1
|
Sakal C, Li T, Li J, Li X. Predicting poor performance on cognitive tests among older adults using wearable device data and machine learning: a feasibility study. NPJ AGING 2024; 10:56. [PMID: 39587119 PMCID: PMC11589133 DOI: 10.1038/s41514-024-00177-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/21/2024] [Indexed: 11/27/2024]
Abstract
Timely implementation of interventions to slow cognitive decline among older adults requires accurate monitoring to detect changes in cognitive function. Factors known to be associated with cognition that can be gathered from accelerometers, user interfaces, and other sensors within wearable devices could be used to train machine learning models and develop wearable-based cognitive monitoring systems. Using data from over 2400 older adults in the National Health and Nutrition Examination Survey (NHANES) we developed prediction models to differentiate older adults with normal cognition from those with poor cognition based on outcomes from three cognitive tests measuring different domains of cognitive function. During repeated cross-validation CatBoost, XGBoost, and Random Forest models performed best when predicting poor cognition based on tests measuring processing speed, working memory, and attention (median AUCs ≥0.82) compared to immediate and delayed recall (median AUCs ≥0.72) and categorical verbal fluency (median AUC ≥ 0.68). Activity and sleep parameters were also more strongly associated with poor cognition based on tests assessing processing speed, working memory, and attention compared to other cognitive subdomains. Our work provides proof of concept that data collatable through wearable devices such as age, education, sleep parameters, activity summaries, and light exposure metrics could be used to differentiate between older adults with normal versus poor cognition. We further identified metrics that could be targets in future causal studies seeking to better understand how sleep and activity parameters influence cognitive function among older adults.
Collapse
Affiliation(s)
- Collin Sakal
- Department of Data Science, College of Computing, City University of Hong Kong, Hong Kong SAR, China
| | - Tingyou Li
- Department of Data Science, College of Computing, City University of Hong Kong, Hong Kong SAR, China
| | - Juan Li
- Center on Aging Psychology, Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Xinyue Li
- Department of Data Science, College of Computing, City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
2
|
Jao CW, Wu YT, Yeh JH, Tsai YF, Hsiao CY, Lau CI. Exploring cortical morphology biomarkers of amnesic mild cognitive impairment using novel fractal dimension-based structural MRI analysis. Eur J Neurosci 2024; 60:6254-6266. [PMID: 39353858 DOI: 10.1111/ejn.16557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/29/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
Amnestic mild cognitive impairment (aMCI) is considered as an intermediate stage of Alzheimer's disease, but no MRI biomarkers currently distinguish aMCI from healthy individuals effectively. Fractal dimension, a quantitative parameter, provides superior morphological information compared to conventional cortical thickness methods. Few studies have used cortical fractal dimension values to differentiate aMCI from healthy controls. In this study, we aim to build an automated discriminator for accurately distinguishing aMCI using fractal dimension measures of the cerebral cortex. Thirty aMCI patients and 30 health controls underwent structural MRI of the brain. First, the atrophy of participants' cortical sub-regions of Desikan-Killiany cortical atlas was assessed using fractal dimension and cortical thickness. The fractal dimension is more sensitive than cortical thickness in reducing dimensional effects and may accurately reflect morphological changes of the cortex in aMCI. The aMCI group had significantly lower fractal dimension values in the bilateral temporal lobes, right limbic lobe and right parietal lobe, whereas they showed significantly lower cortical thickness values only in the bilateral temporal lobes. Fractal dimension analysis was able to depict most of the significantly different focal regions detected by cortical thickness, but additionally with more regions. Second, applying the measured fractal dimensions (and cortical thickness) of both cerebral hemispheres, an unsupervised discriminator was built for the aMCI and healthy controls. The proposed fractal dimension-based method achieves 80.54% accuracy in discriminating aMCI from healthy controls. The fractal dimension appears to be a promising biomarker for cortical morphology changes that can discriminate patients with aMCI from healthy controls.
Collapse
Affiliation(s)
- Chi-Wen Jao
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Research, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Yu-Te Wu
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jiann-Horng Yeh
- Department of Neurology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Yuh-Feng Tsai
- College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- Department of Diagnostic Radiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Chen-Yu Hsiao
- Department of Diagnostic Radiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Chi Ieong Lau
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan
- College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- Dementia Center, Department of Neurology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- Applied Cognitive Neuroscience Group, Institute of Cognitive Neuroscience, University College London, London, UK
- University Hospital, Taipa, Macau
| |
Collapse
|
3
|
Lin RH, Lin P, Wang CC, Tung CW. A novel multitask learning algorithm for tasks with distinct chemical space: zebrafish toxicity prediction as an example. J Cheminform 2024; 16:91. [PMID: 39095893 PMCID: PMC11297603 DOI: 10.1186/s13321-024-00891-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/27/2024] [Indexed: 08/04/2024] Open
Abstract
Data scarcity is one of the most critical issues impeding the development of prediction models for chemical effects. Multitask learning algorithms leveraging knowledge from relevant tasks showed potential for dealing with tasks with limited data. However, current multitask methods mainly focus on learning from datasets whose task labels are available for most of the training samples. Since datasets were generated for different purposes with distinct chemical spaces, the conventional multitask learning methods may not be suitable. This study presents a novel multitask learning method MTForestNet that can deal with data scarcity problems and learn from tasks with distinct chemical space. The MTForestNet consists of nodes of random forest classifiers organized in the form of a progressive network, where each node represents a random forest model learned from a specific task. To demonstrate the effectiveness of the MTForestNet, 48 zebrafish toxicity datasets were collected and utilized as an example. Among them, two tasks are very different from other tasks with only 1.3% common chemicals shared with other tasks. In an independent test, MTForestNet with a high area under the receiver operating characteristic curve (AUC) value of 0.911 provided superior performance over compared single-task and multitask methods. The overall toxicity derived from the developed models of zebrafish toxicity is well correlated with the experimentally determined overall toxicity. In addition, the outputs from the developed models of zebrafish toxicity can be utilized as features to boost the prediction of developmental toxicity. The developed models are effective for predicting zebrafish toxicity and the proposed MTForestNet is expected to be useful for tasks with distinct chemical space that can be applied in other tasks.Scieific contributionA novel multitask learning algorithm MTForestNet was proposed to address the challenges of developing models using datasets with distinct chemical space that is a common issue of cheminformatics tasks. As an example, zebrafish toxicity prediction models were developed using the proposed MTForestNet which provide superior performance over conventional single-task and multitask learning methods. In addition, the developed zebrafish toxicity prediction models can reduce animal testing.
Collapse
Affiliation(s)
- Run-Hsin Lin
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 35053, Taiwan
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei, 10675, Taiwan
| | - Pinpin Lin
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli County, 35053, Taiwan
| | - Chia-Chi Wang
- Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Chun-Wei Tung
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 35053, Taiwan.
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei, 10675, Taiwan.
| |
Collapse
|
4
|
Park I, Lee SK, Choi HC, Ahn ME, Ryu OH, Jang D, Lee U, Kim YJ. Machine Learning Model for Mild Cognitive Impairment Stage Based on Gait and MRI Images. Brain Sci 2024; 14:480. [PMID: 38790458 PMCID: PMC11119859 DOI: 10.3390/brainsci14050480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 04/28/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
In patients with mild cognitive impairment (MCI), a lower level of cognitive function is associated with a higher likelihood of progression to dementia. In addition, gait disturbances and structural changes on brain MRI scans reflect cognitive levels. Therefore, we aimed to classify MCI based on cognitive level using gait parameters and brain MRI data. Eighty patients diagnosed with MCI from three dementia centres in Gangwon-do, Korea, were recruited for this study. We defined MCI as a Clinical Dementia Rating global score of ≥0.5, with a memory domain score of ≥0.5. Patients were classified as early-stage or late-stage MCI based on their mini-mental status examination (MMSE) z-scores. We trained a machine learning model using gait and MRI data parameters. The convolutional neural network (CNN) resulted in the best classifier performance in separating late-stage MCI from early-stage MCI; its performance was maximised when feature patterns that included multimodal features (GAIT + white matter dataset) were used. The single support time was the strongest predictor. Machine learning that incorporated gait and white matter parameters achieved the highest accuracy in distinguishing between late-stage MCI and early-stage MCI.
Collapse
Affiliation(s)
- Ingyu Park
- Department of Electronic Engineering, Hallym University, Chuncheon 24252, Republic of Korea; (I.P.); (D.J.)
| | - Sang-Kyu Lee
- Department of Psychiatry, Hallym University-Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24253, Republic of Korea;
| | - Hui-Chul Choi
- Department of Neurology, Hallym University-Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24253, Republic of Korea;
| | - Moo-Eob Ahn
- Department of Emergency Medicine, Hallym University-Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24253, Republic of Korea;
| | - Ohk-Hyun Ryu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hallym University-Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24253, Republic of Korea;
| | - Daehun Jang
- Department of Electronic Engineering, Hallym University, Chuncheon 24252, Republic of Korea; (I.P.); (D.J.)
| | - Unjoo Lee
- Division of Software, School of Information Science, Hallym University, Chuncheon 24252, Republic of Korea
| | - Yeo Jin Kim
- Department of Neurology, Kangdong Sacred Heart Hospital, Seoul 05355, Republic of Korea
| |
Collapse
|
5
|
Hoang B, Pang Y, Dodge HH, Zhou J. Subject Harmonization of Digital Biomarkers: Improved Detection of Mild Cognitive Impairment from Language Markers. PACIFIC SYMPOSIUM ON BIOCOMPUTING. PACIFIC SYMPOSIUM ON BIOCOMPUTING 2024; 29:187-200. [PMID: 38160279 PMCID: PMC11017207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Mild cognitive impairment (MCI) represents the early stage of dementia including Alzheimer's disease (AD) and is a crucial stage for therapeutic interventions and treatment. Early detection of MCI offers opportunities for early intervention and significantly benefits cohort enrichment for clinical trials. Imaging and in vivo markers in plasma and cerebrospinal fluid biomarkers have high detection performance, yet their prohibitive costs and intrusiveness demand more affordable and accessible alternatives. The recent advances in digital biomarkers, especially language markers, have shown great potential, where variables informative to MCI are derived from linguistic and/or speech and later used for predictive modeling. A major challenge in modeling language markers comes from the variability of how each person speaks. As the cohort size for language studies is usually small due to extensive data collection efforts, the variability among persons makes language markers hard to generalize to unseen subjects. In this paper, we propose a novel subject harmonization tool to address the issue of distributional differences in language markers across subjects, thus enhancing the generalization performance of machine learning models. Our empirical results show that machine learning models built on our harmonized features have improved prediction performance on unseen data. The source code and experiment scripts are available at https://github.com/illidanlab/subject_harmonization.
Collapse
Affiliation(s)
- Bao Hoang
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Yijiang Pang
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Hiroko H. Dodge
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA02129, USA
| | - Jiayu Zhou
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
6
|
Bucholc M, James C, Khleifat AA, Badhwar A, Clarke N, Dehsarvi A, Madan CR, Marzi SJ, Shand C, Schilder BM, Tamburin S, Tantiangco HM, Lourida I, Llewellyn DJ, Ranson JM. Artificial intelligence for dementia research methods optimization. Alzheimers Dement 2023; 19:5934-5951. [PMID: 37639369 DOI: 10.1002/alz.13441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/19/2023] [Accepted: 07/23/2023] [Indexed: 08/31/2023]
Abstract
Artificial intelligence (AI) and machine learning (ML) approaches are increasingly being used in dementia research. However, several methodological challenges exist that may limit the insights we can obtain from high-dimensional data and our ability to translate these findings into improved patient outcomes. To improve reproducibility and replicability, researchers should make their well-documented code and modeling pipelines openly available. Data should also be shared where appropriate. To enhance the acceptability of models and AI-enabled systems to users, researchers should prioritize interpretable methods that provide insights into how decisions are generated. Models should be developed using multiple, diverse datasets to improve robustness, generalizability, and reduce potentially harmful bias. To improve clarity and reproducibility, researchers should adhere to reporting guidelines that are co-produced with multiple stakeholders. If these methodological challenges are overcome, AI and ML hold enormous promise for changing the landscape of dementia research and care. HIGHLIGHTS: Machine learning (ML) can improve diagnosis, prevention, and management of dementia. Inadequate reporting of ML procedures affects reproduction/replication of results. ML models built on unrepresentative datasets do not generalize to new datasets. Obligatory metrics for certain model structures and use cases have not been defined. Interpretability and trust in ML predictions are barriers to clinical translation.
Collapse
Affiliation(s)
- Magda Bucholc
- Cognitive Analytics Research Lab, School of Computing, Engineering & Intelligent Systems, Ulster University, Derry, UK
| | - Charlotte James
- NIHR Bristol Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust and University of Bristol, Bristol, UK
| | - Ahmad Al Khleifat
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - AmanPreet Badhwar
- Multiomics Investigation of Neurodegenerative Diseases (MIND) Lab, Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Quebec, Canada
- Institut de génie biomédical, Université de Montréal, Montréal, Quebec, Canada
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, Quebec, Canada
| | - Natasha Clarke
- Multiomics Investigation of Neurodegenerative Diseases (MIND) Lab, Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Quebec, Canada
| | - Amir Dehsarvi
- Aberdeen Biomedical Imaging Centre, School of Medicine, Medical Sciences, and Nutrition, University of Aberdeen, Aberdeen, UK
| | | | - Sarah J Marzi
- UK Dementia Research Institute, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Cameron Shand
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | - Brian M Schilder
- UK Dementia Research Institute, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Stefano Tamburin
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | | | - David J Llewellyn
- University of Exeter Medical School, Exeter, UK
- The Alan Turing Institute, London, UK
| | | |
Collapse
|
7
|
Kim J, Lee H, Lee J, Rhee SY, Shin JI, Lee SW, Cho W, Min C, Kwon R, Kim JG, Yon DK. Quantification of identifying cognitive impairment using olfactory-stimulated functional near-infrared spectroscopy with machine learning: a post hoc analysis of a diagnostic trial and validation of an external additional trial. Alzheimers Res Ther 2023; 15:127. [PMID: 37481573 PMCID: PMC10362671 DOI: 10.1186/s13195-023-01268-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 06/30/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND We aimed to quantify the identification of mild cognitive impairment and/or Alzheimer's disease using olfactory-stimulated functional near-infrared spectroscopy using machine learning through a post hoc analysis of a previous diagnostic trial and an external additional trial. METHODS We conducted two independent, patient-level, single-group, diagnostic interventional trials (original and additional trials) involving elderly volunteers (aged > 60 years) with suspected declining cognitive function. All volunteers were assessed by measuring the oxygenation difference in the orbitofrontal cortex using an open-label olfactory-stimulated functional near-infrared spectroscopy approach, medical interview, amyloid positron emission tomography, brain magnetic resonance imaging, Mini-Mental State Examination, and Seoul Neuropsychological Screening Battery. RESULTS In total, 97 (original trial) and 36 (additional trial) elderly volunteers with suspected decline in cognitive function met the eligibility criteria. The statistical model reported classification accuracies of 87.3% in patients with mild cognitive impairment and Alzheimer's disease in internal validation (original trial) but 63.9% in external validation (additional trial). The machine learning algorithm achieved 92.5% accuracy with the internal validation data and 82.5% accuracy with the external validation data. For the diagnosis of mild cognitive impairment, machine learning performed better than statistical methods with internal (86.0% versus 85.2%) and external validation data (85.4% versus 68.8%). INTERPRETATION In two independent trials, machine learning models using olfactory-stimulated oxygenation differences in the orbitofrontal cortex were superior in diagnosing mild cognitive impairment and Alzheimer's disease compared to classic statistical models. Our results suggest that the machine learning algorithm is stable across different patient groups and increases generalization and reproducibility. TRIAL REGISTRATION Clinical Research Information Service (CRiS) of Republic of Korea; CRIS numbers, KCT0006197 and KCT0007589.
Collapse
Affiliation(s)
- Jaewon Kim
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Hayeon Lee
- Department of Biomedical Engineering, Kyung Hee University College of Electronics and Information, Yongin, South Korea
| | - Jinseok Lee
- Department of Biomedical Engineering, Kyung Hee University College of Electronics and Information, Yongin, South Korea
| | - Sang Youl Rhee
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung Won Lee
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Wonyoung Cho
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Chanyang Min
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Rosie Kwon
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, South Korea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jae Gwan Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea.
| | - Dong Keon Yon
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, South Korea.
- Department of Pediatrics, Kyung Hee University College of Medicine, Seoul, South Korea.
| |
Collapse
|
8
|
Bucholc M, James C, Al Khleifat A, Badhwar A, Clarke N, Dehsarvi A, Madan CR, Marzi SJ, Shand C, Schilder BM, Tamburin S, Tantiangco HM, Lourida I, Llewellyn DJ, Ranson JM. Artificial Intelligence for Dementia Research Methods Optimization. ARXIV 2023:arXiv:2303.01949v1. [PMID: 36911275 PMCID: PMC10002770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
INTRODUCTION Machine learning (ML) has been extremely successful in identifying key features from high-dimensional datasets and executing complicated tasks with human expert levels of accuracy or greater. METHODS We summarize and critically evaluate current applications of ML in dementia research and highlight directions for future research. RESULTS We present an overview of ML algorithms most frequently used in dementia research and highlight future opportunities for the use of ML in clinical practice, experimental medicine, and clinical trials. We discuss issues of reproducibility, replicability and interpretability and how these impact the clinical applicability of dementia research. Finally, we give examples of how state-of-the-art methods, such as transfer learning, multi-task learning, and reinforcement learning, may be applied to overcome these issues and aid the translation of research to clinical practice in the future. DISCUSSION ML-based models hold great promise to advance our understanding of the underlying causes and pathological mechanisms of dementia.
Collapse
Affiliation(s)
- Magda Bucholc
- Cognitive Analytics Research Lab, School of Computing, Engineering & Intelligent Systems, Ulster University, Derry, UK
| | - Charlotte James
- NIHR Bristol Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust and University of Bristol, Bristol, UK
| | - Ahmad Al Khleifat
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - AmanPreet Badhwar
- Multiomics Investigation of Neurodegenerative Diseases (MIND) Lab, Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, Montréal, Canada
- Institut de génie biomédical, Université de Montréal, Montréal, Canada
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, Canada
| | - Natasha Clarke
- Multiomics Investigation of Neurodegenerative Diseases (MIND) Lab, Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, Montréal, Canada
| | - Amir Dehsarvi
- Aberdeen Biomedical Imaging Centre, School of Medicine, Medical Sciences, and Nutrition, University of Aberdeen, Aberdeen, UK
| | | | - Sarah J. Marzi
- UK Dementia Research Institute, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Cameron Shand
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | - Brian M. Schilder
- UK Dementia Research Institute, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Stefano Tamburin
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | | | - David J. Llewellyn
- University of Exeter Medical School, Exeter, UK
- The Alan Turing Institute, London, UK
| | | |
Collapse
|
9
|
Hao Z, Ma J, Sun W. The Technology-Oriented Pathway for Auxiliary Diagnosis in the Digital Health Age: A Self-Adaptive Disease Prediction Model. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12509. [PMID: 36231805 PMCID: PMC9566816 DOI: 10.3390/ijerph191912509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
The advent of the digital age has accelerated the transformation and upgrading of the traditional medical diagnosis pattern. With the rise of the concept of digital health, the emerging information technologies, such as machine learning (ML) and data mining (DM), have been extensively applied in the medical and health field, where the construction of disease prediction models is an especially effective method to realize auxiliary medical diagnosis. However, the existing related studies mostly focus on the prediction analysis for a certain disease, using models with which it might be challenging to predict other diseases effectively. To address the issues existing in the aforementioned studies, this paper constructs four novel strategies to achieve a self-adaptive disease prediction process, i.e., the hunger-state foraging strategy of producers (PHFS), the parallel strategy for exploration and exploitation (EEPS), the perturbation-exploration strategy (PES), and the parameter self-adaptive strategy (PSAS), and eventually proposes a self-adaptive disease prediction model with applied universality, strong generalization ability, and strong robustness, i.e., multi-strategies optimization-based kernel extreme learning machine (MsO-KELM). Meanwhile, this paper selects six different real-world disease datasets as the experimental samples, which include the Breast Cancer dataset (cancer), the Parkinson dataset (Parkinson's disease), the Autistic Spectrum Disorder Screening Data for Children dataset (Autism Spectrum Disorder), the Heart Disease dataset (heart disease), the Cleveland dataset (heart disease), and the Bupa dataset (liver disease). In terms of the prediction accuracy, the proposed MsO-KELM can obtain ACC values in analyzing these six diseases of 94.124%, 84.167%, 91.079%, 72.222%, 70.184%, and 70.476%, respectively. These ACC values have all been increased by nearly 2-7% compared with those obtained by the other models mentioned in this paper. This study deepens the connection between information technology and medical health by exploring the self-adaptive disease prediction model, which is an intuitive representation of digital health and could provide a scientific and reliable diagnostic basis for medical workers.
Collapse
Affiliation(s)
- Zhiyuan Hao
- School of Business and Management, Jilin University, Changchun 130012, China
| | - Jie Ma
- School of Business and Management, Jilin University, Changchun 130012, China
- Information Resource Research Center, Jilin University, Changchun 130012, China
| | - Wenjing Sun
- School of Business and Management, Jilin University, Changchun 130012, China
| |
Collapse
|
10
|
Big Data, Decision Models, and Public Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148543. [PMID: 35886394 PMCID: PMC9324609 DOI: 10.3390/ijerph19148543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 12/10/2022]
|