1
|
Li HX, Ma Y, Yan YX, Zhai XK, Xin MY, Wang T, Xu DC, Song YT, Song CD, Pan CX. The purified extract of steamed Panax ginseng protects cardiomyocyte from ischemic injury via caveolin-1 phosphorylation-mediating calcium influx. J Ginseng Res 2023; 47:755-765. [PMID: 38107394 PMCID: PMC10721475 DOI: 10.1016/j.jgr.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 12/19/2023] Open
Abstract
Background Caveolin-1, the scaffolding protein of cholesterol-rich invaginations, plays an important role in store-operated Ca2+ influx and its phosphorylation at Tyr14 (p-caveolin-1) is vital to mobilize protection against myocardial ischemia (MI) injury. SOCE, comprising STIM1, ORAI1 and TRPC1, contributes to intracellular Ca2+ ([Ca2+]i) accumulation in cardiomyocytes. The purified extract of steamed Panax ginseng (EPG) attenuated [Ca2+]i overload against MI injury. Thus, the aim of this study was to investigate the possibility of EPG affecting p-caveolin-1 to further mediate SOCE/[Ca2+]i against MI injury in neonatal rat cardiomyocytes and a rat model. Methods PP2, an inhibitor of p-caveolin-1, was used. Cell viability, [Ca2+]i concentration were analyzed in cardiomyocytes. In rats, myocardial infarct size, pathological damages, apoptosis and cardiac fibrosis were evaluated, p-caveolin-1 and STIM1 were detected by immunofluorescence, and the levels of caveolin-1, STIM1, ORAI1 and TRPC1 were determined by RT-PCR and Western blot. And, release of LDH, cTnI and BNP was measured. Results EPG, ginsenosides accounting for 57.96%, suppressed release of LDH, cTnI and BNP, and protected cardiomyocytes by inhibiting Ca2+ influx. And, EPG significantly relieved myocardial infarct size, cardiac apoptosis, fibrosis, and ultrastructure abnormality. Moreover, EPG negatively regulated SOCE via increasing p-caveolin-1 protein, decreasing ORAI1 mRNA and protein levels of ORAI1, TRPC1 and STIM1. More importantly, inhibition of the p-caveolin-1 significantly suppressed all of the above cardioprotection of EPG. Conclusions Caveolin-1 phosphorylation is involved in the protective effects of EPG against MI injury via increasing p-caveolin-1 to negatively regulate SOCE/[Ca2+]i.
Collapse
Affiliation(s)
- Hai-Xia Li
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan Province, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, Henan Province, China
| | - Yan Ma
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan Province, China
| | - Yu-Xiao Yan
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan Province, China
| | - Xin-Ke Zhai
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan Province, China
| | - Meng-Yu Xin
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan Province, China
| | - Tian Wang
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan Province, China
| | - Dong-Cao Xu
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan Province, China
| | - Yu-Tong Song
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan Province, China
| | - Chun-Dong Song
- The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, 9 Renmin Road, Zhengzhou, Henan Province, China
| | - Cheng-Xue Pan
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan Province, China
| |
Collapse
|
2
|
Liu S, Jiang Y, Wang Y, Huo H, Cilkiz M, Chen P, Han Y, Li L, Wang K, Zhao M, Zhu L, Lei J, Wang Y, Zhang M. Genetic and molecular dissection of ginseng ( Panax ginseng Mey.) germplasm using high-density genic SNP markers, secondary metabolites, and gene expressions. FRONTIERS IN PLANT SCIENCE 2023; 14:1165349. [PMID: 37575919 PMCID: PMC10416250 DOI: 10.3389/fpls.2023.1165349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/27/2023] [Indexed: 08/15/2023]
Abstract
Genetic and molecular knowledge of a species is crucial to its gene discovery and enhanced breeding. Here, we report the genetic and molecular dissection of ginseng, an important herb for healthy food and medicine. A mini-core collection consisting of 344 cultivars and landraces was developed for ginseng that represents the genetic variation of ginseng existing in its origin and diversity center. We sequenced the transcriptomes of all 344 cultivars and landraces; identified over 1.5 million genic SNPs, thereby revealing the genic diversity of ginseng; and analyzed them with 26,600 high-quality genic SNPs or a selection of them. Ginseng had a wide molecular diversity and was clustered into three subpopulations. Analysis of 16 ginsenosides, the major bioactive components for healthy food and medicine, showed that ginseng had a wide variation in the contents of all 16 ginsenosides and an extensive correlation of their contents, suggesting that they are synthesized through a single or multiple correlated pathways. Furthermore, we pair-wisely examined the relationships between the cultivars and landraces, revealing their relationships in gene expression, gene variation, and ginsenoside biosynthesis. These results provide new knowledge and new genetic and genic resources for advanced research and breeding of ginseng and related species.
Collapse
Affiliation(s)
- Sizhang Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Yue Jiang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Yanfang Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Huimin Huo
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Mustafa Cilkiz
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| | - Ping Chen
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, China
| | - Yilai Han
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Li Li
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Kangyu Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, China
| | - Mingzhu Zhao
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, China
| | - Lei Zhu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Jun Lei
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, China
| | - Yi Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, China
| | - Meiping Zhang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, China
| |
Collapse
|
3
|
Tardy AL, Marguet S, Costantino H, Stewart A, Mackie D, Saba G, Amand C. Profile and quality of life of the adult population in good health according to the level of vitality: European NHWS cross sectional analysis. BMC Public Health 2023; 23:1061. [PMID: 37277779 DOI: 10.1186/s12889-023-15754-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 04/13/2023] [Indexed: 06/07/2023] Open
Abstract
BACKGROUND The World Health Organization's definition of health highlights the importance of mental and physical wellbeing and not only disease state. However, lack of awareness on the burden of impaired vitality and its impact on the quality of life of the general healthy population prevents healthcare providers from delivering appropriate solutions and advice. This study aims to better characterize this population in Europe and identify the profile and the health reported outcomes associated with impaired vitality. METHODS This retrospective observational study included National Health and Wellness Survey (NHWS) data collected in healthy participants aged 18-65 years from five European Union countries in 2018. Socio-demographic and lifestyle characteristics, comorbidities, attitudes towards healthcare systems, Patient Activation Measure, health-related quality of life outcomes (EQ-5D), and work productivity and activity impairment were analysed according to SF-12 vitality score subgroups (≥ 60, 50- < 60, 40- < 50, < 40). RESULTS A total of 24,295 participants were enrolled in the main analysis. Being a female, younger, having a lower income and being obese or having sleep and mental disorders was associated with an increased risk of impaired vitality. This was associated with a higher consumption of healthcare resources along with having a weak patient-physician relationship. Participants who were disengaged in the self-management of their health were 2.6 times more likely to have a low level of vitality. For participants in the lowest vitality group, odds of mobility problems increased by 3.4, impairment of usual activity by 5.8, increased of pain and discomfort by 5.6 and depression and anxiety by 10.3, compared with participants in the highest vitality group. Also, odds of presenteeism increased by 3.7, overall work impairment by 3.4 and daily activity losses by 7.1. CONCLUSION Evidence-based trends facilitate the identification of a healthy population with impaired vitality in real-world practice. This study highlights the actual burden of low vitality on daily life activities, particularly on mental health and reduced work productivity. Additionally, our results underline the importance of self-engagement in the management of vitality impairment and highlights the need to implement strategies to address this public health concern in the affected population (HCP-patient communication, supplements, meditation).
Collapse
Affiliation(s)
| | | | | | - Andrew Stewart
- Science Hub, Sanofi Consumer Healthcare Cambridge, Cambridge, MA, USA
| | | | | | - Caroline Amand
- Science Hub, Sanofi Consumer Healthcare, Gentilly, France.
| |
Collapse
|
4
|
Przeor M. Some Common Medicinal Plants with Antidiabetic Activity, Known and Available in Europe (A Mini-Review). Pharmaceuticals (Basel) 2022; 15:ph15010065. [PMID: 35056122 PMCID: PMC8778315 DOI: 10.3390/ph15010065] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 02/07/2023] Open
Abstract
Diabetes is a metabolic disease that affected 9.3% of adults worldwide in 2019. Its co-occurrence is suspected to increase mortality from COVID-19. The treatment of diabetes is mainly based on the long-term use of pharmacological agents, often expensive and causing unpleasant side effects. There is an alarming increase in the number of pharmaceuticals taken in Europe. The aim of this paper is to concisely collect information concerning the few antidiabetic or hypoglycaemic raw plant materials that are present in the consciousness of Europeans and relatively easily accessible to them on the market and sometimes even grown on European plantations. The following raw materials are discussed in this mini-review: Morus alba L., Cinnamomum zeylanicum J.Presl, Trigonella foenum-graecum L., Phaseolus vulgaris L., Zingiber officinale Rosc., and Panax ginseng C.A.Meyer in terms of scientifically tested antidiabetic activity and the presence of characteristic biologically active compounds and their specific properties, including antioxidant properties. The characteristics of these raw materials are based on in vitro as well as in vivo studies: on animals and in clinical studies. In addition, for each plant, the possibility to use certain morphological elements in the light of EFSA legislation is given.
Collapse
Affiliation(s)
- Monika Przeor
- Department of Gastronomy Science and Functional Foods, Poznań University of Life Sciences, 60-637 Poznań, Poland
| |
Collapse
|