1
|
Xie H, Shi Y, Wang L, Yan H, Ci M, Wang Z, Chen Y. Source and risk assessment of heavy metals in mining-affected areas in Jiangxi Province, China, based on Monte Carlo simulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21765-21780. [PMID: 38393575 DOI: 10.1007/s11356-024-32554-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
In recent years, heavy metal contamination of soils has become a major concern in China due to the potential risks involved. To assess environmental pollution and human health risks in a typical heavy metal polluted site in Jiangxi Province, a thorough evaluation of the distribution, pollution levels, and sources of heavy metals in soils of the Yangmeijiang River watershed was conducted in this study. Positive matrix factorization and Monte Carlo simulation were used to evaluate the ecological and human health risks of heavy metals. The research findings indicate that heavy metal pollution was the most severe at the depth of 20-40 cm in soils, with local heavy metal pollution resulting from mining and sewage irrigation. The high-risk area accounted for 91.11% of the total area. However, the pollution level decreased with time due to sampling effects, rainfall, and control measures. Leaf-vegetables and rice were primarily polluted by Cd and Pb. The main four sources of heavy metals in soils were traffic emission, metal smelting, agricultural activities and natural sources, mining extraction, and electroplating industries. Heavy metals with the highest ecological risk and health risk are Cd and As, respectively. The non-carcinogenic and carcinogenic risks of children were 7.0 and 1.7 times higher than those of adults, respectively. Therefore, children are more likely to be influenced by heavy metals compared to adults. The results obtained by the risk assessments may contribute to the identification of specific sources of heavy metals (e.g., traffic emissions, metal smelting, mining excavation, and electroplating industries). Additionally, the environmental impacts and biotoxicity associated with various heavy metals (e.g., Cd and As) can also be reflected. These outcomes may serve as a scientific basis for the pollution monitoring and remediation in the mining-affected areas.
Collapse
Affiliation(s)
- Haijian Xie
- College of Civil Engineering and Architecture, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310027, China
- Center for Balance Architecture, Zhejiang University, 148 Tianmushan Road, Hanghzou, 310007, China
| | - Yanghui Shi
- College of Civil Engineering and Architecture, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310027, China
- The Architectural Design and Research Institute of Zhejiang University Co., Ltd., 148 Tianmushan Road, Hangzhou, 310028, China
| | - Liang Wang
- The Architectural Design and Research Institute of Zhejiang University Co., Ltd., 148 Tianmushan Road, Hangzhou, 310028, China
| | - Huaxiang Yan
- Zijin School of Geology and Mining, Fuzhou University, Fuzhou, Fujian, 350108, China.
| | - Manting Ci
- College of Civil Engineering and Architecture, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310027, China
- The Architectural Design and Research Institute of Zhejiang University Co., Ltd., 148 Tianmushan Road, Hangzhou, 310028, China
| | - Ziheng Wang
- Zijin School of Geology and Mining, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yun Chen
- Center for Balance Architecture, Zhejiang University, 148 Tianmushan Road, Hanghzou, 310007, China
| |
Collapse
|
2
|
Xu L, He P, Duan Y, Yu Z, Yang F. Synergy of different leaf traits determines the particulate matter retention capacity and its susceptibility to rain wash-off. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167365. [PMID: 37769719 DOI: 10.1016/j.scitotenv.2023.167365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/23/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
Rainfall plays a crucial role in the removal of particulate matter (PM) from plant leaves, influencing PM retention and the environmental behaviour of harmful substances that accumulate in PM. This study examined the PM retention capacity, particle size distributions, and wash-off rates of leaf surface PM from three common green tree species in northern China during two natural rainfall events (light rain: 8.3 mm; heavy rain: 54.2 mm), to investigate the relationship between the leaf traits, PM retention capacity, and PM wash-off process. Our results found that leaf morphometric characteristics, such as leaf size, length, width, and aspect ratio (length-to-width), had a negative and significant correlations with the PM retention capacity, but had no significant correlation with the leaf surface PM wash-off rate. Smaller leaves with low aspect ratios exhibited greater stability under external disturbances than large leaves with high aspect ratios, resulting in a higher PM retention capacity and lower wash-off rate. Ridges and grooves enhanced the PM retention capacity by increasing the leaf roughness. Rainfall could wash off all particle size ranges of leaf surface PM without altering their mechanical composition. Larger particles were more easily washed off. Euonymus japonicus, with its small leaf size and low aspect ratio, exhibited the highest PM retention capacity. Its curled leaf shape also hindered light rain from washing off leaf surface PM. Forsythia suspensa, with denser grooves and ridges compared with Prunus serrulata, exhibited a rougher leaf surface and higher PM retention capacity. However, this roughness may reduce wettability, making it easier for runoff to form on the leaf surface and dislodge leaf surface PM, resulting in F. suspensa having the highest wash-off rate. Our results highlight the synergy of different leaf traits on PM retention capacity and the PM stability after rainfall.
Collapse
Affiliation(s)
- Lishuai Xu
- College of Resources and Environment, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| | - Peng He
- College of Resources and Environment, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Yonghong Duan
- College of Resources and Environment, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Zhitong Yu
- Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, China
| | - Fan Yang
- Taklimakan National Station of Observation and Research for Desert Meteorology in Xinjiang/Key Laboratory of Desert Meteorology and Sandstorm, Xinjiang Uygru Autonomous Region, Urumqi 830002, China
| |
Collapse
|
3
|
Goswami M, Kumar V, Singh N, Kumar P. A biochemical and morphological study with multiple linear regression modeling-based impact prediction of ambient air pollutants on some native tree species of Haldwani City of Kumaun Himalaya, Uttarakhand, India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27563-4. [PMID: 37208511 DOI: 10.1007/s11356-023-27563-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/07/2023] [Indexed: 05/21/2023]
Abstract
The current study was conducted around the province of Haldwani City, Uttarakhand, India, to understand the seasonal variation of ambient air pollutants (PM2.5, PM10, SO2, and NO2) and their impact on four tree species, i.e., neem (Azadirachta indica), mountain cedar (Toona ciliate), bottlebrush (Callistemon citrinus), and guava (Psidium guajava) during 2020-2021. Multiple linear regression (MLR)-based prediction analysis showed that the selected air quality variables (PM2.5, PM10, SO2, and NO2) had a significant impact on the biochemical responses of selected tree spp. including, pH, ascorbic acid (AA), total chlorophyll content (T. Chl.), relative water content (RWC), and dust deposition potential. In this, the coefficient of variance (R2) of the developed models was in the range of 0.70-0.98. The ambient air pollutants showed significant seasonal variations as depicted by using the air pollution tolerance index (APTI) and anticipated performance index (API). The tree species from polluted sites observed more pollution tolerance than the tree species from the control site. Regression analysis showed a significant positive association between the biochemical characteristics and APTI, with the highest influence by AA (R2 = 0.961) followed by T. Chl., RWC, and pH. The APTI and API score was observed as maximum for A. indica and minimum for C. citrinus. The impact of air pollutants on the morphology of foliar surface was investigated by the scanning electron microscopy (SEM) and recorded various dust deposition patterns, stomatal blockages, and damage of guard cells in the trees growing along the polluted site (S2). The present study can assist environmental managers to examine the pollution-induced variables and develop an effective green belt for combating air pollution in polluted areas.
Collapse
Affiliation(s)
- Meera Goswami
- Department of Zoology and Environmental Science, Agro-Ecology and Pollution Research Laboratory, Gurukul Kangri (Deemed to Be University), Haridwar, 249404, Uttarakhand, India
| | - Vinod Kumar
- Department of Zoology and Environmental Science, Agro-Ecology and Pollution Research Laboratory, Gurukul Kangri (Deemed to Be University), Haridwar, 249404, Uttarakhand, India.
| | - Narendra Singh
- Aryabhatta Research Institute of Observational Sciences, Nainital, 263001, Uttarakhand, India
| | - Pankaj Kumar
- Department of Zoology and Environmental Science, Agro-Ecology and Pollution Research Laboratory, Gurukul Kangri (Deemed to Be University), Haridwar, 249404, Uttarakhand, India
| |
Collapse
|