1
|
Yang T, Lu Y, Wang Y, Wang L, Zhang F, Di Ming, Cao Q, Yang H, Zhang Y, Wei W. Toxicity of benzethonium chloride and polyhexamethylene guanidine hydrochloride mixtures on Daphnia carinata: synergistic and antagonistic effects at specific ratios. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115268. [PMID: 37480694 DOI: 10.1016/j.ecoenv.2023.115268] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 07/02/2023] [Accepted: 07/15/2023] [Indexed: 07/24/2023]
Abstract
Throughout the coronavirus (COVID-19) pandemic, the sanitizing products benzethonium chloride (BEC) and polyhexamethylene guanidine hydrochloride (PHMG-H) were widely used; however, few studies have investigated their combined toxicity to organisms. In the present study, acute toxicity and genotoxicity of BEC, PHMG-H, and the combination of the two were investigated as endpoints using Daphnia carinata as the model organism. For individual reagents, PHMG-H was found to be more toxic than BEC in terms of both mortality and genotoxicity. DNA damage and survival rate were used as toxicity endpoints. The interaction was evaluated with the concentration addition (CA) model via toxic unit (TU) approach and additive index (AI) method in mixtures at different ratios in TU. Only the binary mixture BEC + PHMG-H at the ratio 1:9 in TU was regarded as synergistic, while all others indicated increased antagonistic effects as the proportion of BEC increased over the PHMG-H concentration. The findings here benefit understanding surrounding precisely how BEC and PHMG-H interact at different mixing ratios, and can assist with the evaluation of risk assessments for binary mixtures in aquatic ecosystems.
Collapse
Affiliation(s)
- Tian Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225229, China
| | - Yuting Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225229, China
| | - Yuchen Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225229, China
| | - Liufu Wang
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Feng Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225229, China
| | - Di Ming
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225229, China
| | - Qingsheng Cao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225229, China
| | - Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225229, China
| | - Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225229, China
| | - Wenzhi Wei
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225229, China.
| |
Collapse
|
2
|
Zhang X, Zhu Y, Li Z, Li J, Wei S, Chen W, Ren D, Zhang S. Assessment soil cadmium and copper toxicity on barley growth and the influencing soil properties in subtropical agricultural soils. ENVIRONMENTAL RESEARCH 2023; 217:114968. [PMID: 36455628 DOI: 10.1016/j.envres.2022.114968] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/04/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Evaluation joint cadmium (Cd) and copper (Cu) phytotoxicity in wide range of subtropical agricultural soils is highly vital for phytoremediation of soils contaminated with Cd and Cu. In this study, barley root elongation assays were performed in 30 representative soils in response to single and combined Cd and Cu inhibition. The single Cd caused nearly 50% inhibition of barley root elongation, and Cu induced more than 50% inhibition in most soils. Mixed Cd + Cu caused significant inhibition on barley growth with average relative root elongation values of 20.0% and 30.4% in soil with a pH < 7 and pH > 7, respectively. An antagonistic interaction was evaluated in combined Cd + Cu toxicity, which was strong in soils containing low soluble Cu and Cd contents. Soil pH was the controlling factor in predicting single and mixed Cd and Cu phytotoxicity, which could explain 44% and 46% variation of single Cd and Cu toxicity, respectively. Soil organic carbon and effective cation exchange capacity were another important factor positively influencing metal toxicity, which further improved empirical prediction models accuracy, with determined coefficient (r2) values of 0.44-0.84. These results provide a theoretical basis for soils Cd and Cu pollution control.
Collapse
Affiliation(s)
- Xiaoqing Zhang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China; Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China
| | - Yuanjie Zhu
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Zhuangzhuang Li
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Jiong Li
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Shan Wei
- College of Wuhan University, Wuhan, Hubei, 430081, China.
| | - Wangsheng Chen
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China; Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China
| | - Dajun Ren
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China; Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China
| | - Shuqin Zhang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China; Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China
| |
Collapse
|
3
|
Enhanced leachate phytodetoxification test combined with plants and rhizobacteria bioaugmentation. Heliyon 2023; 9:e12921. [PMID: 36820189 PMCID: PMC9938419 DOI: 10.1016/j.heliyon.2023.e12921] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/05/2022] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
Plant combination and rhizobacterial bioaugmentation are the modification of constructed wetlands (CWs) to promote the detoxification of leachate. In this study, characterization of leachate was carried out to ensure the maximum concentration of leachate that did not affect the plant's growth. Herein, the identification of leachate-resistant rhizobacteria is used to determine the type of bacteria that is resistant and has the potential for leachate processing in the next step. The phytodetoxification test is carried out by comparing the addition of rhizobacteria and without the addition of rhizobacteria to detox leachate parameter Chemical Oxygen Demand (COD), Biological Oxygen Demand (BOD), Total Suspended Solid (TSS), Total Nitrogen (TN), Cadmium (Cd), and Mercury (Hg). Results showed that used plants could still live in the largest leachate concentration of 100%. The rhizobacteria that were identified and bioaugmented in the reactor were Bacillus cereus, Nitrosomonas communis, and Pseudomonas aeruginosa. Phytodetoxification test by a single plant showed the efficiency ranged between 40% and 70%. The addition of rhizobacterial bioaugmentation and plant combination can improve the percentage of COD 80.47%, BOD 84.05%, TSS 80.05%, TN 75.58%, Cd 99.96%, and Hg 90%. These modifications are very influential for leachate detoxification through plant uptake and rhizodegradation processes.
Collapse
|
4
|
Mentes D, Kováts N, Muránszky G, Hornyák-Mester E, Póliska C. Evaluation of flue gas emission factor and toxicity of the PM-bounded PAH from lab-scale waste combustion. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116371. [PMID: 36202035 DOI: 10.1016/j.jenvman.2022.116371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Atmospheric particulate matter (PM) has a significant threat not only to human health but also to our environment. In Hungary, 54% of PM10 comes from residential combustion, which also includes the practice of household waste burning. Therefore, this work aims to investigate the quality of combustion through the flue gas concentrations (CO, CO2, O2) and to identify and evaluate the negative impacts of PM and PAHs generated during controlled lab-scale combustion of different mixed wastes (cardboard and glossy paper, polypropylene and polyethylene terephthalate, polyester and cotton). Mixed wastes were burnt in a lab-scale tubular furnace at different temperatures with 180 dm3/h air flow rate. Chemical analyses were coupled with ecotoxicological tests using the bioluminescent bacterium Vibrio fischeri. Ecotoxicity was expressed as toxic unit (TU) values, toxic equivalent factors (TEF) were also presented. During the combustion same amount of O2 enters the reaction, but a different amount CO2 is generated due to the C content of the sample. The waste with highest C-content related to the highest CO2 emission. Increasing the combustion temperature produces more PM-bound PAHs, which remains the same composition in the case of plastic and textile groups. The TU of solid contaminants decreases with increasing combustion temperature and increases with the minerals which are left behind in the water from the solid contaminants.
Collapse
Affiliation(s)
- Dóra Mentes
- Institute of Energy and Quality, University of Miskolc, 3515, Miskolc, Miskolc-Egyetemváros, Hungary; Higher Education and Industrial Cooperation Centre, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary.
| | - Nóra Kováts
- Centre for Natural Sciences, University of Pannonia, 8200, Veszprém, Egyetem Str. 10, Hungary.
| | - Gábor Muránszky
- Institute of Chemistry, University of Miskolc, 3515, Miskolc, Miskolc-Egyetemváros, Hungary.
| | - Enikő Hornyák-Mester
- Institute of Chemistry, University of Miskolc, 3515, Miskolc, Miskolc-Egyetemváros, Hungary; Higher Education and Industrial Cooperation Centre, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary.
| | - Csaba Póliska
- Institute of Energy and Quality, University of Miskolc, 3515, Miskolc, Miskolc-Egyetemváros, Hungary.
| |
Collapse
|
5
|
Giuliano A, Errico M, Salehi H, Avino P. Environmental Impact Assessment by Green Processes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15575. [PMID: 36497650 PMCID: PMC9737002 DOI: 10.3390/ijerph192315575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Global primary energy consumption has been steadily increasing since the Industrial Revolution, and it is showing no sign of slowing down in the coming years [...].
Collapse
Affiliation(s)
- Aristide Giuliano
- ENEA–Italian Agency for New Technologies, Energy and Sustainable Economic Development, Department of Energetic Technologies, Trisaia Research Centre, I-75026 Rotondella, Italy
| | - Massimiliano Errico
- Department of Green Technology, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Hamid Salehi
- Wolfson Centre for Bulk Solids Handling Technology, Faculty of Engineering & Science, University of Greenwich, London SE10 9LS, UK
| | - Pasquale Avino
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via de Sanctis, 86100 Campobasso, Italy
| |
Collapse
|