1
|
Ali S, Cella E, Johnston C, Rojas AC, Brown AN, Deichen M, Azarian T. Environmental surface monitoring as a noninvasive method for SARS-CoV-2 surveillance in community settings: Lessons from a university campus study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169456. [PMID: 38123097 DOI: 10.1016/j.scitotenv.2023.169456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/22/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Environmental testing of high-touch objects is a potential noninvasive approach for monitoring population-level trends of SARS-CoV-2 and other respiratory viruses within a defined setting. We aimed to determine the association between SARS-CoV-2 contamination on high-touch environmental surfaces, community level case incidence, and university student health data. Environmental swabs were collected from January 2022 to November 2022 from high-touch objects and surfaces from five locations on a large university campus in Florida, USA. RT-qPCR was used to detect and quantify viral RNA, and a subset of positive samples was analyzed by viral genome sequencing to identify circulating lineages. During the study period, we detected SARS-CoV-2 viral RNA on 90.7 % of 162 tested samples. Levels of environmental viral RNA correlated with trends in community-level activity and case reports from the student health center. A significant positive correlation was observed between the estimated viral gene copy number in environmental samples and the weekly confirmed cases at the university. Viral sequencing data from environmental samples identified lineages concurrently circulating in the local community and state based on genomic surveillance data. Further, we detected emerging variants in environmental samples prior to their identification by clinical genomic surveillance. Our results demonstrate the utility of viral monitoring on high-touch environmental surfaces for SARS-CoV-2 surveillance at a community level. In communities with delayed or limited testing facilities, immediate environmental surface testing may considerably inform epidemic dynamics.
Collapse
Affiliation(s)
- Sobur Ali
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Eleonora Cella
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Catherine Johnston
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Ana C Rojas
- Institute for Therapeutic Innovation, Department of Medicine, College of Medicine, University of Florida, Orlando, FL 32827, USA
| | - Ashley N Brown
- Institute for Therapeutic Innovation, Department of Medicine, College of Medicine, University of Florida, Orlando, FL 32827, USA
| | - Michael Deichen
- Student Health Services, University of Central Florida, Orlando, FL, USA
| | - Taj Azarian
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
2
|
Kitamura K, Ueno MK, Yoshida H. Rapid and sensitive on-site detection of SARS-CoV-2 RNA from environmental surfaces using portable laboratory devices. Microbiol Spectr 2023; 11:e0045623. [PMID: 37791760 PMCID: PMC10715158 DOI: 10.1128/spectrum.00456-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/15/2023] [Indexed: 10/05/2023] Open
Abstract
IMPORTANCE This study presents the development of a highly sensitive on-site method for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA on various surfaces, including doorknobs and tables. Identifying SARS-CoV-2 RNA on these surfaces can be crucial in guiding decision-making for implementing non-pharmaceutical interventions, such as zoning strategies, improving ventilation, maintaining physical distancing, and promoting increased hand hygiene practices. Moreover, the on-site detection system can facilitate the swift initiation of mitigation responses in non-laboratory settings, including long-term care facilities and schools. The protocols established in this study offer a comprehensive approach for achieving both sensitivity and rapidity in on-site SARS-CoV-2 RNA detection. Furthermore, since the RT-qPCR assay serves as the gold standard for detecting viral RNAs, the developed protocol holds potential for application to other viruses, including enteroviruses and noroviruses.
Collapse
Affiliation(s)
- Kouichi Kitamura
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo, Japan
| | - Minami Kikuchi Ueno
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo, Japan
| | - Hiromu Yoshida
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo, Japan
| |
Collapse
|
3
|
Zambrana W, Boehm AB. Occurrence of Human Viruses on Fomites in the Environment: A Systematic Review and Meta-analysis. ACS ENVIRONMENTAL AU 2023; 3:277-294. [PMID: 37743950 PMCID: PMC10515712 DOI: 10.1021/acsenvironau.3c00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 09/26/2023]
Abstract
Documenting the occurrence of viruses on fomites is crucial in determining the significance of fomite-mediated transmission and the potential use of fomites for environmental disease surveillance. We conducted a systematic review and meta-analysis to compile information on the occurrence of human viruses on fomites in the environment; we identified 134 peer-reviewed papers. We compiled sampling and measurement methods, results, quality control information, and whether virus data were compared with community health data from the papers. We conducted univariate and multivariate analyses to investigate if presence of virus on fomites was associated with virus type (enveloped, nonenveloped), sampling location (healthcare setting, nonhealthcare temporary setting, nonhealthcare nontemporary setting), and area of fomite swabbed (<50, 50-100, >100 cm2). Across 275 data sets from the 134 papers, there was the most data available for Coronaviridae and from fomites at hospitals. Positivity rates, defined as the percent positive fomite samples, were low (median = 6%). Data were available on viruses from 16 different viral families, but data on viruses from 9 families had few (n < 5) data sets. Many human virus families were not identified in this review (11 families). Less than 15% of the data sets reported virus concentrations in externally valid units (viruses per area of surface), and 16% provided a quantitative comparison between virus and health data. Virus type and area swabbed were significant predictors of virus presence on fomites, and the positivity rate of data sets collected from healthcare settings and nonhealthcare nontemporary settings (e.g., individual housing) were significantly higher than those collected in nonhealthcare temporary settings (e.g., restaurants). Data from this review indicates that viruses may be present on fomites, that fomite-mediated virus transmission may occur, and that fomites may provide information on circulation of infectious diseases in the community. However, more quantitative data on diverse viruses are needed, and method reporting needs significant improvements.
Collapse
Affiliation(s)
- Winnie Zambrana
- Department
of Civil & Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, California 94305, United States
| | - Alexandria B. Boehm
- Department
of Civil & Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, California 94305, United States
| |
Collapse
|
4
|
Chen XE, Zhao C, Luo Y, Tang T, Chen W. Contamination of SARS-CoV-2 RNA on personal protective equipment and environmental surfaces in nonpatient entry area of a Fangcang shelter hospital. Am J Ind Med 2023; 66:805-812. [PMID: 37394558 DOI: 10.1002/ajim.23513] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/04/2023]
Abstract
OBJECTIVES To determine the extent of contamination of personal protective equipment (PPE) and surfaces by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the nonpatient entry area of a Fangcang shelter hospital, the medical staff accommodation area, and the staff transport bus. METHODS We collected 816 samples from the nonpatient entry area and floors in a Fangcang shelter hospital, medical staff accommodation area, and scheduled bus, and the five major types of PPE used from April 13 to May 18, 2022. SARS-CoV-2 ribonucleic acid (RNA) was detected by reverse transcription-polymerase chain reaction. RESULTS Overall, 22.2% of PPE samples were positive for SARS-CoV-2 RNA. Boot covers and gowns were the most contaminated types of PPE. The positive PPE contamination rate of staff collecting respiratory specimens was significantly higher than that of the general-treatment staff group (35.8% vs. 12.2%) and cleaner group (35.8% vs. 26.4%), p < 0.01. In total, 27 of 265 (10.2%) environmental surface samples were positive for SARS-CoV-2 RNA. The contamination-positive rates were 26.8% (22/82), 5.4% (4/74), and 0.9% (1/109) for contaminated, potentially contaminated, and clean zones, respectively. SARS-CoV-2 RNA was frequently detected on objects such as mobile phones, tables, computer keyboards and mice, and door handles. CONCLUSIONS SARS-CoV-2 RNA was widely distributed on high-touch surfaces and on PPE in the contaminated zone of the Fangcang shelter hospital, implying a potentially high infection risk for healthcare workers. Our findings emphasize the need to ensure adequate environmental cleaning, improve hand hygiene, and reduce the risk of infection. Additionally, prevention of self-contamination during PPE donning and doffing is complex and needs more research.
Collapse
Affiliation(s)
- Xue-E Chen
- Department of Nosocomial Infection Control, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - ChenHao Zhao
- Department of Neurology, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - YeTao Luo
- Department of Nosocomial Infection Control, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Tang Tang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Wei Chen
- Department of Nosocomial Infection Control, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
5
|
Artika IM, Dewi YP, Nainggolan IM, Siregar JE, Antonjaya U. Real-Time Polymerase Chain Reaction: Current Techniques, Applications, and Role in COVID-19 Diagnosis. Genes (Basel) 2022; 13:genes13122387. [PMID: 36553654 PMCID: PMC9778061 DOI: 10.3390/genes13122387] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Successful detection of the first SARS-CoV-2 cases using the real-time polymerase chain reaction (real-time PCR) method reflects the power and usefulness of this technique. Real-time PCR is a variation of the PCR assay to allow monitoring of the PCR progress in actual time. PCR itself is a molecular process used to enzymatically synthesize copies in multiple amounts of a selected DNA region for various purposes. Real-time PCR is currently one of the most powerful molecular approaches and is widely used in biological sciences and medicine because it is quantitative, accurate, sensitive, and rapid. Current applications of real-time PCR include gene expression analysis, mutation detection, detection and quantification of pathogens, detection of genetically modified organisms, detection of allergens, monitoring of microbial degradation, species identification, and determination of parasite fitness. The technique has been used as a gold standard for COVID-19 diagnosis. Modifications of the standard real-time PCR methods have also been developed for particular applications. This review aims to provide an overview of the current applications of the real-time PCR technique, including its role in detecting emerging viruses such as SARS-CoV-2.
Collapse
Affiliation(s)
- I Made Artika
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor 16680, Indonesia
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Bogor 16911, Indonesia
- Correspondence:
| | - Yora Permata Dewi
- Emerging Virus Research Unit, Eijkman Institute for Molecular Biology, Jalan Diponegoro 69, Jakarta 10430, Indonesia
| | - Ita Margaretha Nainggolan
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Bogor 16911, Indonesia
| | - Josephine Elizabeth Siregar
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Bogor 16911, Indonesia
| | - Ungke Antonjaya
- Eijkman Oxford Clinical Research Unit, Eijkman Institute for Molecular Biology, Jalan Diponegoro 69, Jakarta 10430, Indonesia
| |
Collapse
|
6
|
Zhang F, Wang Z, Vijver MG, Peijnenburg WJGM. Theoretical investigation on the interactions of microplastics with a SARS-CoV-2 RNA fragment and their potential impacts on viral transport and exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156812. [PMID: 35738381 PMCID: PMC9212631 DOI: 10.1016/j.scitotenv.2022.156812] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/08/2022] [Accepted: 06/15/2022] [Indexed: 02/08/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the coronavirus disease-19 (COVID-19) pandemic spread across the world and remains difficult to control. Environmental pollution and habitat conditions do facilitate SARS-CoV-2 transmission as well as increase the risk of exposure to SARS-CoV-2. The coexistence of microplastics (MPs) with SARS-CoV-2 affects the viral behavior in the indoor and outdoor environment, and it is essential to study the interactions between MPs and SARS-CoV-2 because they both are ubiquitously present in our environment. To determine the mechanisms underlying the impact of MPs on SARS-CoV-2, we used molecular dynamic simulations to investigate the molecular interactions between five MPs and a SARS-CoV-2 RNA fragment at temperatures ranging from 223 to 310 K in vacuum and in water. We furthermore compared the interactions of MPs and SARS-CoV-2 RNA fragment to the performance of SARS-CoV-1 and Hepatitis B virus (HBV) RNA fragments in interacting with the MPs. The interaction affinity between the MPs and the SARS-CoV-2 RNA fragment was found to be greater than the affinity between the MPs and the SARS-CoV-1 or HBV RNA fragments, independent of the environmental media, temperature, and type of MPs. The mechanisms of the interaction between the MPs and the SARS-CoV-2 RNA fragment involved electrostatic and hydrophobic processes, and the interaction affinity was associated with the inherent structural parameters (i.e., molecular volume, polar surface area, and molecular topological index) of the MPs monomers. Although the evidence on the infectious potential of SARS-CoV-2 RNA is not fully understood, humans are exposed to MPs via their lungs, and the strong interaction with the gene materials of SARS-CoV-2 likely affects the exposure of humans to SARS-CoV-2.
Collapse
Affiliation(s)
- Fan Zhang
- Institute of Environmental Sciences (CML), Leiden University, Leiden 2300 RA, the Netherlands
| | - Zhuang Wang
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing 210044, PR China
| | - Martina G Vijver
- Institute of Environmental Sciences (CML), Leiden University, Leiden 2300 RA, the Netherlands
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, Leiden 2300 RA, the Netherlands; Centre for Safety of Substances and Products, National Institute of Public Health and the Environment (RIVM), Bilthoven 3720 BA, the Netherlands.
| |
Collapse
|