1
|
Hulsegge G, Coenen P, Gascon GM, Pahwa M, Greiner B, Bohane C, Wong IS, Liira J, Riera R, Pachito DV. Adapting shift work schedules for sleep quality, sleep duration, and sleepiness in shift workers. Cochrane Database Syst Rev 2023; 9:CD010639. [PMID: 37694838 PMCID: PMC10494487 DOI: 10.1002/14651858.cd010639.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
BACKGROUND Shift work is associated with insufficient sleep, which can compromise worker alertness with ultimate effects on occupational health and safety. Adapting shift work schedules may reduce adverse occupational outcomes. OBJECTIVES To assess the effects of shift schedule adaptation on sleep quality, sleep duration, and sleepiness among shift workers. SEARCH METHODS We searched CENTRAL, PubMed, Embase, and eight other databases on 13 December 2020, and again on 20 April 2022, applying no language restrictions. SELECTION CRITERIA We included randomised controlled trials (RCTs) and non-RCTs, including controlled before-after (CBA) trials, interrupted time series, and cross-over trials. Eligible trials evaluated any of the following shift schedule components. • Permanency of shifts • Regularity of shift changes • Direction of shift rotation • Speed of rotation • Shift duration • Timing of start of shifts • Distribution of shift schedule • Time off between shifts • Split shifts • Protected sleep • Worker participation We included studies that assessed sleep quality off-shift, sleep duration off-shift, or sleepiness during shifts. DATA COLLECTION AND ANALYSIS Two review authors independently screened the titles and abstracts of the records recovered by the search, read through the full-text articles of potentially eligible studies, and extracted data. We assessed the risk of bias of included studies using the Cochrane risk of bias tool, with specific additional domains for non-randomised and cluster-randomised studies. For all stages, we resolved any disagreements by consulting a third review author. We presented the results by study design and combined clinically homogeneous studies in meta-analyses using random-effects models. We assessed the certainty of the evidence with GRADE. MAIN RESULTS We included 11 studies with a total of 2125 participants. One study was conducted in a laboratory setting and was not considered for drawing conclusions on intervention effects. The included studies investigated different and often multiple changes to shift schedule, and were heterogeneous with respect to outcome measurement. Forward versus backward rotation Three CBA trials (561 participants) investigated the effects of forward rotation versus backward rotation. Only one CBA trial provided sufficient data for the quantitative analysis; it provided very low-certainty evidence that forward rotation compared with backward rotation did not affect sleep quality measured with the Basic Nordic Sleep Questionnaire (BNSQ; mean difference (MD) -0.20 points, 95% confidence interval (CI) -2.28 to 1.89; 62 participants) or sleep duration off-shift (MD -0.21 hours, 95% CI -3.29 to 2.88; 62 participants). However, there was also very low-certainty evidence that forward rotation reduced sleepiness during shifts measured with the BNSQ (MD -1.24 points, 95% CI -2.24 to -0.24; 62 participants). Faster versus slower rotation Two CBA trials and one non-randomised cross-over trial (341 participants) evaluated faster versus slower shift rotation. We were able to meta-analyse data from two studies. There was low-certainty evidence of no difference in sleep quality off-shift (standardised mean difference (SMD) -0.01, 95% CI -0.26 to 0.23) and very low-certainty evidence that faster shift rotation reduced sleep duration off-shift (SMD -0.26, 95% CI -0.51 to -0.01; 2 studies, 282 participants). The SMD for sleep duration translated to an MD of 0.38 hours' less sleep per day (95% CI -0.74 to -0.01). One study provided very low-certainty evidence that faster rotations decreased sleepiness during shifts measured with the BNSQ (MD -1.24 points, 95% CI -2.24 to -0.24; 62 participants). Limited shift duration (16 hours) versus unlimited shift duration Two RCTs (760 participants) evaluated 80-hour workweeks with maximum daily shift duration of 16 hours versus workweeks without any daily shift duration limits. There was low-certainty evidence that the 16-hour limit increased sleep duration off-shift (SMD 0.50, 95% CI 0.21 to 0.78; which translated to an MD of 0.73 hours' more sleep per day, 95% CI 0.30 to 1.13; 2 RCTs, 760 participants) and moderate-certainty evidence that the 16-hour limit reduced sleepiness during shifts, measured with the Karolinska Sleepiness Scale (SMD -0.29, 95% CI -0.44 to -0.14; which translated to an MD of 0.37 fewer points, 95% CI -0.55 to -0.17; 2 RCTs, 716 participants). Shorter versus longer shifts One RCT, one CBA trial, and one non-randomised cross-over trial (692 participants) evaluated shorter shift duration (eight to 10 hours) versus longer shift duration (two to three hours longer). There was very low-certainty evidence of no difference in sleep quality (SMD -0.23, 95% CI -0.61 to 0.15; which translated to an MD of 0.13 points lower on a scale of 1 to 5; 2 studies, 111 participants) or sleep duration off-shift (SMD 0.18, 95% CI -0.17 to 0.54; which translated to an MD of 0.26 hours' less sleep per day; 2 studies, 121 participants). The RCT and the non-randomised cross-over study found that shorter shifts reduced sleepiness during shifts, while the CBA study found no effect on sleepiness. More compressed versus more spread out shift schedules One RCT and one CBA trial (346 participants) evaluated more compressed versus more spread out shift schedules. The CBA trial provided very low-certainty evidence of no difference between the groups in sleep quality off-shift (MD 0.31 points, 95% CI -0.53 to 1.15) and sleep duration off-shift (MD 0.52 hours, 95% CI -0.52 to 1.56). AUTHORS' CONCLUSIONS Forward and faster rotation may reduce sleepiness during shifts, and may make no difference to sleep quality, but the evidence is very uncertain. Very low-certainty evidence indicated that sleep duration off-shift decreases with faster rotation. Low-certainty evidence indicated that on-duty workweeks with shift duration limited to 16 hours increases sleep duration, with moderate-certainty evidence for minimal reductions in sleepiness. Changes in shift duration and compression of workweeks had no effect on sleep or sleepiness, but the evidence was of very low-certainty. No evidence is available for other shift schedule changes. There is a need for more high-quality studies (preferably RCTs) for all shift schedule interventions to draw conclusions on the effects of shift schedule adaptations on sleep and sleepiness in shift workers.
Collapse
Affiliation(s)
- Gerben Hulsegge
- The Netherlands Organization for Applied Scientific Research, TNO, Leiden, Netherlands
| | - Pieter Coenen
- Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Gregg M Gascon
- OhioHealth, Columbus, Ohio, USA
- Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Manisha Pahwa
- Occupational Cancer Research Centre, Ontario Health, Toronto, Canada
- Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Canada
| | - Birgit Greiner
- School of Public Health, University College Cork, Cork, Ireland
| | | | - Imelda S Wong
- Division of Science Integration, National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | - Juha Liira
- Department of Occupational Health, University of Turku, Turku, Finland
| | - Rachel Riera
- Cochrane Brazil Rio de Janeiro, Cochrane, Petrópolis, Brazil
- Center of Health Technology Assessment, Hospital Sírio-Libanês, São Paulo, Brazil
- Núcleo de Ensino e Pesquisa em Saúde Baseada em Evidência, Avaliação Tecnológica e Ensino em Saúde (NEP-Sbeats), Universidade Federal de São Paulo, São Paulo, Brazil
| | - Daniela V Pachito
- Prossono Centro de Diagnóstico e Medicina do Sono, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
2
|
Steffey MA, Scharf VF, Risselada M, Buote NJ, Griffon D, Winter AL, Zamprogno H. A narrative review of occupational scheduling that impacts fatigue and recovery relevant to veterinarian well-being. THE CANADIAN VETERINARY JOURNAL = LA REVUE VETERINAIRE CANADIENNE 2023; 64:674-683. [PMID: 37397701 PMCID: PMC10286151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Background Sleep insufficiency is a worldwide affliction with serious implications for mental and physical health. Occupational factors play a large role in determining sleep habits. Healthcare workers are particularly susceptible to job-mediated sleep insufficiency and inadequate rest in general. Little is published on sleep practices among veterinarians, and overall recognition of the impacts of inadequate rest within the veterinary profession is poor. Objectives and procedures This review describes occupational factors affecting sufficiency of rest and recovery, reviews veterinary-specific and relevant adjacent literature pertaining to sleep patterns, and discusses potential solutions for addressing occupational schedules contributing to sleep insufficiency and inadequate rest. Online databases were searched to extract contemporary literature pertaining to sleep, insufficient rest, and occupational factors, with a focus on veterinary medicine and other healthcare sectors. Results Occupational factors leading to inadequate rest among healthcare workers include excessive workloads, extended workdays, cumulative days of heavy work hours, and after-hours on-call duty. These factors are prevalent within the veterinary profession and may contribute to widespread insufficient rest and the resulting negative impacts on health and well-being among veterinarians. Conclusion and clinical relevance Sufficient sleep quantity and quality are critical to physical and mental health and are negatively affected by many aspects of the veterinary profession. Critical review of current strategies employed in clinical practice is essential to promote professional fulfillment, health, and well-being among veterinarians.
Collapse
Affiliation(s)
- Michele A Steffey
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California - Davis, 1 Shields Avenue, Davis, California 95616, USA (Steffey); Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, 1060 William Moore Drive, Raleigh, North Carolina 27607, USA (Scharf ); Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, Indiana 47907, USA (Risselada); Department of Clinical Sciences, Cornell University College of Veterinary Medicine, 930 Campus Road, Ithaca, New York 14853, USA (Buote); College of Veterinary Medicine, Western University of Health Sciences, 309 East Second Street, Pomona, California 91766, USA (Griffon); Merck Manuals Department, Merck Sharp & Dohme Corp., Rahway, New Jersey 07065, USA (Winter); Surgery Department, Evidensia Oslo Dyresykehus, Ensjøveien 14, 0655, Oslo, Norway (Zamprogno)
| | - Valery F Scharf
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California - Davis, 1 Shields Avenue, Davis, California 95616, USA (Steffey); Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, 1060 William Moore Drive, Raleigh, North Carolina 27607, USA (Scharf ); Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, Indiana 47907, USA (Risselada); Department of Clinical Sciences, Cornell University College of Veterinary Medicine, 930 Campus Road, Ithaca, New York 14853, USA (Buote); College of Veterinary Medicine, Western University of Health Sciences, 309 East Second Street, Pomona, California 91766, USA (Griffon); Merck Manuals Department, Merck Sharp & Dohme Corp., Rahway, New Jersey 07065, USA (Winter); Surgery Department, Evidensia Oslo Dyresykehus, Ensjøveien 14, 0655, Oslo, Norway (Zamprogno)
| | - Marije Risselada
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California - Davis, 1 Shields Avenue, Davis, California 95616, USA (Steffey); Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, 1060 William Moore Drive, Raleigh, North Carolina 27607, USA (Scharf ); Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, Indiana 47907, USA (Risselada); Department of Clinical Sciences, Cornell University College of Veterinary Medicine, 930 Campus Road, Ithaca, New York 14853, USA (Buote); College of Veterinary Medicine, Western University of Health Sciences, 309 East Second Street, Pomona, California 91766, USA (Griffon); Merck Manuals Department, Merck Sharp & Dohme Corp., Rahway, New Jersey 07065, USA (Winter); Surgery Department, Evidensia Oslo Dyresykehus, Ensjøveien 14, 0655, Oslo, Norway (Zamprogno)
| | - Nicole J Buote
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California - Davis, 1 Shields Avenue, Davis, California 95616, USA (Steffey); Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, 1060 William Moore Drive, Raleigh, North Carolina 27607, USA (Scharf ); Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, Indiana 47907, USA (Risselada); Department of Clinical Sciences, Cornell University College of Veterinary Medicine, 930 Campus Road, Ithaca, New York 14853, USA (Buote); College of Veterinary Medicine, Western University of Health Sciences, 309 East Second Street, Pomona, California 91766, USA (Griffon); Merck Manuals Department, Merck Sharp & Dohme Corp., Rahway, New Jersey 07065, USA (Winter); Surgery Department, Evidensia Oslo Dyresykehus, Ensjøveien 14, 0655, Oslo, Norway (Zamprogno)
| | - Dominique Griffon
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California - Davis, 1 Shields Avenue, Davis, California 95616, USA (Steffey); Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, 1060 William Moore Drive, Raleigh, North Carolina 27607, USA (Scharf ); Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, Indiana 47907, USA (Risselada); Department of Clinical Sciences, Cornell University College of Veterinary Medicine, 930 Campus Road, Ithaca, New York 14853, USA (Buote); College of Veterinary Medicine, Western University of Health Sciences, 309 East Second Street, Pomona, California 91766, USA (Griffon); Merck Manuals Department, Merck Sharp & Dohme Corp., Rahway, New Jersey 07065, USA (Winter); Surgery Department, Evidensia Oslo Dyresykehus, Ensjøveien 14, 0655, Oslo, Norway (Zamprogno)
| | - Alexandra L Winter
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California - Davis, 1 Shields Avenue, Davis, California 95616, USA (Steffey); Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, 1060 William Moore Drive, Raleigh, North Carolina 27607, USA (Scharf ); Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, Indiana 47907, USA (Risselada); Department of Clinical Sciences, Cornell University College of Veterinary Medicine, 930 Campus Road, Ithaca, New York 14853, USA (Buote); College of Veterinary Medicine, Western University of Health Sciences, 309 East Second Street, Pomona, California 91766, USA (Griffon); Merck Manuals Department, Merck Sharp & Dohme Corp., Rahway, New Jersey 07065, USA (Winter); Surgery Department, Evidensia Oslo Dyresykehus, Ensjøveien 14, 0655, Oslo, Norway (Zamprogno)
| | - Helia Zamprogno
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California - Davis, 1 Shields Avenue, Davis, California 95616, USA (Steffey); Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, 1060 William Moore Drive, Raleigh, North Carolina 27607, USA (Scharf ); Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, Indiana 47907, USA (Risselada); Department of Clinical Sciences, Cornell University College of Veterinary Medicine, 930 Campus Road, Ithaca, New York 14853, USA (Buote); College of Veterinary Medicine, Western University of Health Sciences, 309 East Second Street, Pomona, California 91766, USA (Griffon); Merck Manuals Department, Merck Sharp & Dohme Corp., Rahway, New Jersey 07065, USA (Winter); Surgery Department, Evidensia Oslo Dyresykehus, Ensjøveien 14, 0655, Oslo, Norway (Zamprogno)
| |
Collapse
|