1
|
Joshi E, Schwarzbach MR, Briggs B, Coats ER, Coleman MD. Nutrient leaching potential along a time series of forest water reclamation facilities in northern Idaho. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121729. [PMID: 38976949 DOI: 10.1016/j.jenvman.2024.121729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/21/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
Forest water reclamation is a decades-old practice of repurposing municipal reclaimed water using land application on forests to filter nutrients and increase wood production. However, long-term application may lead to nutrient saturation, leaching, and potential impairment of ground and surface water quality. We studied long-term effects of reclaimed water application on nutrient leaching potential in a four-decade time series of forest water reclamation facilities in northern Idaho. Our approach compared reclaimed water treated plots with untreated control plots at each of the forest water reclamation facilities. We measured soil nitrifier abundance and net nitrification rates and used tension lysimeters to sample soil matrix water and drain gauges to sample from a combination of matrix and preferential flow paths. We determined nutrient leaching as the product of soil water nutrient concentrations and model-estimated drainage flux. There was more than 450-fold increase in nitrifier abundance and a 1000-fold increase in net nitrification rates in treated plots compared with control plots at long-established facilities, indicating greater nitrate production with increased cumulative inputs. There were no differences in soil water ammonium, phosphate, and dissolved organic nitrogen concentrations between control and effluent treatments in tension lysimeter samples. However, concurrent with increased nitrifier abundance and net nitrification, nitrate concentration below the rooting zone was 2 to 4-fold higher and nitrate leaching was 4 to 10-fold higher in effluent treated plots, particularly at facilities that have been in operation for over two decades. Thus, net nitrification and nitrifier abundance assays are likely indicators of nitrate leaching potential. Inorganic nutrient concentrations in drain gauge samples were 2 to 11-fold higher than lysimeter samples, suggesting nutrient losses occurred predominantly through preferential flow paths. Nitrate was vulnerable to leaching during the wet season under saturated flow conditions. Although nitrogen saturation is a concern that should be mitigated at long-established facilities, these forest water reclamation facilities were able to maintain average soil water nitrate concentrations to less than 2 mg L-1, so that nitrogen and phosphorous are effectively filtered to below safe water standards.
Collapse
Affiliation(s)
- Eureka Joshi
- Environmental Science Program, College of Natural Resources, University of Idaho, Moscow, ID, 83844, USA
| | | | - Bailey Briggs
- Environmental Science Program, College of Natural Resources, University of Idaho, Moscow, ID, 83844, USA
| | - Erik R Coats
- Department of Civil and Environmental Engineering, University of Idaho, Moscow, ID, 83844, USA
| | - Mark D Coleman
- Department of Forest, Rangeland, and Fire Sciences, College of Natural Resources, University of Idaho, Moscow, ID, 83844, USA.
| |
Collapse
|
2
|
Aguilar-Rangel EJ, Savin-Gámez A, García-Maldonado JQ, Prado B, Vásquez-Murrieta MS, Siebe C, Alcántara-Hernández RJ. Increases in the soil ammonia oxidizing phylotypes and their rechange due to long-term irrigation with wastewater. PLoS One 2024; 19:e0299518. [PMID: 38603769 PMCID: PMC11008854 DOI: 10.1371/journal.pone.0299518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/13/2024] [Indexed: 04/13/2024] Open
Abstract
Wastewater irrigation is a common practice for agricultural systems in arid and semiarid zones, which can help to overcome water scarcity and contribute with nutrient inputs. Ammonia-oxidizing bacteria (AOB) and archaea (AOA) are key in the transformation of NH4+-N in soil and can be affected by variations in soil pH, EC, N and C content, or accumulation of pollutants, derived from wastewater irrigation. The objective of this study was to determine the changes in the ammonia oxidizing communities in agricultural soils irrigated with wastewater for different periods of time (25, 50, and 100 years), and in rainfed soils (never irrigated). The amoA gene encoding for the catalytic subunit of the ammonia monooxygenase was used as molecular reporter; it was quantified by qPCR and sequenced by high throughput sequencing, and changes in the community composition were associated with the soil physicochemical characteristics. Soils irrigated with wastewater showed up to five times more the abundance of ammonia oxidizers (based on 16S rRNA gene relative abundance and amoA gene copies) than those under rainfed agriculture. While the amoA-AOA: amoA-AOB ratio decreased from 9.8 in rainfed soils to 1.6 in soils irrigated for 100 years, indicating a favoring environment for AOB rather than AOA. Further, the community structure of both AOA and AOB changed during wastewater irrigation compared to rainfed soils, mainly due to the abundance variation of certain phylotypes. Finally, the significant correlation between soil pH and the ammonia oxidizing community structure was confirmed, mainly for AOB; being the main environmental driver of the ammonia oxidizer community. Also, a calculated toxicity index based on metals concentrations showed a correlation with AOB communities, while the content of carbon and nitrogen was more associated with AOA communities. The results indicate that wastewater irrigation influence ammonia oxidizers communities, manly by the changes in the physicochemical environment.
Collapse
Affiliation(s)
- Eduardo J. Aguilar-Rangel
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Unidad de Posgrado, Edificio D, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, 04510, Ciudad de México, México
| | - Alba Savin-Gámez
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Unidad de Posgrado, Edificio D, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, 04510, Ciudad de México, México
| | - José Q. García-Maldonado
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Merida 97310, Yucatán, México
| | - Blanca Prado
- Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Del. Coyoacán, 04510, Ciudad de México, México
| | - María Soledad Vásquez-Murrieta
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Del. Miguel Hidalgo, 11340, Ciudad de México, México
| | - Christina Siebe
- Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Del. Coyoacán, 04510, Ciudad de México, México
| | - Rocío J. Alcántara-Hernández
- Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Del. Coyoacán, 04510, Ciudad de México, México
| |
Collapse
|
3
|
Niu R, Zhuang Y, Lali MN, Zhao L, Xie J, Xiong H, Wang Y, He X, Shi X, Zhang Y. Root Reduction Caused Directly or Indirectly by High Application of Nitrogen Fertilizer Was the Main Cause of the Decline in Biomass and Nitrogen Accumulation in Citrus Seedlings. PLANTS (BASEL, SWITZERLAND) 2024; 13:938. [PMID: 38611468 PMCID: PMC11013181 DOI: 10.3390/plants13070938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/07/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024]
Abstract
Citrus is the largest fruit crop around the world, while high nitrogen (N) application in citrus orchards is widespread in many countries, which results not only in yield, quality and environmental issues but also slows down the establishment of citrus canopies in newly cultivated orchards. Thus, the objective of this study was to investigate the physiological inhibitory mechanism of excessive N application on the growth of citrus seedlings. A pot experiment with the citrus variety Orah (Orah/Citrus junos) at four N fertilization rates (0, 50, 100, and 400 mg N/kg dry soil, denoted as N0, N50, N100, and N400, respectively) was performed to evaluate the changes of root morphology, biomass, N accumulation, enzyme activities, and so on. The results showed that the N400 application significantly reduced the total biomass (from 14.24 to 6.95 g/Plant), N accumulation (from 0.65 to 0.33 g/Plant) and N use efficiency (92.69%) in citrus seedlings when compared to the N100 treatment. The partial least squares pathway model further showed that the decline of biomass and N accumulation by high N application were largely attributed to the reduction of root growth through direct and indirect effects (the goodness of fit under the model was 0.733.) rather than just soil N transformation and activity of root N uptake. These results are useful to optimize N management through a synergistic N absorption and utilization by citrus seedlings.
Collapse
Affiliation(s)
- Runzheng Niu
- College of Resources and Environment, Southwest University, Chongqing 400716, China; (R.N.); (Y.Z.); (M.N.L.); (L.Z.); (J.X.); (H.X.); (Y.W.); (X.H.); (X.S.)
| | - Yuan Zhuang
- College of Resources and Environment, Southwest University, Chongqing 400716, China; (R.N.); (Y.Z.); (M.N.L.); (L.Z.); (J.X.); (H.X.); (Y.W.); (X.H.); (X.S.)
| | - Mohammad Naeem Lali
- College of Resources and Environment, Southwest University, Chongqing 400716, China; (R.N.); (Y.Z.); (M.N.L.); (L.Z.); (J.X.); (H.X.); (Y.W.); (X.H.); (X.S.)
- Department of Forestry and Natural Resources, Faculty of Agriculture, Bamyan University, Bamyan 1601, Afghanistan
| | - Li Zhao
- College of Resources and Environment, Southwest University, Chongqing 400716, China; (R.N.); (Y.Z.); (M.N.L.); (L.Z.); (J.X.); (H.X.); (Y.W.); (X.H.); (X.S.)
| | - Jiawei Xie
- College of Resources and Environment, Southwest University, Chongqing 400716, China; (R.N.); (Y.Z.); (M.N.L.); (L.Z.); (J.X.); (H.X.); (Y.W.); (X.H.); (X.S.)
| | - Huaye Xiong
- College of Resources and Environment, Southwest University, Chongqing 400716, China; (R.N.); (Y.Z.); (M.N.L.); (L.Z.); (J.X.); (H.X.); (Y.W.); (X.H.); (X.S.)
| | - Yuheng Wang
- College of Resources and Environment, Southwest University, Chongqing 400716, China; (R.N.); (Y.Z.); (M.N.L.); (L.Z.); (J.X.); (H.X.); (Y.W.); (X.H.); (X.S.)
| | - Xinhua He
- College of Resources and Environment, Southwest University, Chongqing 400716, China; (R.N.); (Y.Z.); (M.N.L.); (L.Z.); (J.X.); (H.X.); (Y.W.); (X.H.); (X.S.)
| | - Xiaojun Shi
- College of Resources and Environment, Southwest University, Chongqing 400716, China; (R.N.); (Y.Z.); (M.N.L.); (L.Z.); (J.X.); (H.X.); (Y.W.); (X.H.); (X.S.)
| | - Yueqiang Zhang
- College of Resources and Environment, Southwest University, Chongqing 400716, China; (R.N.); (Y.Z.); (M.N.L.); (L.Z.); (J.X.); (H.X.); (Y.W.); (X.H.); (X.S.)
| |
Collapse
|
4
|
Gu Y, Chen X, Shen Y, Chen X, He G, He X, Wang G, He H, Lv Z. The response of nutrient cycle, microbial community abundance and metabolic function to nitrogen fertilizer in rhizosphere soil of Phellodendron chinense Schneid seedlings. Front Microbiol 2023; 14:1302775. [PMID: 38173676 PMCID: PMC10762311 DOI: 10.3389/fmicb.2023.1302775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
Nitrogen (N) as an essential macronutrient affects the soil nutrient cycle, microbial community abundance, and metabolic function. However, the specific responses of microorganisms and metabolic functions in rhizosphere soil of Phellodendron chinense Schneid seedlings to N addition remain unclear. In this study, four treatments (CK, N5, N10 and N15) were conducted, and the soil physicochemical properties, enzyme activities, microbial community abundances and diversities, metabolism, and gene expressions were investigated in rhizosphere soil of P. chinense Schneid. The results showed that N addition significantly decreased rhizosphere soil pH, among which the effect of N10 treatment was better. N10 treatment significantly increased the contents of available phosphorus (AP), available potassium (AK), ammonium nitrogen (NH4+-N), nitrate nitrogen (NO3--N) and sucrase (SU) activity, as well as fungal diversity and the relative expression abundances of amoA and phoD genes in rhizosphere soil, but observably decreased the total phosphorus (TP) content, urease (UR) activity and bacterial diversity, among which the pH, soil organic matter (SOM), AP, NH4+-N and NO3--N were the main environmental factors for affecting rhizosphere soil microbial community structure based on RDA and correlation analyses. Meanwhile, N10 treatment notably enhanced the absolute abundances of the uracil, guanine, indole, prostaglandin F2α and γ-glutamylalanine, while reduced the contents of D-phenylalanine and phenylacetylglycine in rhizosphere soil of P. chinense Schneid seedlings. Furthermore, the soil available nutrients represented a significant correlation with soil metabolites and dominant microorganisms, suggesting that N10 addition effectively regulated microbial community abundance and metabolic functions by enhancing nutrient cycle in the rhizosphere soil of P. chinense Schneid seedlings.
Collapse
Affiliation(s)
- Yuanzheng Gu
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Central South University of Forestry and Technology, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, Hunan, China
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Xianglin Chen
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Central South University of Forestry and Technology, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, Hunan, China
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Yan Shen
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Central South University of Forestry and Technology, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, Hunan, China
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Xiaoyong Chen
- College of Arts and Sciences, Governors State University, University Park, IL, United States
| | - Gongxiu He
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Central South University of Forestry and Technology, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, Hunan, China
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Xinxing He
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Central South University of Forestry and Technology, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, Hunan, China
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Guangjun Wang
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Central South University of Forestry and Technology, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, Hunan, China
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Hanjie He
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Central South University of Forestry and Technology, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, Hunan, China
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Zhencheng Lv
- School of Life Sciences, Huizhou University, Huizhou, Guangdong, China
| |
Collapse
|