1
|
Luedders J, Poole JA, Rorie AC. Extreme Weather Events and Asthma. Immunol Allergy Clin North Am 2024; 44:35-44. [PMID: 37973258 PMCID: PMC11472832 DOI: 10.1016/j.iac.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The objective of this article is to review recent literature on the implications of extreme weather events such as thunderstorms, wildfires, tropical cyclones, freshwater flooding, and temperature extremes in relationship to asthma symptoms. Several studies have shown worsening of asthma symptoms with thunderstorms, wildfires, tropical cyclones, freshwater flooding, and temperature extremes. In particular, thunderstorm asthma can be exacerbated by certain factors such as temperature, precipitation, and allergen sensitization. Therefore, it is imperative that the allergy and immunology community be aware of the health effects associated with these extreme weather events in order to educate patients and engage in mitigation strategies.
Collapse
Affiliation(s)
- Jennilee Luedders
- Division of Allergy & Immunology, Department of Internal Medicine, University of Nebraska Medical Center, 985990 Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Jill A Poole
- Division of Allergy & Immunology, Department of Internal Medicine, University of Nebraska Medical Center, 985990 Nebraska Medical Center, Omaha, NE 68198, USA
| | - Andrew C Rorie
- Division of Allergy & Immunology, Department of Internal Medicine, University of Nebraska Medical Center, 985990 Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
2
|
Tilmon S, Nyenhuis S, Solomonides A, Barbarioli B, Bhargava A, Birz S, Bouzein K, Cardenas C, Carlson B, Cohen E, Dillon E, Furner B, Huang Z, Johnson J, Krishnan N, Lazenby K, Li K, Makhni S, Miler D, Ozik J, Santos C, Sleiman M, Solway J, Krishnan S, Volchenboum S. Sociome Data Commons: A scalable and sustainable platform for investigating the full social context and determinants of health. J Clin Transl Sci 2023; 7:e255. [PMID: 38229897 PMCID: PMC10789989 DOI: 10.1017/cts.2023.670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/27/2023] [Accepted: 10/27/2023] [Indexed: 01/18/2024] Open
Abstract
Background/Objective Non-clinical aspects of life, such as social, environmental, behavioral, psychological, and economic factors, what we call the sociome, play significant roles in shaping patient health and health outcomes. This paper introduces the Sociome Data Commons (SDC), a new research platform that enables large-scale data analysis for investigating such factors. Methods This platform focuses on "hyper-local" data, i.e., at the neighborhood or point level, a geospatial scale of data not adequately considered in existing tools and projects. We enumerate key insights gained regarding data quality standards, data governance, and organizational structure for long-term project sustainability. A pilot use case investigating sociome factors associated with asthma exacerbations in children residing on the South Side of Chicago used machine learning and six SDC datasets. Results The pilot use case reveals one dominant spatial cluster for asthma exacerbations and important roles of housing conditions and cost, proximity to Superfund pollution sites, urban flooding, violent crime, lack of insurance, and a poverty index. Conclusion The SDC has been purposefully designed to support and encourage extension of the platform into new data sets as well as the continued development, refinement, and adoption of standards for dataset quality, dataset inclusion, metadata annotation, and data access/governance. The asthma pilot has served as the first driver use case and demonstrates promise for future investigation into the sociome and clinical outcomes. Additional projects will be selected, in part for their ability to exercise and grow the capacity of the SDC to meet its ambitious goals.
Collapse
Affiliation(s)
| | - Sharmilee Nyenhuis
- Pediatrics, University of Chicago,
Chicago, IL, USA
- Medicine, University of Chicago,
Chicago, IL, USA
| | | | | | | | - Suzi Birz
- Pediatrics, University of Chicago,
Chicago, IL, USA
| | | | | | - Bradley Carlson
- Pritzker School of Medicine, University of Chicago,
Chicago, IL, USA
| | - Ellen Cohen
- Pediatrics, University of Chicago,
Chicago, IL, USA
| | - Emily Dillon
- Psychiatry and Behavioral Sciences, Rush University Medical
Center, Chicago, IL, USA
| | - Brian Furner
- Pediatrics, University of Chicago,
Chicago, IL, USA
| | - Zhong Huang
- Pritzker School of Medicine, University of Chicago,
Chicago, IL, USA
| | - Julie Johnson
- Clinical Research Informatics, University of Chicago,
Chicago, IL, USA
| | | | - Kevin Lazenby
- Pritzker School of Medicine, University of Chicago,
Chicago, IL, USA
| | | | | | | | - Jonathan Ozik
- Decision and Infrastructure Sciences Division, Argonne
National Laboratory, Lemont, IL,
USA
| | - Carlos Santos
- Internal Medicine, Rush University Medical
Center, Chicago, IL, USA
| | - Marc Sleiman
- Pritzker School of Medicine, University of Chicago,
Chicago, IL, USA
| | | | | | | |
Collapse
|
3
|
Kinney PL, Ge B, Sampath V, Nadeau K. Health-based strategies for overcoming barriers to climate change adaptation and mitigation. J Allergy Clin Immunol 2023; 152:1053-1059. [PMID: 37742936 DOI: 10.1016/j.jaci.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
Climate change poses an unequivocal threat to the respiratory health of current and future generations. Human activities-largely through the release of greenhouse gases-are driving rising global temperatures. Without a concerted effort to mitigate greenhouse gas emissions or adapt to the effects of a changing climate, each increment of warming increases the risk of climate hazards (eg, heat waves, floods, and droughts) that that can adversely affect allergy and immunologic diseases. For instance, wildfires, which release large quantities of particulate matter with a diameter of less than 2.5 μm (an air pollutant), occur with greater intensity, frequency, and duration in a hotter climate. This increases the risk of associated respiratory outcomes such as allergy and asthma. Fortunately, many mitigation and adaptation strategies can be applied to limit the impacts of global warming. Adaptation strategies, ranging from promotions of behavioral changes to infrastructural improvements, have been effectively deployed to increase resilience and alleviate adverse health effects. Mitigation strategies aimed at reducing greenhouse gas emissions can not only address the problem at the source but also provide numerous direct health cobenefits. Although it is possible to limit the impacts of climate change, urgent and sustained action must be taken now. The health and scientific community can play a key role in promoting and implementing climate action to ensure a more sustainable and healthy future.
Collapse
Affiliation(s)
- Patrick L Kinney
- Department of Environmental Health, Boston University School of Public Health, Boston, Mass.
| | - Beverly Ge
- Department of Environmental Health, Boston University School of Public Health, Boston, Mass
| | - Vanitha Sampath
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston
| | - Kari Nadeau
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston
| |
Collapse
|
4
|
Climate Change Related Catastrophic Rainfall Events and Non-Communicable Respiratory Disease: A Systematic Review of the Literature. CLIMATE 2022. [DOI: 10.3390/cli10070101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Climate change is increasing the frequency and intensity of extreme precipitation events, the impacts of which disproportionately impact urban populations. Pluvial flooding and flooding related sewer backups are thought to result in an increase in potentially hazardous human-pathogen encounters. However, the extent and nature of associations between flooding events and non-communicable respiratory diseases such as chronic bronchitis, asthma, and chronic obstructive pulmonary disease (COPD) are not well understood. This research seeks to characterize the state of research on flooding and NCRDs through a systematic review of the scientific literature. We conducted a systematic search of PubMed, Web of Science, and Scopus for published scholarly research papers using the terms flooding, monsoon, and tropical storm with terms for common NCRDs such as asthma, COPD, and chronic bronchitis. Papers were included if they covered research studies on individuals with defined outcomes of flooding events. We excluded review papers, case studies, and opinion pieces. We retrieved 200 articles from PubMed, 268 from Web of Science and 203 from Scopus which comprised 345 unique papers. An initial review of abstracts yielded 38 candidate papers. A full text review of each left 16 papers which were included for the review. All papers except for one found a significant association between a severe weather event and increased risk for at least one of the NCRDs included in this research. Our findings further suggest that extreme weather events may worsen pre-existing respiratory conditions and increase the risk of development of asthma. Future work should focus on more precisely defining measure of health outcomes using validated tools to describe asthma and COPD exacerbations. Research efforts should also work to collect granular data on patients’ health status and family history and assess possible confounding and mediating factors such as neighborhood water mitigation infrastructure, housing conditions, pollen counts, and other environmental variables.
Collapse
|
5
|
Sheehan MC. 2021 Climate and Health Review - Uncharted Territory: Extreme Weather Events and Morbidity. INTERNATIONAL JOURNAL OF HEALTH SERVICES 2022; 52:189-200. [PMID: 35229682 DOI: 10.1177/00207314221082452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Extreme weather events (EWEs) affected health in every world region during 2021, placing the planet in "uncharted territory." Portraying the human impacts of EWEs is part of a health frame that suggests public knowledge of these risks will spur support for needed policy change. The health frame has gained traction since the Paris COP21 (United Nations Climate Change Conference) and arguably helped to achieve modest progress at the Glasgow COP26. However, reporting rarely covers the full picture of health impacts from EWEs, instead focusing on cost of damages, mortality, and displacement. This review summarizes data for 30 major EWEs of 2021 and, based on the epidemiological literature, discusses morbidity-related exposures for four hazards that marked the year: wildfire smoke; extreme cold and power outages; extreme, precipitation-related flooding; and drought. A very large likely burden of morbidity was found, with particularly widespread exposure to risk of respiratory outcomes (including interactions with COVID-19) and mental illnesses. There is need for a well-disseminated global annual report on EWE morbidity, including affected population estimates and evolving science. In this way, the public health frame may be harnessed to bolster evidence for the broader and promising frame of "urgency and agency" for climate change action.
Collapse
Affiliation(s)
- Mary C Sheehan
- Department of Health Policy & Management, Johns Hopkins Bloomberg School of Public Health, USA.,Public Policy Center, Pompeu Fabra University, Barcelona, Spain
| |
Collapse
|