worst-case scenario (P95) for adults and children. We performed a mixture risk assessment based on HBM concentrations, health-based guidance values (HBGVs) as internal thresholds of concern, and the conservative assumption of concentration addition applied across different toxicological endpoints. Maximum cumulative ratios (MCRs) were calculated to characterize the mixture risk. The mixtures comprise 136 biomarkers for adults and 84 for children, although concentration levels could be quantified only for a fraction of these. Due to limited availability of HBGVs, the mixture risk was assessed for a subset of 20 substance-biomarker pairs for adults and 17 for children. The mixture hazard index ranged from 2.8 (P50, children) to 9.2 (P95, adults). Six to seven substances contributed to over 95% of the total risk. MCR values ranged between 2.6 and 5.5, which is in a similar range as in previous studies based on human external exposures assessments. The limited coverage of substances included in the calculations and the application of a hazard index across toxicological endpoints argue for caution in the interpretation of the results. Nonetheless the analyses of MCR and MAFceiling can help inform a possible mixture assessment factor (MAF) applicable to single substance risk assessment to account for exposure to unintentional mixtures.
Collapse
Affiliation(s)
- Sebastian Socianu
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (S.S.); (A.F.)
| | - Stephanie K. Bopp
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (S.S.); (A.F.)
- Correspondence: ; Tel.: +39-0332-789950
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; (E.G.); (L.G.); (J.B.)
| | - Liese Gilles
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; (E.G.); (L.G.); (J.B.)
| | - Jurgen Buekers
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; (E.G.); (L.G.); (J.B.)
| | | | - Thomas Backhaus
- Department of Biological and Environmental Sciences, University of Gothenburg, Carl Skottsbergs Gata 22B, 41319 Gothenburg, Sweden;
| | - Antonio Franco
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (S.S.); (A.F.)
| |
Collapse
|
5
|
Schoeters G, Verheyen VJ, Colles A, Remy S, Martin LR, Govarts E, Nelen V, Den Hond E, De Decker A, Franken C, Loots I, Coertjens D, Morrens B, Bastiaensen M, Gys C, Malarvannan G, Covaci A, Nawrot T, De Henauw S, Bellemans M, Leermakers M, Van Larebeke N, Baeyens W, Jacobs G, Voorspoels S, Nielsen F, Bruckers L. Internal exposure of Flemish teenagers to environmental pollutants: Results of the Flemish Environment and Health Study 2016-2020 (FLEHS IV). Int J Hyg Environ Health 2022; 242:113972. [PMID: 35453051 DOI: 10.1016/j.ijheh.2022.113972] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 12/12/2022]
Abstract
The Flemish Environment and Health Study (FLEHS) collects information on internal exposure to a broad range of environmental chemicals in the general population in Flanders, the Northern region of Belgium. The aim is to establish biomonitoring exposure distributions for the general population in support of public health and environmental policy, environmental risk assessment and risk management decisions. In 2017-2018, urine and blood samples were collected from 428 teenagers by a stratified clustered two stage randomized design. Samples were analyzed for a broad range of biomarkers related to exposure to chlorinated and newer pesticides, brominated and organophosphate flame retardants (BFR/OPFR), polychlorinated biphenyls (PCBs), bisphenols, phthalates and alternative plasticizers, per-and polyfluoroalkyl substances (PFAS), polycyclic aromatic hydrocarbons (PAHs), benzene, metals and trace elements. The geometric mean levels and percentiles of the distribution were estimated for each biomarker, for the whole study population and following stratification for sex, the household educational attainment and the residence area's urbanicity. Geometric means of biomarkers of lead, dichlorodiphenyltrichloroethane (DDT), PCBs, PAHs, regulated phthalates and bisphenol A (BPA) were lower than in the previous FLEHS cycles. Most biomarker levels were below health-based guidance values (HB-GVs). However, HB-GVs of urinary arsenic, blood lead, blood cadmium, sum of serum perfluorooctane sulfonate (PFOS) and perfluoro-1-hexanesulfonate (PFHxS) and the urinary pyrethroid metabolite (3-PBA) were exceeded in respectively 25%, 12%, 39.5%, 10% and 22% of the teenagers. These results suggest that the levels of exposure in the Flemish population to some environmental chemicals might be of concern. At the same time, we noticed that biomarkers for BPA substitutes, metabolites of OPFRs, an expanded list of PFAS, glyphosate and its metabolite could be measured in substantial proportions of participants. Interpretation of these levels in a health-risk context remains uncertain as HB-GVs are lacking. Household educational attainment and residential urbanicity were significant exposure determinants for many biomarkers and could influence specific biomarker levels up to 70% as shown by multiple regression analysis. The research consortium also took care of the broader external communication of results with participants, policy makers, professional groups and civil society organizations. Our study demonstrated that teenagers are exposed to a wide range of chemicals, it demonstrates the success of public policies to reduce exposure but also points to concern and further priorities and needs for follow up.
Collapse
Affiliation(s)
- G Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium; Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| | - V J Verheyen
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium; Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - A Colles
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - S Remy
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - L Rodriguez Martin
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - E Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - V Nelen
- Provincial Institute of Hygiene, Kronenburgstraat 45, 2000, Antwerp, Belgium
| | - E Den Hond
- Provincial Institute of Hygiene, Kronenburgstraat 45, 2000, Antwerp, Belgium
| | - A De Decker
- Provincial Institute of Hygiene, Kronenburgstraat 45, 2000, Antwerp, Belgium
| | - C Franken
- Provincial Institute of Hygiene, Kronenburgstraat 45, 2000, Antwerp, Belgium
| | - I Loots
- Department of Sociology, Faculty of Social Sciences, University of Antwerp, Sint-Jacobstraat 2, 2000, Antwerp, Belgium
| | - D Coertjens
- Department of Sociology, Faculty of Social Sciences, University of Antwerp, Sint-Jacobstraat 2, 2000, Antwerp, Belgium
| | - B Morrens
- Department of Sociology, Faculty of Social Sciences, University of Antwerp, Sint-Jacobstraat 2, 2000, Antwerp, Belgium
| | - M Bastiaensen
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - C Gys
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - G Malarvannan
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - A Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - T Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan building D, 3590, Diepenbeek, Belgium
| | - S De Henauw
- Department of Public Health and Primary Care, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185, 9000, Ghent, Belgium
| | - M Bellemans
- Department of Public Health and Primary Care, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185, 9000, Ghent, Belgium
| | - M Leermakers
- Analytical, Environmental and Geo- Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - N Van Larebeke
- Analytical, Environmental and Geo- Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - W Baeyens
- Analytical, Environmental and Geo- Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - G Jacobs
- VITO GOAL, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - S Voorspoels
- VITO GOAL, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - F Nielsen
- Institute of Public Health, Department of Environmental Medicine, University of Southern Denmark, Odense, Denmark
| | - L Bruckers
- BioStat, Data Science Institute, Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium
| |
Collapse
|