1
|
Xing L, Bao Y, Wang B, Shi M, Wei Y, Huang X, Dai Y, Shi H, Gai X, Luo Q, Yin Y, Qin D. Falls caused by balance disorders in the elderly with multiple systems involved: Pathogenic mechanisms and treatment strategies. Front Neurol 2023; 14:1128092. [PMID: 36908603 PMCID: PMC9996061 DOI: 10.3389/fneur.2023.1128092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Falls are the main contributor to both fatal and nonfatal injuries in elderly individuals as well as significant sources of morbidity and mortality, which are mostly induced by impaired balance control. The ability to keep balance is a remarkably complex process that allows for rapid and precise changes to prevent falls with multiple systems involved, such as musculoskeletal system, the central nervous system and sensory system. However, the exact pathogenesis of falls caused by balance disorders in the elderly has eluded researchers to date. In consideration of aging phenomenon aggravation and fall risks in the elderly, there is an urgent need to explore the pathogenesis and treatments of falls caused by balance disorders in the elderly. The present review discusses the epidemiology of falls in the elderly, potential pathogenic mechanisms underlying multiple systems involved in falls caused by balance disorders, including musculoskeletal system, the central nervous system and sensory system. Meanwhile, some common treatment strategies, such as physical exercise, new equipment based on artificial intelligence, pharmacologic treatments and fall prevention education are also reviewed. To fully understand the pathogenesis and treatment of falls caused by balance disorders, a need remains for future large-scale multi-center randomized controlled trials and in-depth mechanism studies.
Collapse
Affiliation(s)
- Liwei Xing
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming Yunnan, China.,The First Clinical Medical School, Yunnan University of Chinese Medicine, Kunming Yunnan, China
| | - Yi Bao
- Department of Rehabilitation Medicine, The Affiliated Hospital of Yunnan University, Kunming Yunnan, China
| | - Binyang Wang
- Department of Rehabilitation Medicine, The Affiliated Hospital of Yunnan University, Kunming Yunnan, China
| | - Mingqin Shi
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming Yunnan, China
| | - Yuanyuan Wei
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming Yunnan, China
| | - Xiaoyi Huang
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming Yunnan, China
| | - Youwu Dai
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming Yunnan, China
| | - Hongling Shi
- Department of Rehabilitation Medicine, The Third People's Hospital of Yunnan Province, Kunming Yunnan, China
| | - Xuesong Gai
- Department of Rehabilitation Medicine, The First People's Hospital of Yunnan Province, Kunming Yunnan, China
| | - Qiu Luo
- Department of Rehabilitation Medicine, The Affiliated Hospital of Yunnan University, Kunming Yunnan, China
| | - Yong Yin
- Department of Rehabilitation Medicine, The Affiliated Hospital of Yunnan University, Kunming Yunnan, China
| | - Dongdong Qin
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming Yunnan, China
| |
Collapse
|
2
|
Chang H, Yao M, Chen B, Qi Y, Zhang J. Effects of Blood Flow Restriction Combined with Low-Intensity Resistance Training on Lower-Limb Muscle Strength and Mass in Post-Middle-Aged Adults: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15691. [PMID: 36497769 PMCID: PMC9735845 DOI: 10.3390/ijerph192315691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
We studied the effect of blood flow restriction (BFR) combined with low-intensity resistance training (LIRT) on lower-limb muscle strength and mass in post-middle-aged adults. The PubMed, OVID, ProQuest, Cochrane Library, EMBASE, Web of Science, and Scopus databases were used to obtain randomized controlled trials, and the effects of BFR and LIRT (BFRt) on muscle strength and mass in adults were examined. The Cochrane risk of bias tool assessed bias in the included trials. The combined effects of BFR and LIRT (BFRt) were calculated by meta-analysis, the association between muscle strength/mass and interventions was determined by meta-regression, and beneficial variables of intervention were explored by subgroup analysis. A total of 11 articles were included in the meta-analysis. The combined effects showed that BFRt significantly improved lower extremity muscle strength but not muscle mass gain. Meta-regression analysis indicated that the effect of BFRt on changes in muscle strength was correlated with frequency of the intervention. Subgroup analysis revealed that BFRt achieved greater muscle strength gains than normal activity, LIRT, and similar muscle strength gains compared to high-intensity resistance training. The increased muscle strength after BFRt was noticed with a frequency of three times a week, but not with a frequency of two times a week, and the difference between these subgroups was statistically significant. Our findings indicate that BFRt can increase lower-limb muscle strength in post-middle-aged adults. Frequency of intervention is a key variable; particularly, a schedule of three times a week is effective in improving muscle strength.
Collapse
Affiliation(s)
- Hualong Chang
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Mengxing Yao
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Biao Chen
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yongle Qi
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jianli Zhang
- Institute of Human Movement and Sports Engineering, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|