1
|
Theodoropoulou E, Pierozan P, Marabita F, Höglund A, Karlsson O. Persistent effects of di-n-butyl phthalate on liver transcriptome: impaired energy and lipid metabolic pathways. CHEMOSPHERE 2024:143605. [PMID: 39442571 DOI: 10.1016/j.chemosphere.2024.143605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024]
Abstract
The environmental contaminant dibutyl phthalate (DBP) is reported to be hepatotoxic, but the underlying molecular pathways and pathological processes remain unclear. Here we used RNA-sequencing to characterize persistent hepatic transcriptional effects one week after the conclusion of five weeks oral exposure to 10 mg/kg/day or 100 mg/kg/day DBP in male mice. The exploratory transcriptome analysis demonstrated five differentially expressed genes (DEGs) in the 10 mg/kg/day group and thirteen in the 100 mg/kg/day group. Gene Set Enrichment Analysis (GSEA), which identifies affected biological pathways rather than focusing solely on individual genes, revealed nine significantly enriched Reactome pathways shared by both DBP treatment groups. Additionally, we found 54 upregulated and one downregulated Reactome pathways in the 10 mg/kg/day DBP group, and 29 upregulated and 13 downregulated pathways in the 100 mg/kg/day DBP group. According to the DEGs and the GSEA findings DBP exposure disrupts several key biological processes, including protein translation, protein folding, apoptosis, hedgehog signaling, degradation of extracellular matrix and alterations in the energy/lipid metabolism. Subsequent liver tissue analysis corroborated these findings, showing that DBP exposure induced tissue disorganization, oxidative stress, lipid accumulation, increased TNF-α, ATP and glucokinase levels. In addition, several proteins central for the metabolic system were affected, mostly in a dose-response pattern. Taken together the results show that DBP can cause hepatic stress and damage and suggest a potential role for DBP in the development of non-alcoholic fat liver disease, the most prevalent liver disease worldwide.
Collapse
Affiliation(s)
- Eleftheria Theodoropoulou
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm, 114 18, Sweden
| | - Paula Pierozan
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm, 114 18, Sweden
| | - Francesco Marabita
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm 17165, Sweden
| | - Andrey Höglund
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm, 114 18, Sweden
| | - Oskar Karlsson
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm, 114 18, Sweden.
| |
Collapse
|
2
|
Zou J, Gu Q, Gu D. Association between phthalates exposure and non-alcoholic fatty liver disease under different diagnostic criteria: a cross-sectional study based on NHANES 2017 to 2018. Front Public Health 2024; 12:1407976. [PMID: 39386944 PMCID: PMC11462993 DOI: 10.3389/fpubh.2024.1407976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Purpose Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease. Phthalates have been suggested to influence the development of NAFLD due to their endocrine-disrupting properties, but studies based on nationally representative populations are insufficient, and existing studies seem to have reached conflicting conclusions. Due to changes in legislation, the use of traditional phthalates has gradually decreased, and the phthalates substitutes is getting more attention. This study aims to delve deeper into how the choice of diagnostic approach influences observed correlations and concern about more alternatives of phthalates, thereby offering more precise references for the prevention and treatment of NAFLD. Methods A cohort of 641 participants, sourced from the National Health and Nutrition Examination Survey (NHANES) 2017-2018 database, was evaluated for NAFLD using three diagnostic methods: the Hepatic Steatosis Index (HSI), the US Fatty Liver Indicator (US.FLI), and Vibration Controlled Transient Elastography (VCTE). The urinary metabolite concentrations of Di-2-ethylhexyl phthalate (DEHP), Di-isodecyl phthalate (DIDP), Di-isononyl phthalate (DINP), Di-n-butyl phthalate (DnBP), Di-isobutyl phthalate (DIBP), Di-ethyl phthalate (DEP) and Di-n-octyl phthalate (DnOP) were detected. The association between NAFLD and urinary phthalate metabolites was evaluated through univariate and multivariate logistic regression analyses, considering different concentration gradients of urinary phthalates. Results Univariate logistic regression analysis found significant correlations between NAFLD and specific urinary phthalate metabolites, such as Mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP), Mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), Mono-2-ethyl-5-carboxypentyl phthalate (MECPP), and Mono-(carboxyisoctyl) phthalate (MCiOP), across different diagnostic criteria. In a multivariate logistic regression analysis adjusting only for demographic data, MEOHP (OR = 3.26, 95% CI = 1.19-8.94, p = 0.029), MEHHP (OR = 3.98, 95% CI = 1.43-11.1, p = 0.016), MECPP (OR = 3.52, 95% CI = 1.01-12.2, p = 0.049), and MCiOP (OR = 4.55, 95% CI = 1.93-10.7, p = 0.005) were positively related to NAFLD defined by HSI and VCTE. The correlation strength varied with the concentration of phthalates, indicating a potential dose-response relationship. Adjusting for all covariates in multivariate logistic regression, only MCiOP (OR = 4.22, 95% CI = 1.10-16.2, p = 0.044), as an oxidative metabolite of DINP, remained significantly associated with NAFLD under the VCTE criterion, suggesting its potential role as a risk factor for NAFLD. Conclusion This research highlights a significant association between DINP and NAFLD. These findings underscore the need for further investigation into the role of the phthalates substitutes in the pathogenesis of NAFLD and the importance of considering different diagnostic criteria in research.
Collapse
Affiliation(s)
- Jiazhen Zou
- Department of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen Key Laboratory of Medical Laboratory and Molecular Diagnostics, Shenzhen, China
| | - Qingdan Gu
- Shenzhen Yantian District People’s Hospital (Group), Southern University of Science and Technology Yantian Hospital, Shenzhen, China
| | - Dayong Gu
- Department of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen Key Laboratory of Medical Laboratory and Molecular Diagnostics, Shenzhen, China
| |
Collapse
|
3
|
Pan K, Xu J, Xu Y, Wang C, Yu J. The association between endocrine disrupting chemicals and nonalcoholic fatty liver disease: A systematic review and meta-analysis. Pharmacol Res 2024; 205:107251. [PMID: 38862070 DOI: 10.1016/j.phrs.2024.107251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the leading causes of chronic liver disease worldwide. Epidemiological studies have reported that exposure of the population to environmental endocrine-disrupting chemicals (EDCs) is associated with NAFLD. However, EDCs are of different types, and there are inconsistencies in the relevant evidence and descriptions, which have not been systematically summarized so far. Therefore, this study aimed to determine the association between population exposure to EDCs and NAFLD. Three databases, including PubMed, Web of science, and Embase were searched, and 27 articles were included in this study. Methodological quality, heterogeneity, and publication bias of the included studies were assessed using the Newcastle-Ottawa scale, I2 statistics, Begg's test, and Egger's test. The estimated effect sizes of the included studies were pooled and evaluated using the random-effects model (I2 > 50 %) and the fixed-effects model ( I2 < 50 %). The pooled-estimate effect sizes showed that population exposure to Phthalates (PAEs) (OR = 1.18, 95 % CI:1.03-1.34), cadmium (Cd) (OR = 1.37, 95 % CI:1.09-1.72), and bisphenol A (OR = 1.43, 95 % CI:1.24-1.65) were positively correlated with the risk of NAFLD. Exposure to mercury (OR =1.46, 95 % CI:1.17-1.84) and Cd increased the risk of "elevated alanine aminotransferase". On the contrary, no significant association was identified between perfluoroalkyl substances (OR =0.99, 95 % CI:0.93-1.06) and NAFLD. However, female exposure to perfluorooctanoic acid (OR =1.82, 95 % CI:1.01-3.26) led to a higher risk of NAFLD than male exposure. In conclusion, this study revealed that EDCs were risk factors for NAFLD. Nonetheless, the sensitivity analysis results of some of the meta-analyses were not stable and demonstrated high heterogeneity. The evidence for these associations is limited, and more large-scale population-based studies are required to confirm these findings.
Collapse
Affiliation(s)
- Kai Pan
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - Jie Xu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - Yuzhu Xu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - Chengxing Wang
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - Jie Yu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China.
| |
Collapse
|
4
|
Sangwan S, Bhattacharyya R, Banerjee D. Plastic compounds and liver diseases: Whether bisphenol A is the only culprit. Liver Int 2024; 44:1093-1105. [PMID: 38407523 DOI: 10.1111/liv.15879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/27/2024]
Abstract
Plastics, while providing modern conveniences, have become an inescapable source of global concern due to their role in environmental pollution. Particularly, the focus on bisphenol A (BPA) reveals its biohazardous nature and association with liver issues, specifically steatosis. However, research indicates that BPA is just one facet of the problem, as other bisphenol analogues, microplastics, nanoplastics and additional plastic derivatives also pose potential risks. Notably, BPA is implicated in every stage of non-alcoholic fatty liver disease (NAFLD) onset and progression, surpassing hepatitis B virus as a primary cause of chronic liver disease worldwide. As plastic contamination tops the environmental contaminants list, urgent action is needed to assess causative factors and mitigate their impact. This review delves into the molecular disruptions linking plastic pollutant exposure to liver diseases, emphasizing the broader connection between plastics and the rising prevalence of NAFLD.
Collapse
Affiliation(s)
- Sonal Sangwan
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Rajasri Bhattacharyya
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Dibyajyoti Banerjee
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
5
|
Janota B, Szczepańska E, Adamek B, Janczewska E. Hypothyroidism and non-alcoholic fatty liver disease: A coincidence or a causal relationship? World J Hepatol 2023; 15:641-648. [PMID: 37305371 PMCID: PMC10251274 DOI: 10.4254/wjh.v15.i5.641] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/17/2023] [Accepted: 04/06/2023] [Indexed: 05/24/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a global problem. It may be caused by metabolic and hormonal disorders, including hypothyroidism. However, non-thyroid causes of NAFLD in people with hypothyroidism, including improper eating behavior and low physical activity, should be acknowledged. This study aimed to present the current literature on whether the development of NAFLD is related to hypothyroidism or a typical consequence of an unhealthy lifestyle in people with hypothyroidism. The results of previous studies do not allow for an unequivocal determination of the pathogenetic relationship between hypothyroidism and NAFLD. Important non-thyroid-initiating factors include providing too many calories in relation to requirements, consuming excessive amounts of monosaccharides and saturated fats, being overweight, and maintaining low physical activity levels. The recommended nutritional model for both hypothyroidism and NAFLD may be the Mediterranean diet, which is rich in fruits and vegetables, polyunsaturated fatty acids, and vitamin E.
Collapse
Affiliation(s)
- Barbara Janota
- Department of Basic Medical Sciences, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, Bytom 41-902, Poland
| | - Elżbieta Szczepańska
- Department of Human Nutrition, Department of Dietetics, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, Zabrze 41-808, Poland
| | - Brygida Adamek
- Department of Basic Medical Sciences, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, Bytom 41-902, Poland
| | - Ewa Janczewska
- Department of Basic Medical Sciences, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, Bytom 41-902, Poland
| |
Collapse
|
6
|
Chen Y, Wang Y, Cui Z, Liu W, Liu B, Zeng Q, Zhao X, Dou J, Cao J. Endocrine disrupting chemicals: A promoter of non-alcoholic fatty liver disease. Front Public Health 2023; 11:1154837. [PMID: 37033031 PMCID: PMC10075363 DOI: 10.3389/fpubh.2023.1154837] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent liver disorder. With the improvement in human living standards, the prevalence of NAFLD has been increasing in recent years. Endocrine-disrupting chemicals (EDCs) are a class of exogenous chemicals that simulate the effects of hormones in the body. There has been growing evidence regarding the potential effects of EDCs on liver health, especially in NAFLD. This paper aims to summarize the major EDCs that contribute to the growing burden of NAFLD and to raise public awareness regarding the hazards posed by EDCs with the objective of reducing the incidence of NAFLD.
Collapse
|
7
|
Chen X, Tian F, Wu J, Liu L, Li Y, Yu G, Duan H, Jiang Y, Liu S, He Y, Luo Y, Song C, Li H, Liang Y, Wan H, Shen J. Associations of phthalates with NAFLD and liver fibrosis: A nationally representative cross-sectional study from NHANES 2017 to 2018. Front Nutr 2022; 9:1059675. [PMID: 36483930 PMCID: PMC9723339 DOI: 10.3389/fnut.2022.1059675] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/07/2022] [Indexed: 10/10/2023] Open
Abstract
OBJECTIVE Although phthalates are common environmental pollutants, few studies have focused on the relationship of phthalates exposure with non-alcoholic fatty liver disease (NAFLD) or liver fibrosis, and especially, the alternative phthalates have been questioned in recent years about whether they are better choices. Thus, this study aimed to explore the associations of exposure to major phthalates or alternative phthalates with NAFLD and liver fibrosis. METHODS Data of 1450 adults from the National Health and Nutrition Examination Survey (NHANES) 2017-2018 were collected. The urinary metabolite concentrations of di-2-ethylhexyl phthalate (DEHP), diisononyl phthalate (DINP) and diisodecyl phthalate (DIDP) were detected. Controlled attenuation parameter (CAP) and median liver stiffness measurement (LSM) were acquired for quantitative diagnosis of NAFLD and liver fibrosis by vibration-controlled transient elastography. Multivariate logistic regression analysis and linear regression analysis were performed to examine the associations between phthalates and NAFLD and liver fibrosis. RESULTS After adjustment of the potential factors, the prevalence of NAFLD was significantly elevated among those in the fourth quartile of mono-(2-ethyl-5-carboxypentyl) phthalate (OR, 95%CI = 2.719, 1.296, 5.700, P = 0.016), mono (2-ethyl-5-hydroxyhexyl) phthalate (OR, 95%CI = 2.073, 1.111, 3.867, P = 0.037). No significant association was found between the alternative phthalates and NAFLD. The similar result was gained by linear regression analysis that MECPP was still significantly associated with Ln CAP (Q4 vs. Q1: β, 95%CI = 0.067, 0.017, 0.118, P = 0.027). After adjustment for the same covariates, no significant association between phthalates and liver fibrosis was found in logistics regression analysis. CONCLUSIONS All in all, higher prevalence of NAFLD is correlated with DEHP but not DINP or DIDP in American adults. There is no significant relationship between phthalates and liver fibrosis defined as LSM ≥ 8 Kpa. Nevertheless, further research is needed to provide evidence of causality.
Collapse
Affiliation(s)
- Xingying Chen
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan, China
| | - Feng Tian
- Health Management Division, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan, China
| | - Jianfeng Wu
- Nantong Haimen People's Hospital, Haimen Hospital of Nantong University, Nantong, China
| | - Lan Liu
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan, China
| | - Ye Li
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan, China
| | - Genfeng Yu
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan, China
| | - Hualin Duan
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan, China
| | - Yuqi Jiang
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan, China
| | - Siyang Liu
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan, China
| | - Yajun He
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan, China
| | - Yaosheng Luo
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan, China
| | - Cheng Song
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan, China
| | - Huaizhi Li
- Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
| | - Yongqian Liang
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan, China
| | - Heng Wan
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan, China
| | - Jie Shen
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan, China
| |
Collapse
|