1
|
Nkwaju RY, Nouping JNF, Bachirou S, Abo TM, Deutou JGN, Djobo JNY. Effective Stabilization of Cadmium and Copper in Iron-Rich Laterite-Based Geopolymers and Influence on Physical Properties. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7605. [PMID: 38138747 PMCID: PMC10744675 DOI: 10.3390/ma16247605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 12/24/2023]
Abstract
This study aimed to investigate the efficiency of a geopolymer binder of the type of Na-poly(ferro-silico-aluminate) as a matrix for the stabilization of heavy metals along with their effect on the development of structural performances. The artificial contamination of soil with ions was carried out and used to prepare an alkali-activated iron-rich lateritic soil binder. Further, various microstructural analyses were carried out to explain the stabilization mechanism. The stabilization efficiency was assessed by leaching tests in de-ionized water and hydrochloric acid (0.1 M, HCl). Then, the physical properties were determined to evaluate the impact of heavy metals on the structural performance of the binder. Results demonstrated that the prepared geopolymer binder has the lowest stabilization capacity in an acidic medium (low pH) than in water with high pH. However, the stabilization of Cu ions was effective at 99%, while the Cd ion is barely retained in the matrix. Firstly, the mechanism consists of chemical bonds through ion exchange with sodium of the Na-poly(ferro-silico-aluminate) network. Secondly, through physical interaction with the pore network of the matrix, the heavy metals induced structural deterioration in the geopolymer matrix with a decrease in the compressive strength and bulk density and an increase of both apparent porosity and water absorption.
Collapse
Affiliation(s)
- Rachel Yanou Nkwaju
- Local Materials Promotion Authority, MINRESI/MIPROMALO, Nkolbikok, Yaoundé P.O. Box 2396, Cameroon; (J.N.F.N.); (S.B.); (T.M.A.)
| | | | | | | | - Juvenal Giogetti Nemaleu Deutou
- Local Materials Promotion Authority, MINRESI/MIPROMALO, Nkolbikok, Yaoundé P.O. Box 2396, Cameroon; (J.N.F.N.); (S.B.); (T.M.A.)
| | - Jean Noël Yankwa Djobo
- Local Materials Promotion Authority, MINRESI/MIPROMALO, Nkolbikok, Yaoundé P.O. Box 2396, Cameroon; (J.N.F.N.); (S.B.); (T.M.A.)
| |
Collapse
|
2
|
Tirpák F, Halo M, Tomka M, Slanina T, Tokárová K, Błaszczyk-Altman M, Dianová L, Ivanič P, Kirchner R, Greń A, Lukáč N, Massányi P. Sperm Quality Affected by Naturally Occurring Chemical Elements in Bull Seminal Plasma. Antioxidants (Basel) 2022; 11:antiox11091796. [PMID: 36139870 PMCID: PMC9495912 DOI: 10.3390/antiox11091796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
This study monitored the chemical and biochemical composition of bovine seminal plasma (SP). Freshly ejaculated semen (n = 20) was aliquoted into two parts. The first aliquot was immediately assessed to determine the sperm motion parameters. Another motility measurement was performed following an hour-long co-incubation of spermatozoa with SP at 6 °C. The other aliquot was processed to obtain the SP. Seminal plasma underwent the analyses of chemical composition and quantification of selected proteins, lipids and RedOx markers. Determined concentrations of observed parameters served as input data to correlation analyses where associations between micro and macro elements and RedOx markers were observed. Significant correlations of total oxidant status were found with the content of Cu and Mg. Further significant correlations of glutathione peroxidase were detected in relation to Fe and Hg. Furthermore, associations of chemical elements and RedOx markers and spermatozoa quality parameters were monitored. The most notable correlations indicate beneficial effects of seminal Fe on motility and Mg on velocity and viability of spermatozoa. On the contrary, negative correlations were registered between Zn and sperm velocity and seminal cholesterol content and motility. Our findings imply that seminal plasma has a prospective to be developed as the potential biomarker of bull reproductive health.
Collapse
Affiliation(s)
- Filip Tirpák
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
- Correspondence: (F.T.); (P.M.)
| | - Marko Halo
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Marián Tomka
- Institute of Biotechnology, Faculty of Biotechnology and Food Science, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Tomáš Slanina
- Institute of Applied Biology, Faculty of Biotechnology and Food Science, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Katarína Tokárová
- Institute of Applied Biology, Faculty of Biotechnology and Food Science, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | | | - Lucia Dianová
- Institute of Applied Biology, Faculty of Biotechnology and Food Science, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Peter Ivanič
- Slovak Biological Services, Kremnička 2, 974 05 Banská Bystrica, Slovakia
| | - Róbert Kirchner
- Institute of Applied Biology, Faculty of Biotechnology and Food Science, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Agnieszka Greń
- Institute of Biology, Pedagogical University of Krakow, Podchorazych 2, 30-084 Krakow, Poland
| | - Norbert Lukáč
- Institute of Applied Biology, Faculty of Biotechnology and Food Science, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Peter Massányi
- Institute of Applied Biology, Faculty of Biotechnology and Food Science, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
- Institute of Biology, Pedagogical University of Krakow, Podchorazych 2, 30-084 Krakow, Poland
- Correspondence: (F.T.); (P.M.)
| |
Collapse
|
3
|
Maciejewski R, Radzikowska-Büchner E, Flieger W, Kulczycka K, Baj J, Forma A, Flieger J. An Overview of Essential Microelements and Common Metallic Nanoparticles and Their Effects on Male Fertility. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191711066. [PMID: 36078782 PMCID: PMC9518444 DOI: 10.3390/ijerph191711066] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 05/17/2023]
Abstract
Numerous factors affect reproduction, including stress, diet, obesity, the use of stimulants, or exposure to toxins, along with heavy elements (lead, silver, cadmium, uranium, vanadium, mercury, arsenic). Metals, like other xenotoxins, can cause infertility through, e.g., impairment of endocrine function and gametogenesis or excess production of reactive oxygen species (ROS). The advancement of nanotechnology has created another hazard to human safety through exposure to metals in the form of nanomaterials (NMs). Nanoparticles (NPs) exhibit a specific ability to penetrate cell membranes and biological barriers in the human body. These ultra-fine particles (<100 nm) can enter the human body through the respiratory tract, food, skin, injection, or implantation. Once absorbed, NPs are transported to various organs through the blood or lymph. Absorbed NPs, thanks to ultrahigh reactivity compared to bulk materials in microscale size, disrupt the homeostasis of the body as a result of interaction with biological molecules such as DNA, lipids, and proteins; interfering with the functioning of cells, organs, and physiological systems; and leading to severe pathological dysfunctions. Over the past decades, much research has been performed on the reproductive effects of essential trace elements. The research hypothesis that disturbances in the metabolism of trace elements are one of the many causes of infertility has been unquestionably confirmed. This review examines the complex reproductive risks for men regarding the exposure to potentially harmless xenobiotics based on a series of 298 articles over the past 30 years. The research was conducted using PubMed, Web of Science, and Scopus databases searching for papers devoted to in vivo and in vitro studies related to the influence of essential elements (iron, selenium, manganese, cobalt, zinc, copper, and molybdenum) and widely used metallic NPs on male reproduction potential.
Collapse
Affiliation(s)
| | | | - Wojciech Flieger
- Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Kinga Kulczycka
- Institute of Health Sciences, John Paul II Catholic University of Lublin, 20-708 Lublin, Poland
| | - Jacek Baj
- Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8B, 20-090 Lublin, Poland
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
- Correspondence: ; Tel.: +48-81448-7182
| |
Collapse
|
4
|
Chen C, Li B, Huang R, Dong S, Zhou Y, Song J, Zeng X, Zhang X. Involvement of Ca 2+ and ROS signals in nickel-impaired human sperm function. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113181. [PMID: 35026585 DOI: 10.1016/j.ecoenv.2022.113181] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
As one of the main environmental pollutants and occupational hazards, nickel has been reported to have mutagenic, carcinogenic, and teratogenic properties, as well as reproductive toxicity. However, how nickel affects human reproduction is still unclear. In this study, the toxicity of nickel on human sperm and the underlying mechanisms were evaluated in vitro. We found that NiCl2 (10, 50, and 250 μM) impaired sperm total motility and progressive motility in a dose- and time-dependent manner. In addition, sperm hyperactivation and the ability of human sperm to penetrate a viscous medium were found to be compromised after nickel exposure. Mechanically, NiCl2 significantly inhibited the basal intracellular Ca2+ signaling. Besides, reactive oxygen species (ROS), superoxide, and malondialdehyde levels were increased in human sperm after exposure to different concentrations of NiCl2. Consistently, eliminating excess ROS by N-acetyl-L-cysteine or tocopherol significantly alleviated nickel-impaired sperm motility. Taken together, these results revealed that nickel could compromise sperm functions by interfering with Ca2+ signaling and inducing excessive oxidative stress. These findings suggest that, in the high and occupational nickel exposure environments, the contribution of nickel toxicity to the males who wish to preserve their fertility is worthy of careful evaluation.
Collapse
Affiliation(s)
- Chen Chen
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, PR China
| | - Bingqian Li
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, PR China
| | - Rongzu Huang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, PR China
| | - Shijue Dong
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, PR China
| | - Yang Zhou
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, PR China
| | - Jian Song
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, PR China
| | - Xuhui Zeng
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, PR China.
| | - Xiaoning Zhang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, PR China.
| |
Collapse
|
5
|
Madhu NR, Sarkar B, Slama P, Jha NK, Ghorai SK, Jana SK, Govindasamy K, Massanyi P, Lukac N, Kumar D, Kalita JC, Kesari KK, Roychoudhury S. Effect of Environmental Stressors, Xenobiotics, and Oxidative Stress on Male Reproductive and Sexual Health. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1391:33-58. [PMID: 36472815 DOI: 10.1007/978-3-031-12966-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This article examines the environmental factor-induced oxidative stress (OS) and their effects on male reproductive and sexual health. There are several factors that induce OS, i.e. radition, metal contamination, xenobiotic compounds, and cigarette smoke and lead to cause toxicity in the cells through metabolic or bioenergetic processes. These environmental factors may produce free radicals and enhance the reactive oxygen species (ROS). Free radicals are molecules that include oxygen and disbalance the amount of electrons that can create major chemical chains in the body and cause oxidation. Oxidative damage to cells may impair male fertility and lead to abnormal embryonic development. Moreover, it does not only cause a vast number of health issues such as ageing, cancer, atherosclerosis, insulin resistance, diabetes mellitus, cardiovascular diseases, ischemia-reperfusion injury, and neurodegenerative disorders but also decreases the motility of spermatozoa while increasing sperm DNA damage, impairing sperm mitochondrial membrane lipids and protein kinases. This chapter mainly focuses on the environmental stressors with further discussion on the mechanisms causing congenital impairments due to poor sexual health and transmitting altered signal transduction pathways in male gonadal tissues.
Collapse
Affiliation(s)
- Nithar Ranjan Madhu
- Department of Zoology, Acharya Prafulla Chandra College, New Barrackpore, Kolkata, West Bengal, India
| | - Bhanumati Sarkar
- Department of Botany, Acharya Prafulla Chandra College, New Barrackpore, Kolkata, West Bengal, India
| | - Petr Slama
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, India
| | | | - Sandip Kumar Jana
- Department of Zoology, Bajkul Milani Mahavidyalaya, Purba Medinipur, West Bengal, India
| | - Kadirvel Govindasamy
- Animal Production Division, ICAR Research Complex for NEH Region, Indian Council of Agricultural Research, Umiam, Meghalaya, India
| | - Peter Massanyi
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Norbert Lukac
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Dhruv Kumar
- School of Health Sciences & Technology, UPES University, Dehradun, Uttarakhand, India
| | - Jogen C Kalita
- Department of Zoology, Gauhati University, Guwahati, India
| | | | | |
Collapse
|