1
|
Macedo PE, Batista JES, Souza LR, Dafre AL, Farina M, Kuca K, Posser T, Pinto PM, Boldo JT, Franco JL. Drosophila melanogaster as a model organism for screening acetylcholinesterase reactivators. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:953-972. [PMID: 39292449 DOI: 10.1080/15287394.2024.2401382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The widely used insecticide chlorpyrifos (CP) is known to inhibit acetylcholinesterase (AChE) activity attributed to result in various neurological disorders and acetylcholine-dependent organ functions including heart, skeletal muscle, lung, gastrointestinal tract, and central nervous systems. Enzyme reactivators, such as oximes, are known to restore AChE activity and mitigate adverse effects. The identification of compounds that reactivate AChE constitute agents with important therapeutic beneficial effects in cases of pesticide poisoning. However, the screening of novel drugs using traditional models may raise ethical concerns. This study aimed to investigate the potential of Drosophila melanogaster as a model organism for screening AChE reactivators, with a focus on organophosphate poisoning. The efficacy of several oximes, including pralidoxime, trimedoxime, obidoxime, methoxime, HI-6, K027, and K048, against CP-induced AChE activity inhibition in D. melanogaster was determined in silico, in vitro, and in vivo experiments. Molecular docking studies indicated a strong interaction between studied oximes and the active-site gorge of AChE. Data showed that selected oximes (100 μM) are effective in the reactivation of AChE inhibited by CP (10 μM) in vitro. Finally, in vivo investigations demonstrated that selected oximes, pralidoxime and K048 (1.5 ppm), reversed the locomotor deficits, inhibition of AChE activity as well as lowered the mortality rates induced by CP (0.75 ppm). Our findings contribute to utilization of D. melanogaster as a robust model for determination of actions of identified new AChE inhibitory agents with more effective therapeutic properties that those currently in use in the clinical practice in treatment of AChE associated disorders.
Collapse
Affiliation(s)
- Pablo Echeverria Macedo
- Interdisciplinary Center for Biotechnology Research, Federal University of Pampa, São Gabriel, Brazil
| | | | - Lorena Raspanti Souza
- Interdisciplinary Center for Biotechnology Research, Federal University of Pampa, São Gabriel, Brazil
| | - Alcir Luiz Dafre
- Department of Biochemistry, Federal University of Santa Catarina, Santa Catarina, Brazil
| | - Marcelo Farina
- Department of Biochemistry, Federal University of Santa Catarina, Santa Catarina, Brazil
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Thais Posser
- Interdisciplinary Center for Biotechnology Research, Federal University of Pampa, São Gabriel, Brazil
| | - Paulo Marcos Pinto
- Interdisciplinary Center for Biotechnology Research, Federal University of Pampa, São Gabriel, Brazil
| | - Juliano Tomazzoni Boldo
- Interdisciplinary Center for Biotechnology Research, Federal University of Pampa, São Gabriel, Brazil
| | - Jeferson Luis Franco
- Interdisciplinary Center for Biotechnology Research, Federal University of Pampa, São Gabriel, Brazil
| |
Collapse
|
2
|
Ayala Schimpf AR, Ortellado LE, Gamarra MD, Fonseca MI, Zapata PD. Catalytic function of the laccase enzyme in response to chlorpyrifos and 2,4-dichlorophenoxyacetic acid: behavior in controlled and simulated environments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:61927-61949. [PMID: 39455518 DOI: 10.1007/s11356-024-35260-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 10/05/2024] [Indexed: 10/28/2024]
Abstract
Enzymes secreted by white-rot fungi, such as laccase, offer a promising solution for treating xenobiotic compounds dangerous to the environment and human health. This study aimed to perform a comprehensive analysis of the tolerance of Pleurotus pulmonarius LBM 105 and its laccase activity toward the pesticides 2,4-D and chlorpyrifos both in vitro and in silico. The fungal strain was able to grow in different concentrations of the pesticides, showing evident morphological alterations. Laccase activity and a 53 kDa electromorph were present in all treatments, showing significant stability with peak activity achieved at a pH of 5.6 and within a temperature range of 50-60 °C. Three laccase genes were mapped, annotated, and characterized from the genome. PplacI obtained better structural validation and affinity energy of - 5.05 and - 7.65 kcal mol-1 with 2,4-D and chlorpyrifos, respectively. The Molecular Mechanics/Poisson-Boltzmann Surface Area analysis at 250 ns confirmed the docking results, revealing the existence of stronger hydrophobic interactions between laccase and chlorpyrifos and highlighting the importance of the Phe341 residue in stabilizing both complexes. Understanding the impact of pesticides on laccase's catalytic function is key to formulating and applying future biotechnological strategies with this enzyme.
Collapse
Affiliation(s)
- Alan Rolando Ayala Schimpf
- Laboratorio de Biotecnología Molecular, Instituto de Biotecnología de Misiones "Dra. Maria Ebe Reca" (InBioMis), Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Campus Universitario UNaM. Ruta Nacional N° 12 Km 7,5, Posadas, Misiones, Argentina.
- CONICET, Buenos Aires, Argentina.
| | - Laura Ester Ortellado
- Laboratorio de Biotecnología Molecular, Instituto de Biotecnología de Misiones "Dra. Maria Ebe Reca" (InBioMis), Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Campus Universitario UNaM. Ruta Nacional N° 12 Km 7,5, Posadas, Misiones, Argentina
- CONICET, Buenos Aires, Argentina
| | - Marcelo Daniel Gamarra
- Laboratorio de Biotecnología Molecular, Instituto de Biotecnología de Misiones "Dra. Maria Ebe Reca" (InBioMis), Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Campus Universitario UNaM. Ruta Nacional N° 12 Km 7,5, Posadas, Misiones, Argentina
| | - María Isabel Fonseca
- Laboratorio de Biotecnología Molecular, Instituto de Biotecnología de Misiones "Dra. Maria Ebe Reca" (InBioMis), Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Campus Universitario UNaM. Ruta Nacional N° 12 Km 7,5, Posadas, Misiones, Argentina
- CONICET, Buenos Aires, Argentina
| | - Pedro Darío Zapata
- Laboratorio de Biotecnología Molecular, Instituto de Biotecnología de Misiones "Dra. Maria Ebe Reca" (InBioMis), Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Campus Universitario UNaM. Ruta Nacional N° 12 Km 7,5, Posadas, Misiones, Argentina
- CONICET, Buenos Aires, Argentina
| |
Collapse
|
3
|
Abd-Elhamid TH, Althumairy D, Bani Ismail M, Abu Zahra H, Seleem HS, Hassanein EHM, Ali FEM, Mahmoud AR. Neuroprotective effect of diosmin against chlorpyrifos-induced brain intoxication was mediated by regulating PPAR-γ and NF-κB/AP-1 signals. Food Chem Toxicol 2024; 193:114967. [PMID: 39197517 DOI: 10.1016/j.fct.2024.114967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
Chlorpyrifos (CPF) is a widely used organophosphate (OP) pesticide. Unfortunately, pesticides are known to cause neuronal intoxication. Diosmin (DS) is an antioxidant, anti-inflammatory, and neuroprotective flavonoid with high efficacy and safety. We plan to investigate the efficacy of DS in treating CPF-induced neurotoxicity, as well as the mechanisms underlying the protective effects. In our study, rats were randomized into 5 groups: control, DS (50 mg/kg), CPF (10 mg/kg), CPF + DS (25 mg/kg), and CPF + DS (50 mg/kg). The results indicated that DS ameliorated neuronal intoxication induced by CPF, evidenced by decreasing Tau, p-Tau, and β-amyloid. Histological examinations support these findings. DS significantly ameliorated CPF-induced neuronal oxidative injury by decreasing MDA content and elevating GSH, GST, and SOD levels mediated by PPAR-γ upregulation. DS suppressed CPF-induced brain inflammation by decreasing MPO enzymatic activity and TNF-α, IL-1β, and IL-6 levels mediated by downregulation of NF-κB/AP-1(c-FOS and c-JUN) signal. Of note, DS protective effects were dose dependent. In conclusion, our data suggested that DS was a promising therapeutic strategy for attenuating CPF-induced neuronal intoxication by restoring oxidant-antioxidant balance and inhibiting inflammatory response in brain tissues.
Collapse
Affiliation(s)
- Tarek Hamdy Abd-Elhamid
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt; Department of Basic Medical Sciences, Faculty of Medicine, Aqaba Medical Sciences University, Aqaba, 77110, Jordan
| | - Duaa Althumairy
- Department of Biological Sciences, Faculty of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Mohammad Bani Ismail
- Department of Basic Medical Sciences, Faculty of Medicine, Aqaba Medical Sciences University, Aqaba, 77110, Jordan
| | - Hamad Abu Zahra
- Department of Biological Sciences, Faculty of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Hanan S Seleem
- Histology Department, Faculty of Medicine, Menoufia University, Shebin ElKoum-Menoufia, Egypt; Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University, Kingdom of Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Fares E M Ali
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt; Michael Sayegh, Faculty of Pharmacy, Aqaba University of Technology, Aqaba, 77110, Jordan.
| | - Amany Refaat Mahmoud
- Department of Human Anatomy and Embryology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt; Department of Anatomy and Histology, College of Medicine, Qassim University, Kingdom of Saudi Arabia
| |
Collapse
|
4
|
Khouni M, Grünberger O, Negro S, Hammecker C, Chaabane H. Adsorption and mineralization of metalaxyl-m and chlorpyrifos in irrigated Mediterranean soil under the effects of salinity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-35411-2. [PMID: 39467870 DOI: 10.1007/s11356-024-35411-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024]
Abstract
To evaluate the effects of salinity on the fate of pesticides in a Mediterranean irrigated system, experiments were carried out under laboratory conditions to determine the adsorption, desorption, and mineralization of chlorpyrifos (CPF) and metalaxyl-M (MET) in a soil sample from an irrigated field in northern Tunisia. Adsorption/desorption isotherms and mineralization kinetics data were obtained over a realistic range of salinities via batch equilibrium and incubation techniques. On the basis of the experimental results, MET has a lower sorption capacity than CPF does, and the adsorption data for both compounds were better fitted by the Freundlich equation, with Kf values of 0.477, 0.486, 0.426, 0.444 and 0.474 L kg-1 for MET and 38.994, 39.084, 40.644, 44.055 and 45.185 L kg-1 for CPF at salinities of 0, 1, 2, 5 and 10 g L-1, respectively. According to the mineralization experiments, increasing salinity increased the half-lives of both pesticides. For MET, the DT50 values in unsterilized soil were 206.68, 220.74, 222.16, and 238.73 days, and those in sterilized soil were 2772.58, 4077.33, 6301.33, and 8664.33 days at salinities of 0, 1, 2, 5, and 10 g L⁻1, respectively. For CPF, the DT50 values were 115.52, 138.62, 157.53, and 177.73 days in unsterilized soil and 346.57, 533.19, 693.14, and 990.21 days in sterilized soil. In terms of leaching behavior, the calculated groundwater ubiquity score (GUS) values for the MET and CPF indicate that the MET is classified as a leacher and that the CPF is classified as a nonleacher.
Collapse
Affiliation(s)
- Mariem Khouni
- University of Carthage, National Institute of Agronomy of Tunisia, LR/AGR14, Laboratory of Bioagressors and Integrated Protection in Agriculture, Department of Plant Health and Environment, Tunis, 1082, Tunisia.
| | - Olivier Grünberger
- UMR LISAH, Univ. Montpellier, INRAE, IRD, Institut Agro, Montpellier, France
| | - Sandrine Negro
- UMR LISAH, Univ. Montpellier, INRAE, IRD, Institut Agro, Montpellier, France
| | - Claude Hammecker
- UMR LISAH, Univ. Montpellier, INRAE, IRD, Institut Agro, Montpellier, France
| | - Hanene Chaabane
- University of Carthage, National Institute of Agronomy of Tunisia, LR/AGR14, Laboratory of Bioagressors and Integrated Protection in Agriculture, Department of Plant Health and Environment, Tunis, 1082, Tunisia
| |
Collapse
|
5
|
Kaczyński P, Iwaniuk P, Jankowska M, Orywal K, Socha K, Perkowski M, Farhan JA, Łozowicka B. Pesticide residues in common and herbal teas combined with risk assessment and transfer to the infusion. CHEMOSPHERE 2024; 367:143550. [PMID: 39426745 DOI: 10.1016/j.chemosphere.2024.143550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/27/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
The use of pesticides is permitted in tea cultivation, but many of them are withdrawn in Europe. The aim of this study was a comprehensive assessment of pesticide occurrence in common teas (black, green, red, white, and black flavored) and herbal teas (lemon balm and mint) and their transfer to the infusion. Among 603 pesticides, 24 were detected, of which 9 were withdrawn in Europe. Of the 64 tea samples, 47% had pesticide residues and 2% exceeded the European Maximum Residue Level (EU MRL; 572% for linuron/mint). The highest mean concentrations of the most common pesticides were 336 ng g-1 (quizalofop-P-ethyl/mint), 108.4 ng g-1 (MCPA/lemon balm), and 92.4 ng g-1 (glyphosate/red tea). A short time of brewing (5 min) had a higher transfer factor (TF) of most pesticides to the infusion (TF = 0.85/thiacloprid), compared to 30 min brewing (TF = 0.75/thiacloprid). Moreover, the physicochemical properties of detected pesticides, mainly density and melting temperature had a crucial impact on their transfer to the infusion. Acute risk was the highest for linuron/mint/children (17% of Acute Reference Dose; ARfD). Despite the withdrawal of some pesticides in the EU, they are still detected in tea samples. The results are pivotal for human health and highlight the need for further legislative action for tea.
Collapse
Affiliation(s)
- Piotr Kaczyński
- Institute of Plant Protection - National Research Institute, Chełmońskiego 22 St., 15-195, Białystok, Poland
| | - Piotr Iwaniuk
- Institute of Plant Protection - National Research Institute, Chełmońskiego 22 St., 15-195, Białystok, Poland.
| | - Magdalena Jankowska
- Institute of Plant Protection - National Research Institute, Chełmońskiego 22 St., 15-195, Białystok, Poland
| | - Karolina Orywal
- Medical University of Białystok, Faculty of Pharmacy with the Division of Laboratory Medicine, Department of Biochemical Diagnostics, Waszyngtona 15A St., 15-269, Białystok, Poland
| | - Katarzyna Socha
- Medical University of Białystok, Faculty of Pharmacy with the Division of Laboratory Medicine, Department of Bromatology, Mickiewicza 2D St., 15-222, Białystok, Poland
| | - Maciej Perkowski
- University of Białystok, Faculty of Law, Department of Public International Law and European Law, Mickiewicza 1 St., 15-213, Białystok, Poland
| | - Jakub Ali Farhan
- University of Białystok, Faculty of Law, Department of Public International Law and European Law, Mickiewicza 1 St., 15-213, Białystok, Poland
| | - Bożena Łozowicka
- Institute of Plant Protection - National Research Institute, Chełmońskiego 22 St., 15-195, Białystok, Poland
| |
Collapse
|
6
|
Thépaut E, Tebby C, Bisson M, Brochot C, Ratier A, Zaros C, Personne S, Chardon K, Zeman F. Prenatal exposure to chlorpyrifos of French children from the Elfe cohort. Int J Hyg Environ Health 2024; 263:114480. [PMID: 39423757 DOI: 10.1016/j.ijheh.2024.114480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/19/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND The organophosphate pesticide chlorpyrifos was widely used in the European Union before its ban in 2020 and was associated with neurodevelopmental disorders. However, within the concept of Developmental Origins of Health and Disease, in utero exposure to chlorpyrifos can lead to neurodevelopmental effects in developing children. OBJECTIVE The aim of this study was to estimate fetal exposure to chlorpyrifos using biomonitoring data measured in Elfe pregnant women and a physiologically based pharmacokinetic (PBPK) approach and compare exposure to toxicological reference values. METHODS A pregnancy-PBPK model was developed based on an existing adult chlorpyrifos model and a new toxicological reference value was proposed for neurodevelopmental effects. The pregnant women exposure was estimated based on dialkylphosphate (DAP) levels in urine assuming constant exposure to chlorpyrifos and compared to both the existing toxicological reference value and the new proposed draft toxicological reference value. Fetal internal concentrations in target tissues were then predicted using the developed pregnancy-PBPK model. Urinary concentrations of the chlorpyrifos-specific metabolite (TCPy) were also predicted for comparison with other biomonitoring data. RESULTS The median daily exposure to chlorpyrifos for the French pregnant women from the Elfe cohort was estimated at 6.3x10-4 μg/kg body weight/day. The predicted urinary excretion of TCPy, the chlorpyrifos-specific metabolite, is in the same range as observed in other European cohorts (mean: 2.13 μg/L). Predicted brain chlorpyrifos levels were similar in pregnant women and their fetus and were 10-fold higher than the predicted blood chlorpyrifos levels. It was estimated that 6% and 20% of the pregnant women population had been exposed to levels exceeding the general population and draft toxicological reference values, respectively. CONCLUSIONS Prenatal exposure to chlorpyrifos was estimated for the French population based on data from the Elfe cohort. Internal chlorpyrifos concentrations in target tissues (brain and blood) were predicted for fetuses at the end of the pregnancy. Under a conservative assumption, a small percentage of the population was identified as being exposed to levels exceeding the toxicological reference values.
Collapse
Affiliation(s)
- Elisa Thépaut
- Unité Toxicologie ExpérimentAle et Modélisation, INERIS, Institut National de l'Environnement Industriel et des Risques, 60550 Verneuil-en-Halatte, France; Péritox (UMR_I 01), UPJV, Université de Picardie Jules Verne, 80025, Amiens, France
| | - Cleo Tebby
- Unité Toxicologie ExpérimentAle et Modélisation, INERIS, Institut National de l'Environnement Industriel et des Risques, 60550 Verneuil-en-Halatte, France
| | - Michèle Bisson
- Unité expertise en toxicologie / écotoxicologie des substances chimiques, INERIS, Institut National de l'Environnement Industriel et des Risques, 60550 Verneuil-en-Halatte, France
| | - Céline Brochot
- Unité Toxicologie ExpérimentAle et Modélisation, INERIS, Institut National de l'Environnement Industriel et des Risques, 60550 Verneuil-en-Halatte, France; Certara UK Ltd, Simcyp Division, Sheffield, UK
| | - Aude Ratier
- Unité Toxicologie ExpérimentAle et Modélisation, INERIS, Institut National de l'Environnement Industriel et des Risques, 60550 Verneuil-en-Halatte, France; Péritox (UMR_I 01), UPJV, Université de Picardie Jules Verne, 80025, Amiens, France
| | - Cécile Zaros
- INED French Institute for Demographic Studies, ELFE Joint Unit Campus Condorcet 9, 93322 Aubervilliers CEDEX, France
| | - Stéphane Personne
- Péritox (UMR_I 01), UPJV, Université de Picardie Jules Verne, 80025, Amiens, France
| | - Karen Chardon
- Péritox (UMR_I 01), UPJV, Université de Picardie Jules Verne, 80025, Amiens, France
| | - Florence Zeman
- Unité Toxicologie ExpérimentAle et Modélisation, INERIS, Institut National de l'Environnement Industriel et des Risques, 60550 Verneuil-en-Halatte, France; Péritox (UMR_I 01), UPJV, Université de Picardie Jules Verne, 80025, Amiens, France.
| |
Collapse
|
7
|
Fernández B, Vidal-Liñán L, Bellas J, Campillo JA, Chaves-Pozo E, Albentosa M. The particle effect: comparative toxicity of chlorpyrifos in combination with microplastics and phytoplankton particles in mussel. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 275:107053. [PMID: 39213727 DOI: 10.1016/j.aquatox.2024.107053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/18/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Lately, the role of microplastics (MP) as vectors for dissolved contaminants and as vehicle for their transfer to aquatic organisms has received attention. Similarly to MP, other inorganic and organic particles may act as passive samplers. However, limited comparative knowledge exists at this respect. In the present study we have comparatively investigated the risk for mussel of MP and the pesticide chlorpyrifos (CPF) alone and in combination with MP and phytoplankton particles of microalgae (MP-CPF and MA-CPF, respectively). We selected MP and microalgae of similar size to expose mussel to the same volume of particles (≈1.5 mm3L-1 ≈ equivalent to 1.5 mg MP L-1) and the same concentration of contaminant (CPF, 7.6 μg L-1). MP were virgin HDPE microparticles (≤10 μm) while the microalgae species was Isochrisis galbana (4-8 μm). Mussels were exposed for 21 days to MP, CPF, MP-CPF and MA-CPF. Then, a suite of neurotoxicity, oxidative stress and oxidative damage biomarkers were measured in samples collected at day 7 and 21. Additionally, these biochemical markers were assessed in an integrated manner with others measured at physiological, immune and cell component level in the same organisms, previously published. Overall, MP did not elicit significant alterations on the majority of parameters measured. In contrast, mussels exposed to CPF, MA-CPF and MP-CPF showed evidence of neurotoxicity and oxidant imbalance at day 7, added to a detrimental physiological condition and immune imbalance at day 21. At the latter time MP-CPF mussels showed greater alterations than CPF or MA-CPF mussels. This suggested a synergistic toxicity of MP combined with CPF greater than that produced by the contaminants alone (MP or CPF) or by MA combined with CPF.
Collapse
Affiliation(s)
- Beatriz Fernández
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (COMU-IEO), CSIC, Calle Varadero 1., San pedro del Pinatar, Murcia 30740, Spain.
| | - Leticia Vidal-Liñán
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (COV-IEO), CSIC, Subida a Radio Faro 50, Vigo 36390, Spain
| | - Juan Bellas
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (COV-IEO), CSIC, Subida a Radio Faro 50, Vigo 36390, Spain
| | - Juan A Campillo
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (COMU-IEO), CSIC, Calle Varadero 1., San pedro del Pinatar, Murcia 30740, Spain
| | - Elena Chaves-Pozo
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (COMU-IEO), CSIC, Carretera de la Azohía s/n, Puerto de Mazarrón, Murcia 30860, Spain
| | - Marina Albentosa
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (COMU-IEO), CSIC, Calle Varadero 1., San pedro del Pinatar, Murcia 30740, Spain.
| |
Collapse
|
8
|
Jovičić SM. Analysis of total RNA as a potential biomarker of developmental neurotoxicity in silico. Health Informatics J 2024; 30:14604582241285832. [PMID: 39384248 DOI: 10.1177/14604582241285832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
A vast number of neurodegenerative disorders arise from neurotoxicity. In neurotoxicity, more than 250 RNA molecules are up and downregulated. The manuscript investigates the exposure of chlorpyrifos organophosphate pesticide (COP) effect on total RNA in murine brain tissue in 4 genotypes for in silico neurodegeneration development. The GSE58103 dataset from the Gene Expression Omnibus (GEO) database applies for data preprocessing, normalization, and quality control. Differential expression analysis (DEG) uses the limma package in R. Study compared expression profiles from murine fetal brain tissues across four genotypes: PON-1 knockout (KO), tgHuPON1Q192 (Q-tg), tgHuPON1R192 (R-tg), and wild-type (WT). We analyze 60 samples, 15 samples per genotype, to identify DEGs. The significance criteria are adjusted p-value <.05 and a |log2 fold change| > 1. The study identifies microRNA485 as the potential biomarker of COP toxicity using the GSE58103 dataset. Significant differences exist for microRNA485 between KO and WT groups by differential expression analysis. Moreover, graphical analysis shows sample relationships among genotype groups. MicroRNA485 represents a promising biomarker for developmental COP neurotoxicity by utilizing in silico analysis in scientific practice.
Collapse
Affiliation(s)
- Snežana M Jovičić
- Department of Genetics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
9
|
Montanarí C, Franco-Campos F, Taroncher M, Rodríguez-Carrasco Y, Zingales V, Ruiz MJ. Chlorpyrifos induces cytotoxicity via oxidative stress and mitochondrial dysfunction in HepG2 cells. Food Chem Toxicol 2024; 192:114933. [PMID: 39147357 DOI: 10.1016/j.fct.2024.114933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Chlorpyrifos (CPF), a widely used broad-spectrum organophosphate pesticide, has been associated with various adverse health effects in animals and humans. While its primary mechanism of action involves the irreversible inhibition of acetylcholinesterase, secondary mechanisms have also been suggested. The aim of the present study was to explore the secondary mechanisms of action involved in CPF-induced acute cytotoxicity using human hepatocarcinoma HepG2 cells. In particular, we investigated oxidative stress and mitochondrial function by assessing reactive oxygen species (ROS) generation, lipid peroxidation (LPO) and mitochondrial membrane potential (ΔΨm) alteration. Results showed that 24-h exposure to CPF (78.125-2500 μM) decreased cell viability in a concentration-dependent manner (IC50 = 280.87 ± 26.63 μM). Sub-toxic CPF concentrations (17.5, 35 and 70 μM) induced increases in ROS generation (by 83%), mitochondrial superoxide (by 7.1%), LPO (by 11%), and decreased ΔΨm (by 20%). CPF also upregulated Nrf2 protein expression, indicating the role of the latter in modulating the cellular response to oxidative insults. Overall, our findings suggest that CPF caused hepatotoxicity through oxidative stress and mitochondrial dysfunction. Given the re-emerging use of CPF, this study emphasizes the need for comprehensive analysis to elucidate its toxicity on non-target organs and associated mechanisms.
Collapse
Affiliation(s)
- C Montanarí
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, València, Spain
| | - F Franco-Campos
- Research Group in Alternative Methods for Determining Toxic Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Spain; Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, València, Spain
| | - M Taroncher
- Research Group in Alternative Methods for Determining Toxic Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Spain; Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, València, Spain
| | - Y Rodríguez-Carrasco
- Research Group in Alternative Methods for Determining Toxic Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Spain; Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, València, Spain
| | - V Zingales
- Research Group in Alternative Methods for Determining Toxic Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Spain; Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, València, Spain.
| | - M J Ruiz
- Research Group in Alternative Methods for Determining Toxic Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Spain; Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, València, Spain
| |
Collapse
|
10
|
Ray SS, Parihar K, Goyal N, Mahapatra DM. Synergistic insights into pesticide persistence and microbial dynamics for bioremediation. ENVIRONMENTAL RESEARCH 2024; 257:119290. [PMID: 38823612 DOI: 10.1016/j.envres.2024.119290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 05/20/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Rampant use of fertilizers and pesticides for boosting agricultural crop productivity has proven detrimental impact on land, water, and air quality globally. Although fertilizers and pesticides ensure greater food security, their unscientific management negatively impacts soil fertility, structure of soil microbiome and ultimately human health and hygiene. Pesticides exert varying impacts on soil properties and microbial community functions, contingent on factors such as their chemical structure, mode of action, toxicity, and dose-response characteristics. The diversity of bacterial responses to different pesticides presents a valuable opportunity for pesticide remediation. In this context, OMICS technologies are currently under development, and notable advancements in gene editing, including CRISPR technologies, have facilitated bacterial engineering, opening promising avenues for reducing toxicity and enhancing biological remediation. This paper provides a holistic overview of pesticide dynamics, with a specific focus on organophosphate, organochlorine, and pyrethroids. It covers their occurrence, activity, and potential mitigation strategies, with an emphasis on the microbial degradation route. Subsequently, the pesticide degradation pathways, associated genes and regulatory mechanisms, associated OMICS approaches in soil microbes with a special emphasis on CRISPR/Cas9 are also being discussed. Here, we analyze key environmental factors that significantly impact pesticide degradation mechanisms and underscore the urgency of developing alternative strategies to diminish our reliance on synthetic chemicals.
Collapse
Affiliation(s)
- Srishti Sinha Ray
- School of Health Sciences and Technology, UPES, Dehradun, 248007, Uttarakhand, India
| | - Kashish Parihar
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, 248007, India
| | - Nishu Goyal
- School of Health Sciences and Technology, UPES, Dehradun, 248007, Uttarakhand, India.
| | - Durga Madhab Mahapatra
- School of Engineering, UPES, Dehradun, 248007, Uttarakhand, India; Energy and Wetlands Research Group, Center for Ecological Sciences, Indian Institute of Science (IISc), Bangalore, 560012, India; Department of Biological and Ecological Engineering, Oregon State University, Corvallis, USA
| |
Collapse
|
11
|
Kiran PS, Mandal P, Jain M, Ghosal PS, Gupta AK. A comprehensive review on the treatment of pesticide-contaminated wastewater with special emphasis on organophosphate pesticides using constructed wetlands. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122163. [PMID: 39182378 DOI: 10.1016/j.jenvman.2024.122163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/29/2024] [Accepted: 08/07/2024] [Indexed: 08/27/2024]
Abstract
Pesticides pose a significant threat to aquatic ecosystems due to their persistent nature and adverse effects on biota. The increased detection of pesticides in various water bodies has prompted research into their toxicological impacts and potential remediation strategies. However, addressing this issue requires the establishment of robust regulatory frameworks to determine safe thresholds for pesticide concentrations in water and the development of effective treatment methods. This assessment underscores the complex ecological risks associated with organophosphate pesticides (OPPs) and emphasizes the urgent need for strategic management and regulatory measures. This study presents a detailed examination of the global prevalence of OPPs and their potential adverse effects on aquatic and human life. A comprehensive risk assessment identifies azinphos-methyl, chlorpyrifos, and profenfos as posing considerable ecological hazard to fathead minnow, daphnia magna, and T. pyriformis. Additionally, this review explores the potential efficacy of constructed wetlands (CWs) as a sustainable approach for mitigating wastewater contamination by diverse pesticide compounds. Furthermore, the review assess the effectiveness of CWs for treating wastewater contaminated with pesticides by critically analyzing the removal mechanism and key factors. The study suggests that the optimal pH range for CWs is 6-8, with higher temperatures promoting microbial breakdown and lower temperatures enhancing pollutant removal through adsorption and sedimentation. The importance of wetland vegetation in promoting sorption, absorption, and degradation processes is emphasized. The study emphasizes the importance of hydraulic retention time (HRT) in designing, operating, and maintaining CWs for pesticide-contaminated water treatment. The removal efficiency of CWs ranges from 38% to 100%, depending on factors like pesticide type, substrate materials, reactor setup, and operating conditions.
Collapse
Affiliation(s)
- Pilla Sai Kiran
- School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Pubali Mandal
- Department of Civil Engineering, Birla Institute of Technology and Science Pilani, Pilani, 333031, Rajasthan, India.
| | - Mahak Jain
- School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Partha Sarathi Ghosal
- School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Ashok Kumar Gupta
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
12
|
Mansukhani M, Roy P, Ganguli N, Majumdar SS, Sharma SS. Organophosphate pesticide chlorpyrifos and its metabolite 3,5,6-trichloropyridinol downregulate the expression of genes essential for spermatogenesis in caprine testes. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106065. [PMID: 39277380 DOI: 10.1016/j.pestbp.2024.106065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/04/2024] [Accepted: 07/29/2024] [Indexed: 09/17/2024]
Abstract
Organophosphate pesticides have potent endocrine disrupting effects, hence banned in many countries. However, many organophosphates like chlorpyrifos, malathion et cetera continue to be used in some countries (Wołejko et al., 2022; Wołejko et al., 2022)including India. Fodder mediated ingestion of these substances may be harmful for livestock fertility. We have investigated the effect of the widely used organophosphate pesticide chlorpyrifos (CPF) and its metabolite, 3,5,6-trichloropyridinol (TCPy) on the expression of genes essential for spermatogenesis in goat testicular tissue. The testicular Sertoli cells (Sc) regulate germ cell division and differentiation under the influence of follicle stimulating hormone (FSH) and testosterone (T). Impaired FSH and T mediated signalling in Sc can compromise spermatogenesis leading to sub-fertility/infertility. As Sc express receptors (R) for FSH and T, they are highly susceptible to the endocrine disrupting effects of pesticides affecting fertility by dysregulating the functioning of Sc. Our results indicated that exposure to different concentrations of CPF and TCPy can compromise Sc function by downregulating the expression of FSHR and AR which was associated with a concomitant decline in the expression of genes essential for germ cell division and differentiation, like KITLG, INHBB, CLDN11 and GJA1. CPF also induced a significant reduction in the activity of acetylcholinesterase in the testes and increased the total testicular antioxidant capacity. Our results suggested that CPF and its metabolite TCPy may induce reproductive toxicity by dysregulating the expression of Sc specific genes essential for spermatogenesis.
Collapse
Affiliation(s)
- Meenakshi Mansukhani
- National Institute of Animal Biotechnology, Hyderabad 50032, India; Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Partha Roy
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee 247667, India
| | - Nirmalya Ganguli
- National Institute of Animal Biotechnology, Hyderabad 50032, India; Adjunct Faculty, Regional Centre for Biotechnology, Faridabad, Haryana, India
| | | | | |
Collapse
|
13
|
Jacob MM, Ponnuchamy M, Kapoor A, Sivaraman P. Adsorptive membrane separation for eco-friendly decontamination of chlorpyrifos via biochar-impregnated cellulose acetate mixed matrix membrane. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:56314-56331. [PMID: 39271613 DOI: 10.1007/s11356-024-34912-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
In this work, the phase inversion approach is used to synthesize a blended mixed matrix membrane from cellulose acetate polymer and sugarcane bagasse biochar. The experiments were carried out to estimate the extent of chlorpyrifos (CPS) pesticide removal. The results showed that the removal rate was more than 99% in making the filtered water suitable enough for domestic use. The physical and functional characteristics of the membranes, such as permeability, and contact angle were identified. The changes in the membrane characteristics were observed using scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction both before and after the experimental trials. Experiments were conducted to assess not only the rejection characteristics of CPS, as a function feed concentration, but also the effect co-ions on the rejection used to analyze the composition both before and after filtration. The effects of initial CPS concentration, biochar loading, and co-ions on the membrane were investigated. The membranes showed contact angles between 70° and 97° and a permeability between 0.25 × 1010 m Pa-1 s-1 and 0.31 × 1010 m Pa-1 s-1. The effective removal of CPS from the contaminated aqueous stream was attributed to a combination of adsorptive uptake and membrane-based separation. CPS was found to get adsorbed onto the membrane matrix through an intraparticle diffusion mechanism along with an irreversible monolayer adsorption. The membrane-solute adsorptive interaction was represented by Langmuir isotherm and intraparticle diffusion models with a maximum adsorption capacity of 192.3 mg g-1. The findings indicated the efficacy of biochar-cellulose acetate mixed matrix membrane for sustainable and eco-friendly treatment of chlorpyrifos contaminated water.
Collapse
Affiliation(s)
- Meenu Mariam Jacob
- Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, 603 202, Tamil Nadu, India
| | - Muthamilselvi Ponnuchamy
- Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, 603 202, Tamil Nadu, India.
| | - Ashish Kapoor
- Department of Chemical Engineering, Harcourt Butler Technical University, Nawabganj, 208 002, Kanpur, UP, India
| | - Prabhakar Sivaraman
- Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, 603 202, Tamil Nadu, India
| |
Collapse
|
14
|
Moyano P, Flores A, Fernández MDLC, García J, Sanjuan J, Plaza JC, Del Pino J. Increased Levels of Phosphorylated-P38α Induce WNT/β-Catenin and NGF/P75NTR/TrkA Pathways Disruption and SN56 Cell Death following Single and Repeated Chlorpyrifos Treatment. Foods 2024; 13:2427. [PMID: 39123618 PMCID: PMC11311586 DOI: 10.3390/foods13152427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Chlorpyrifos (CPF) biocide, exposure to which is mainly produced in the human population through diet, induces several neurotoxic effects. CPF single and repeated exposure induces memory and learning disorders, although the mechanisms that produce these outcomes are complex and not well understood. CPF treatment (single and repeated) of cholinergic septal SN56 cells induced an increase in phosphorylated-P38α levels that led to WNT/β-Catenin and NGF/P75NTR/TrkA pathways disruption and cell death. These results provide new knowledge on the mechanisms that mediate CPF basal forebrain cholinergic neuronal loss induced by CPF single and repeated exposure and can help unravel the way through which this compound produces cognitive decline and develop efficient treatments against these effects.
Collapse
Affiliation(s)
- Paula Moyano
- Pharmacology and Toxicology Department, Veterinary School, Complutense University, 28040 Madrid, Spain (J.D.P.)
| | - Andrea Flores
- Pharmacology and Toxicology Department, Veterinary School, Complutense University, 28040 Madrid, Spain (J.D.P.)
| | | | - Jimena García
- Pharmacology and Toxicology Department, Veterinary School, Complutense University, 28040 Madrid, Spain (J.D.P.)
| | - Javier Sanjuan
- Pharmacology and Toxicology Department, Veterinary School, Complutense University, 28040 Madrid, Spain (J.D.P.)
| | - José Carlos Plaza
- Legal Medicine, Psychiatry and Pathology Department, Medicine School, Complutense University, 28040 Madrid, Spain
| | - Javier Del Pino
- Pharmacology and Toxicology Department, Veterinary School, Complutense University, 28040 Madrid, Spain (J.D.P.)
| |
Collapse
|
15
|
Ai L, Guo J, Chen H, Hu D, Lu P. Degradation of Isotianil in Water and Soil: Kinetics, Degradation Pathways, Mechanisms, and Ecotoxicity Assessments. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39028945 DOI: 10.1021/acs.jafc.4c02517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Pesticides are transported and transformed in soil and can enter surface water through various pathways. They undergo hydrolysis, oxidation, and photoconversion in surface water. Isotianil is a new fungicide that effectively controls rice blast. However, there are limited reports on its degradation. Herein, the hydrolysis and photolysis of isotianil in water and its degradation in soil samples from five provinces of China were investigated. The degradation products of isotianil were identified using ultrahigh-performance liquid chromatography-Q exactive hybrid quadrupole-orbitrap high-resolution accurate mass spectrometry, and four compounds were discovered for the first time. The degradation pathways of isotianil were inferred, and the reaction active site and degradation mechanism of isotianil were clarified based on density functional theory calculations. The ecotoxicity of the degradation product M118 (aminobenzonitrile) was found to be moderate toward Daphnia magna, which was predicted and confirmed by Ecological Structure Activity Relationships and the experiment, respectively. The results of this study will contribute to a better understanding of the fate of isotianil in the environment.
Collapse
Affiliation(s)
- Lina Ai
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Junjiang Guo
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550003, PR China
| | - Hong Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Deyu Hu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Ping Lu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
16
|
Kavallieratos NG, Boukouvala MC, Eleftheriadou N, Filintas CS, Gidari DLS, Kyrpislidi VPC. Sublethal Effects of Chlorantraniliprole on the Mobility Patterns of Sitophilus spp.: Implications for Pest Management. INSECTS 2024; 15:451. [PMID: 38921166 PMCID: PMC11203773 DOI: 10.3390/insects15060451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024]
Abstract
Chlorantraniliprole, an anthranilic diamide insecticide, has emerged as a promising solution for controlling agricultural pests because of its low mammalian toxicity and selectivity towards non-target organisms. This study investigated the sublethal effects of chlorantraniliprole on the mobility behavior of two significant stored-product pests, Sitophilus oryzae (L.) and Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae). Contact toxicity assays revealed varying susceptibility levels between the two species, with S. zeamais showing higher sensitivity. Subsequent analysis of mobility behavior, both in the presence and absence of food, indicated significant differences between chlorantraniliprole-exposed and control groups. While S. oryzae exhibited altered locomotion patterns and a decreased number of food approaches at sublethal concentrations, S. zeamais displayed increased walking time and reduced immobility periods. These findings highlight the importance of considering sublethal effects in understanding the overall impact of chlorantraniliprole on stored-product pests. Further research into the long-term consequences of sublethal exposure is warranted to inform more effective pest management strategies in storage.
Collapse
Affiliation(s)
- Nickolas G. Kavallieratos
- Laboratory of Agricultural Zoology and Entomology, Faculty of Crop Science, Agricultural University of Athens, 75 Iera Odos Str., 11855 Athens, Greece; (M.C.B.); (N.E.); (C.S.F.); (D.L.S.G.); (V.P.C.K.)
| | | | | | | | | | | |
Collapse
|
17
|
Ommati MM, Nozhat Z, Sabouri S, Kong X, Retana-Márquez S, Eftekhari A, Ma Y, Evazzadeh F, Juárez-Rojas L, Heidari R, Wang HW. Pesticide-Induced Alterations in Locomotor Activity, Anxiety, and Depression-like Behavior Are Mediated through Oxidative Stress-Related Autophagy: A Persistent Developmental Study in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11205-11220. [PMID: 38708789 DOI: 10.1021/acs.jafc.4c02299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Chlorpyrifos (CPF), dichlorvos (DDV), and cypermethrin (CP), as commonly used pesticides, have been implicated in inducing neuropsychiatric disorders, such as anxiety, depression-like behaviors, and locomotor activity impairment. However, the exact molecular mechanisms of these adverse effects, particularly in both sexes and their next-generation effects, remain unclear. In this study, we conducted behavioral analysis, along with cellular assays (monodansylcadaverine staining) and molecular investigations (qRT-PCR and western blotting of mTOR, P62, and Beclin-1) to clear the potential role of autophagy in pesticide-induced behavioral alterations. For this purpose, 42 adult female and 21 male inbred ICR mice (F0) were distributed into seven groups. Maternal mice (F0) and 112 F1 offspring were exposed to 0.5 and 1 ppm of CPF, DDV, and CP through drinking water. F1 male and female animals were studied to assess the sex-specific effects of pesticides on brain tissue. Our findings revealed pronounced anxiogenic effects and impaired locomotor activity in mice. F1 males exposed to CPF (1 ppm) exhibited significantly elevated depression-like behaviors compared to other groups. Moreover, pesticide exposure reduced mTOR and P62 levels, while enhancing the Beclin-1 gene and protein expression. These changes in autophagy signaling pathways, coupled with oxidative and neurogenic damage in the cerebral cortex and hippocampus, potentially contribute to heightened locomotor activity, anxiety, and depression-like behaviors following pesticide exposure. This study underscores the substantial impact of pesticides on both physiological and behavioral aspects, emphasizing the necessity for comprehensive assessments and regulatory considerations for pesticide use. Additionally, the identification of sex-specific responses presents a crucial dimension for pharmaceutical sciences, highlighting the need for tailored therapeutic interventions and further research in this field.
Collapse
Affiliation(s)
- Mohammad Mehdi Ommati
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71468 64685, Iran
| | - Zahra Nozhat
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Samira Sabouri
- College of Animal Science and Veterinary, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Xiangdong Kong
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Socorro Retana-Márquez
- Department of Reproductive Biology, Universidad Autónoma Metropolitana-Iztapalapa, México City 09340, Mexico
| | - Aziz Eftekhari
- Department of Biochemistry, Faculty of Science, Ege University, Izmir 35100, Turkey
| | - Yanqin Ma
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Fatemeh Evazzadeh
- Department of Psychology, Science & Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Lizbeth Juárez-Rojas
- Department of Reproductive Biology, Universidad Autónoma Metropolitana-Iztapalapa, México City 09340, Mexico
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71468 64685, Iran
| | - Hong-Wei Wang
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China
| |
Collapse
|
18
|
Chu Y, Li Q, He Y, Li H, Wang Q, Li S, Wang J, Wang W, Ju S. Exposure to chlorpyrifos interferes with intercellular communication in cumulus-oocyte complexes during porcine oocyte maturation. Food Chem Toxicol 2024; 187:114629. [PMID: 38565334 DOI: 10.1016/j.fct.2024.114629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/27/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
Chlorpyrifos (CPF), a widely used organophosphorus pesticide (OP) to control pests has been verified reproductive toxicity on mammalian oocytes. However, limited information exists on its correlation with the dysfunction of the intercellular communication in cumulus-oocyte complexes (COCs). Herein, our study utilized porcine COCs as models to directly address the latent impact of CPF on the communication between cumulus cells (CCs) and oocytes during in vitro maturation. The results demonstrated that CPF exposure decreased the rate of the first polar body (PB1) extrusion and blocked meiosis progression. Notably, the cumulus expansion of CPF-exposed COCs was suppressed significantly, accompanied by the down-regulated mRNA levels of cumulus expansion-related genes. Furthermore, the early apoptotic level was raised and the expression of BAX/BCL2 and cleaved caspase 3 was up-regulated in the CCs of CPF-exposed COCs (p < 0.05). Moreover, CPF exposure impaired mRNA levels of antioxidant enzyme-related genes, induced higher levels of reactive oxygen species (ROS) and reduced the levels of mitochondrial membrane potential (MMP) in CCs (p < 0.05). Additionally, the integrated optical density (IOD) rate (cumulus/oocyte) of calcein and the expression of connexin 43 (CX43) was increased in CPF treatment groups (p < 0.05). As well, CPF exposure reduced the expression levels of FSCN1, DAAM1 and MYO10, which resulted in a significant decrease in the number and fluorescence intensity of transzonal projections (TZPs). In conclusion, CPF inhibited the expansion of cumulus and caused oxidative stress and apoptosis as well as disturbed the function of gap junctions (GJs) and TZPs, which eventually resulted in the failure of oocyte maturation.
Collapse
Affiliation(s)
- Yajie Chu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Qiao Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Yijing He
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Heran Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Qijia Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Shurui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Jianuo Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Weihan Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Shiqiang Ju
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China.
| |
Collapse
|
19
|
Rueda-García V, Rondón-Barragán IS. Molecular Characterization of Neurogranin (NRGN) Gene from Red‑Bellied Pacu (Piaractus brachypomus). Mol Neurobiol 2024; 61:2620-2630. [PMID: 37922064 PMCID: PMC11043121 DOI: 10.1007/s12035-023-03700-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/06/2023] [Indexed: 11/05/2023]
Abstract
Neurogranin (NRGN) is a small brain protein expressed in various telencephalic areas and plays an essential role in synaptic plasticity by regulating the availability of calmodulin (CaM). The study aims to characterize the neurogranin gene in Colombian native fish, red-bellied pacu, Piaractus brachypomus, its basal tissue expression and differential expression in brain injury and sublethal toxicity by organophosphates. NRGN gene contains an open reading frame of 183 nucleotides encoding for 60 amino acids. Bioinformatics analysis showed an IQ motif necessary in the interaction with CaM. NRGN mRNA was detected in tissues with higher expression in brain, gills, and head kidney. In brain regions, NRGN showed high expression in the telencephalon (TE) and olfactory bulb (OB). In the sublethal toxicity experiment, NRGN mRNA was upregulated in individuals under organophosphate exposure in the OB and optic chiasm (OC). In brain injury experiment, NRGN showed upregulation at 14 days in OC and at 24 h and 7 days in TE. These findings demonstrate the differential expression of NRGN under different experimental conditions which make it a candidate for a biomarker in the brain of P. brachypomus.
Collapse
Affiliation(s)
- Valentina Rueda-García
- Research Group in Immunobiology and Pathogenesis, Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Building 33 L105, 730002, Ibagué, Tolima, Colombia
| | - Iang Schroniltgen Rondón-Barragán
- Research Group in Immunobiology and Pathogenesis, Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Building 33 L105, 730002, Ibagué, Tolima, Colombia.
| |
Collapse
|
20
|
M J AW, G T, S AM, S M, A NA, A B, V R, A S SH. A comparative study on targeted gene expression in zebrafish and its gill cell line exposed to chlorpyrifos. In Vitro Cell Dev Biol Anim 2024; 60:397-410. [PMID: 38589735 DOI: 10.1007/s11626-024-00892-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/03/2024] [Indexed: 04/10/2024]
Abstract
Chlorpyrifos (CPF) is an organophosphorus-based insecticide, which is known to pose a serious risk to aquatic animals. However, the mechanisms of CPF toxicity in animals still remain unclear. The present investigation aimed to compare the potential effects of CPF in zebrafish (Danio rerio) and its gill cell line (DrG cells). Based on the in vivo study, the LC50 was calculated as 18.03 µg/L and the chronic toxic effect of CPF was studied by exposing the fish to 1/10th (1.8 µg/L) and 1/5th (3.6 µg/L) of the LC50 value. Morphological changes were observed in fish and DrG cells which were exposed to sublethal concentrations of CPF. The results of MTT and NR assays showed significant decline in the survival of cells exposed to CPF at 96 h. The production of reactive oxygen species in DrG cells and expression levels of antioxidant markers, inflammatory response genes (cox2a and cox2b), cyp1a, proapoptotic genes (bax), antiapoptotic gene (bcl2), apoptotic genes (cas3 and p53), and neuroprotective gene (ache) were determined in vivo using zebrafish and in vitro using DrG cells after exposure to CPF. Significant changes were found in the ROS production (DrG cells) and in the expression of inflammatory, proapoptotic, and apoptotic genes. This study showed that DrG cells are potential alternative tools to replace the use of whole fish for toxicological studies.
Collapse
Affiliation(s)
- Abdul Wazith M J
- Aquatic Animal Health Laboratory, PG and Research Department of Zoology, C. Abdul Hakeem College, Melvisharam, Tamil Nadu, 632509, India
| | - Taju G
- Aquatic Animal Health Laboratory, PG and Research Department of Zoology, C. Abdul Hakeem College, Melvisharam, Tamil Nadu, 632509, India.
| | - Abdul Majeed S
- Aquatic Animal Health Laboratory, PG and Research Department of Zoology, C. Abdul Hakeem College, Melvisharam, Tamil Nadu, 632509, India
| | - Mithra S
- Aquatic Animal Health Laboratory, PG and Research Department of Zoology, C. Abdul Hakeem College, Melvisharam, Tamil Nadu, 632509, India
| | - Nafeez Ahmed A
- Aquatic Animal Health Laboratory, PG and Research Department of Zoology, C. Abdul Hakeem College, Melvisharam, Tamil Nadu, 632509, India
| | - Badhusha A
- Aquatic Animal Health Laboratory, PG and Research Department of Zoology, C. Abdul Hakeem College, Melvisharam, Tamil Nadu, 632509, India
| | - Rajkumar V
- Aquatic Animal Health Laboratory, PG and Research Department of Zoology, C. Abdul Hakeem College, Melvisharam, Tamil Nadu, 632509, India
| | - Sahul Hameed A S
- Aquatic Animal Health Laboratory, PG and Research Department of Zoology, C. Abdul Hakeem College, Melvisharam, Tamil Nadu, 632509, India.
| |
Collapse
|
21
|
Binmahfouz LS, Hassanein EH, Bagher AM, Hareeri RH, Alamri ZZ, Algandaby MM, Abdel-Daim MM, Abdel-Naim AB. Berberine alleviates chlorpyrifos-induced nephrotoxicity in rats via modulation of Nrf2/HO-1 axis. Heliyon 2024; 10:e25233. [PMID: 38327393 PMCID: PMC10847644 DOI: 10.1016/j.heliyon.2024.e25233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024] Open
Abstract
Chlorpyrifos (CPS), an organophosphorus insecticide, is widely used for agricultural and non-agricultural purposes with hazardous health effects. Berberine (BBR) is a traditional Chinese medicine and a phytochemical with anti-inflammatory and anti-oxidative properties. The present study evaluated the effects of BBR against kidney damage induced by CPS and the underlying mechanisms. An initial study indicated that BBR 50 mg/kg was optimal under our experimental conditions. Then, 24 rats (6/group) were randomized into: control, BBR (50 mg/kg/day), CPS (10 mg/kg/day), and CPS + BBR. BBR was administration 1 h prior to CPS. Each treatment was delivered daily for a period of 28 consecutive days using a gastric gavage tube. Compared to CPS-alone treated rats, BBR effectively improved renal function by preventing the rise in serum urea, creatinine, and uric levels. The reno-protective effects of BBR were confirmed through a histological examination of kidney tissues. BBR restored oxidant-antioxidant balance in renal tissues mediated by Keap1/Nrf2/HO-1 axis modulation. In addition, BBR decreased nitric oxide (NO) and myeloperoxidase (MPO) activity. This was paralleled with the potent down-regulation of NF-κB. Furthermore, BBR exhibited anti-apoptotic activities supported by the upregulation of Bcl-2 and down-regulation of Bax and caspase-3 expression. In conclusion, our data suggest that BBR attenuates CPS-induced nephrotoxicity in rats by restoring oxidant-antioxidant balance and inhibiting inflammatory response and apoptosis in renal tissue. This is mediated, at least partly, by modulation of the Nrf2/HO-1 axis.
Collapse
Affiliation(s)
- Lenah S. Binmahfouz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Emad H.M. Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Amina M. Bagher
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Rawan H. Hareeri
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Zaenah Z. Alamri
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Mardi M. Algandaby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Medicinal Plants Research Group, Deanship of Scientific Research, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Ashraf B. Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Medicinal Plants Research Group, Deanship of Scientific Research, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
22
|
Lamnoi S, Boonupara T, Sumitsawan S, Vongruang P, Prapamontol T, Udomkun P, Kajitvichyanukul P. Unveiling the Aftermath: Exploring Residue Profiles of Insecticides, Herbicides, and Fungicides in Rice Straw, Soils, and Air Post-Mixed Pesticide-Contaminated Biomass Burning. TOXICS 2024; 12:86. [PMID: 38251041 PMCID: PMC10819870 DOI: 10.3390/toxics12010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/23/2024]
Abstract
This study delved into the impact of open biomass burning on the distribution of pesticide and polycyclic aromatic hydrocarbon (PAH) residues across soil, rice straw, total suspended particulates (TSP), particulate matter with aerodynamic diameter ≤ 10 µm (PM10), and aerosols. A combination of herbicides atrazine (ATZ) and diuron (DIU), fungicide carbendazim (CBD), and insecticide chlorpyriphos (CPF) was applied to biomass before burning. Post-burning, the primary soil pesticide shifted from propyzamide (67.6%) to chlorpyriphos (94.8%). Raw straw biomass retained residues from all pesticide groups, with chlorpyriphos notably dominating (79.7%). Ash residue analysis unveiled significant alterations, with elevated concentrations of chlorpyriphos and terbuthylazine, alongside the emergence of atrazine-desethyl and triadimenol. Pre-burning TSP analysis identified 15 pesticides, with linuron as the primary compound (51.8%). Post-burning, all 21 pesticides were detected, showing significant increases in metobromuron, atrazine-desethyl, and cyanazine concentrations. PM10 composition mirrored TSP but exhibited additional compounds and heightened concentrations, particularly for atrazine, linuron, and cyanazine. Aerosol analysis post-burning indicated a substantial 39.2-fold increase in atrazine concentration, accompanied by the presence of sebuthylazine, formothion, and propyzamide. Carcinogenic PAHs exhibited noteworthy post-burning increases, contributing around 90.1 and 86.9% of all detected PAHs in TSP and PM10, respectively. These insights advance understanding of pesticide dynamics in burning processes, crucial for implementing sustainable agricultural practices and safeguarding environmental and human health.
Collapse
Affiliation(s)
- Suteekan Lamnoi
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand; (S.L.); (T.B.); or (S.S.)
| | - Thirasant Boonupara
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand; (S.L.); (T.B.); or (S.S.)
| | - Sulak Sumitsawan
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand; (S.L.); (T.B.); or (S.S.)
| | - Patipat Vongruang
- Environmental Health, School of Public Health, University of Phayao, Phayao 56000, Thailand;
| | - Tippawan Prapamontol
- Environmental and Health Research Group, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Patchimaporn Udomkun
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand; (S.L.); (T.B.); or (S.S.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Puangrat Kajitvichyanukul
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand; (S.L.); (T.B.); or (S.S.)
| |
Collapse
|
23
|
Thakar SP, Dabhi RC, Rathod SL, Patel UP, Rana A, Shrivastav PS, George LB, Highland H. In situ chlorpyrifos (CPF) degradation by Acrobeloides maximus: Insights from chromatographic analysis. J Chromatogr A 2024; 1714:464555. [PMID: 38091714 DOI: 10.1016/j.chroma.2023.464555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024]
Abstract
The objective of this study was to evaluate the efficiency of nematodes in zooremediation of chlorpyrifos (CPF), an organophosphate pesticide. The nematode population Acrobeloides maximus (A. maximus) was employed for bioremediation, converting CPF into non-toxic residues. Optimal growth conditions for mass production of A. maximus were achieved by maintaining a temperature of 25 °C, pH 8, and supplementing the culture medium with plant nutrients. The nematodes were then immobilized within sodium alginate beads. The efficacy of the degradation process was assessed using various analytical techniques, including UV-Visible spectroscopy, HPTLC, FTIR, and LC-MS, confirming the successful breakdown of CPF. The bioreactor demonstrated a complete degradation efficiency of CPF exceeding 99%. Additionally, LC-MS analysis was conducted to elucidate the degradation pathway based on the formation of intermediates. These results underscore the potential of A. maximus as a sustainable organism for addressing environmental contamination arising from CPF pesticide.
Collapse
Affiliation(s)
- Shweta P Thakar
- Department of Zoology, Biomedical Technology, Human Genetics and Wildlife Conservation and Biology, University School of Sciences, Gujarat University, Navrangpura, Ahmedabad, Gujarat 380009, India.
| | - Ranjitsinh C Dabhi
- Department of Chemistry, University School of Sciences, Gujarat University, Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Suryajit L Rathod
- Department of Chemistry, University School of Sciences, Gujarat University, Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Unnati P Patel
- Department of Chemistry, University School of Sciences, Gujarat University, Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Aasha Rana
- Department of Zoology, Faculty of Basic and Applied Sciences, Madhav University, Pindwara, Sirohi, Rajasthan 307026, India
| | - Pranav S Shrivastav
- Department of Chemistry, University School of Sciences, Gujarat University, Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Linz-Buoy George
- Department of Zoology, Biomedical Technology, Human Genetics and Wildlife Conservation and Biology, University School of Sciences, Gujarat University, Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Hyacinth Highland
- Department of Zoology, Biomedical Technology, Human Genetics and Wildlife Conservation and Biology, University School of Sciences, Gujarat University, Navrangpura, Ahmedabad, Gujarat 380009, India
| |
Collapse
|
24
|
Hinojosa MG, Johansson Y, Jos A, Cameán AM, Forsby A. Effects of cylindrospermopsin, chlorpyrifos and their combination in a SH-SY5Y cell model concerning developmental neurotoxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115804. [PMID: 38091671 DOI: 10.1016/j.ecoenv.2023.115804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024]
Abstract
The cyanotoxin cylindrospermopsin (CYN) has been postulated to cause neurotoxicity, although the studies in this concern are very few. In addition, some studies in vitro indicate its possible effects on development. Furthermore, pesticides can be present in the same environmental samples as cyanotoxins. Therefore, chlorpyrifos (CPF) has been one of the most common pesticides used worldwide. The aim of this report was to study the effects of CYN, isolated and in combination with CPF, in a developmental neurotoxicity in vitro model. The human neuroblastoma SH-SY5Y cell line was exposed during 6 days of differentiation to both toxics to study their effects on cell viability and neurite outgrowth. To further evaluate effects of both toxicants on cholinergic signaling, their agonistic and antagonistic activities on the α7 homomeric nicotinic acetylcholine receptor (nAChR) were studied upon acute exposure. Moreover, a transcriptomic analysis by qPCR was performed after 6 days of CYN-exposure during differentiation. The results showed a concentration-dependent decrease on both cell viability and neurite outgrowth for both toxics isolated, leading to effective concentration 20 (EC20) values of 0.35 µM and 0.097 µM for CYN on cell viability and neurite outgrowth, respectively, and 100 µM and 58 µM for CPF, while the combination demonstrated no significant variations. In addition, 95 µM and 285 µM CPF demonstrated to act as an antagonist to nicotine on the nAChR, although CYN up to 2.4 µM had no effect on the efficacy of these receptors. Additionally, the EC20 for CYN (0.097 µM) on neurite outgrowth downregulated expression of the 5 genes NTNG2 (netrin G2), KCNJ11 (potassium channel), SLC18A3 (vesicular acetylcholine transporter), APOE (apolipoprotein E), and SEMA6B (semaphorin 6B), that are all important for neuronal development. Thus, this study points out the importance of studying the effects of CYN in terms of neurotoxicity and developmental neurotoxicity.
Collapse
Affiliation(s)
- M G Hinojosa
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden; Area of Toxicology, Department of Nutrition and Bromatology, Toxicology and Legal Medicine. Faculty of Pharmacy, University of Seville, C/ Profesor García González 2, 41012 Seville, Spain
| | - Y Johansson
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden.
| | - A Jos
- Area of Toxicology, Department of Nutrition and Bromatology, Toxicology and Legal Medicine. Faculty of Pharmacy, University of Seville, C/ Profesor García González 2, 41012 Seville, Spain
| | - A M Cameán
- Area of Toxicology, Department of Nutrition and Bromatology, Toxicology and Legal Medicine. Faculty of Pharmacy, University of Seville, C/ Profesor García González 2, 41012 Seville, Spain
| | - A Forsby
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
25
|
Wu Q, Yang W, Bi Y, Yao Y, Li C, Li X. Baicalein inhibits apoptosis and autophagy induced by chlorpyrifos exposure to kidney of Cyprinus carpio through activation of PI3K/AKT pathway. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105624. [PMID: 37945259 DOI: 10.1016/j.pestbp.2023.105624] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/09/2023] [Accepted: 09/14/2023] [Indexed: 11/12/2023]
Abstract
Chlorpyrifos (CPF), a widely used organophosphate pesticide that has caused large-scale contamination globally, has become a major concern. Baicalein (BAI), as a flavonoid extract, shows anti-inflammatory as well as antioxidant activities. The kidneys of fish serve to excrete toxins and are major target organs for environmental contaminants. However, it is not obvious whether BAI can counteract the damage caused by CPF exposure to fish kidneys. Therefore, we conducted a 30-day simulation of CPF poisoning and/or BAI treatment by adding 23.2 μg/L CPF to water and/or 0.15 g/kg BAI to feed. In the transmission electron microscopy results, we observed obvious phenomenon of autophagy and apoptosis in the CPF group, and the TUNEL staining and immunofluorescence of LC3B and p62 double-staining results confirmed that CPF induced autophagy and apoptosis in the kidney of common carp. Furthermore, CPF induced the increase of ROS level and inhibition of PI3K and Nrf2 pathways, which in turn triggered oxidative stress, autophagy and apoptosis in carp kidney according to western blot, RT-qPCR and kit assays. However, addition of BAI significantly alleviated oxidative stress, autophagy and apoptosis due to binding to PI3K protein. Additionally, through phylogenetic tree and structural domain analyses, we also found that the binding sites of BAI and PI3K are conserved in a variety of representative species. These results suggest that BAI antagonizes CPF-caused renal impairments in carp involving the PI3K/AKT pathway and the Nrf2 pathway. Our findings provide new insights into the nephrotoxicity effects of CPF and the potential use of BAI as a detoxification agent for CPF intoxication.
Collapse
Affiliation(s)
- Qian Wu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Wenrui Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yanju Bi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yujie Yao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Chengzhi Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xiaojing Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
26
|
Wu YJ, Chang SS, Chen HY, Tsai KF, Lee WC, Wang IK, Lee CH, Chen CY, Liu SH, Weng CH, Huang WH, Hsu CW, Yen TH. Human Poisoning with Chlorpyrifos and Cypermethrin Pesticide Mixture: Assessment of Clinical Outcome of Cases Admitted in a Tertiary Care Hospital in Taiwan. Int J Gen Med 2023; 16:4795-4804. [PMID: 37908758 PMCID: PMC10614644 DOI: 10.2147/ijgm.s432861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/12/2023] [Indexed: 11/02/2023] Open
Abstract
Background and Purpose There is an overall paucity of data regarding the human toxicity of chlorpyrifos and cypermethrin pesticide mixture. Both organophosphate and pyrethroid insecticides are metabolized by carboxylesterases. Thus, its pesticide combination, organophosphates may boost the toxicity of pyrethroids via inhibited its detoxification by carboxylesterases. This study examined the clinical course, laboratory tests, and outcomes of patients with chlorpyrifos, cypermethrin or their pesticide mixture poisoning, and to determine what association, if any, might exist between these findings. Patients and Methods Between 2000 and 2021, 121 patients poisoned with chlorpyrifos, cypermethrin, or their pesticide mixture were treated at Chang Gung Memorial Hospital. Patients were categorized as chlorpyrifos (n=82), cypermethrin (n=27) or chlorpyrifos and cypermethrin (n=12) groups. Demographic, clinical, laboratory and mortality data were collected for analysis. Results The patients experienced a broad range of clinical symptoms, including aspiration pneumonia (44.6%), salivation (42.5%), acute respiratory failure (41.3%), acute kidney injury (13.9%), seizures (7.5%), hypotension (2.6%), etc. Leukocytosis (12,700±6600 /uL) and elevated serum C-reactive protein level (36.8±50.4 mg/L) were common. The acute respiratory failure rate was 41.3%, comprising 48.8% in chlorpyrifos, 11.1% in cypermethrin as well as 58.3% in chlorpyrifos and cypermethrin poisoning. Patients with chlorpyrifos and cypermethrin pesticide mixture poisoning suffered higher rates of acute respiratory failure (P=0.001) and salivation (P=0.001), but lower Glasgow Coma Scale score (P=0.011) and serum cholinesterase level (P<0.001) than other groups. A total of 17 (14.0%) patients expired. The mortality rate was 14.0%, including 17.1% in chlorpyrifos, 3.7% in cypermethrin as well as 16.7% in chlorpyrifos and cypermethrin poisoning. No significant differences in mortality rate were noted (P=0.214). Conclusion Chlorpyrifos pesticide accounted for the major toxicity of the pesticide mixture. While the data show a higher rate of respiratory failure in the chlorpyrifos and cypermethrin pesticide mixture group than others, other measures of toxicity such as mortality and length of stay were not increased.
Collapse
Affiliation(s)
- Yi-Jan Wu
- Department of Nephrology, Clinical Poison Center, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan City, Taiwan
- College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Shu-Sen Chang
- Institute of Health Behaviors and Community Sciences, Department of Public Health, College of Public Health, National Taiwan University, Taipei City, Taiwan
| | - Hsien-Yi Chen
- Department of Emergency Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan City, Taiwan
| | - Kai-Fan Tsai
- College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Division of Nephrology, Department of Internal Medicine, Chang Gung Memorial Hospital, Kaohsiung Branch, Kaohsiung City, Taiwan
| | - Wen-Chin Lee
- College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Division of Nephrology, Department of Internal Medicine, Chang Gung Memorial Hospital, Kaohsiung Branch, Kaohsiung City, Taiwan
| | - I-Kuan Wang
- Department of Nephrology, China Medical University Hospital, Taichung City, Taiwan
- College of Medicine, China Medical University, Taichung City, Taiwan
| | - Chern-Horng Lee
- Division of General Internal Medicine and Geriatrics, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan City, Taiwan
| | - Chao-Yu Chen
- Department of Nephrology, Clinical Poison Center, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan City, Taiwan
- College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Shou-Hsuan Liu
- Department of Nephrology, Clinical Poison Center, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan City, Taiwan
- College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Cheng-Hao Weng
- Department of Nephrology, Clinical Poison Center, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan City, Taiwan
- College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Wen-Hung Huang
- Department of Nephrology, Clinical Poison Center, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan City, Taiwan
- College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Ching-Wei Hsu
- Department of Nephrology, Clinical Poison Center, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan City, Taiwan
- College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Tzung-Hai Yen
- Department of Nephrology, Clinical Poison Center, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan City, Taiwan
- College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| |
Collapse
|
27
|
Kumar P, Arshad M, Gacem A, Soni S, Singh S, Kumar M, Yadav VK, Tariq M, Kumar R, Shah D, Wanale SG, Al Mesfer MKM, Bhutto JK, Yadav KK. Insight into the environmental fate, hazard, detection, and sustainable degradation technologies of chlorpyrifos-an organophosphorus pesticide. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:108347-108369. [PMID: 37755596 DOI: 10.1007/s11356-023-30049-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/19/2023] [Indexed: 09/28/2023]
Abstract
Pesticides play a critical role in terms of agricultural output nowadays. On top of that, pesticides provide economic support to our farmers. However, the usage of pesticides has created a public health issue and environmental hazard. Chlorpyrifos (CPY), an organophosphate pesticide, is extensively applied as an insecticide, acaricide, and termiticide against pests in various applications. Environmental pollution has occurred because of the widespread usage of CPY, harming several ecosystems, including soil, sediment, water, air, and biogeochemical cycles. While residual levels in soil, water, vegetables, foodstuffs, and human fluids have been discovered, CPY has also been found in the sediment, soil, and water. The irrefutable pieces of evidence indicate that CPY exposure inhibits the choline esterase enzyme, which impairs the ability of the body to use choline. As a result, neurological, immunological, and psychological consequences are seen in people and the natural environment. Several research studies have been conducted worldwide to identify and develop CPY remediation approaches and its derivatives from the environment. Currently, many detoxification methods are available for pesticides, such as CPY. However, recent research has shown that the breakdown of CPY using bacteria is the most proficient, cost-effective, and sustainable. This current article aims to outline relevant research events, summarize the possible breakdown of CPY into various compounds, and discuss analytical summaries of current research findings on bacterial degradation of CPY and the potential degradation mechanism.
Collapse
Affiliation(s)
- Pankaj Kumar
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, 391760, India
| | - Muhammad Arshad
- Department of Chemical Engineering, College of Engineering, King Khalid University, P.O. Box 960, Abha, 61421, Saudi Arabia
| | - Amel Gacem
- Department of Physics, Faculty of Sciences, University 20 Août 1955, Skikda, Algeria
| | - Sunil Soni
- School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar, Gujarat, 382030, India
| | - Snigdha Singh
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, 391760, India
| | - Manoj Kumar
- Environment and Biofuel Research Laboratory, Department of Hydro and Renewable Energy, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, 384265, India
| | - Mohd Tariq
- Department of Life Science, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, 391760, India
| | - Ramesh Kumar
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, 305817, India
| | - Deepankshi Shah
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, 391760, India
| | - Shivraj Gangadhar Wanale
- School of Chemical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, Maharashtra, India
| | | | - Javed Khan Bhutto
- Department of Electrical Engineering, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal, Madhya Pradesh, 462044, India.
- Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah, 64001, Iraq.
| |
Collapse
|
28
|
Lahimer M, Djekkoun N, Tricotteaux-Zarqaoui S, Corona A, Lafosse I, Ali HB, Ajina M, Bach V, Benkhalifa M, Khorsi-Cauet H. Impact of Perinatal Coexposure to Chlorpyrifos and a High-Fat Diet on Kisspeptin and GnRHR Presence and Reproductive Organs. TOXICS 2023; 11:789. [PMID: 37755799 PMCID: PMC10534599 DOI: 10.3390/toxics11090789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023]
Abstract
Emerging evidence has indicated the involvement of extrahypothalamic Kisspeptin and GnRHR in reproductive function. In this study, we evaluate if maternal exposure to the pesticide chlorpyrifos (CPF) and/or a high-fat diet (HFD) has an impact on the expression of Kisspeptin and GnRHR in the reproductive organs of rats' offspring. A total of 16 pregnant rats are divided into four groups: a control group (n = 4), CPF group (4 rats exposed daily to 1/mg/kg/day), HFD group (4 rats randomly fed a 5.25 kcal/g HFD), and coexposed group (4 rats exposed to CPF and HDF). At postnatal development postnatal day (PND) 60, male and female offspring were sacrificed. The reproductive organs (ovary and testis) were removed, and histological and immunohistological analysis and in silico quantification (TissueGnostics software 6.0.1.102, TissueFAXS, HistoQuest) were applied to investigate the impact of different treatments on Kisspeptin and GnRHR expression in reproductive organs. The main outcomes of the study showed a significant decrease in rat offspring's body weight in the CPF group from PND30 and PND60 (p < 0.05 and p < 0.01, respectively). Histological analysis showed a significant increase in the atretic follicle and abnormal testis structure with germ cell desquamation in the CPF-exposed group. The immunodetection quantification of protein shows a significant decrease in GnRHR and Kisspeptin in the HFD and CPF exposed groups, respectively, in testis rat offspring. Perinatal exposure to CPF and HFD exposure affect the reproduction function of rat offspring.
Collapse
Affiliation(s)
- Marwa Lahimer
- PERITOX-(UMR-I 01), UPJV/INERIS, UPJV, CURS, Chemin du Thil, 80025 Amiens, France; (M.L.); (N.D.); (S.T.-Z.); (A.C.); (V.B.); (M.B.)
- ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, CHU Sud, 80025 Amiens, France
- Exercise Physiology and Physiopathology: From Integrated to Molecular “Biology, Medicine and 9 Health” (Code: LR19ES09), Sousse 4002, Tunisia;
| | - Narimane Djekkoun
- PERITOX-(UMR-I 01), UPJV/INERIS, UPJV, CURS, Chemin du Thil, 80025 Amiens, France; (M.L.); (N.D.); (S.T.-Z.); (A.C.); (V.B.); (M.B.)
| | - Sophian Tricotteaux-Zarqaoui
- PERITOX-(UMR-I 01), UPJV/INERIS, UPJV, CURS, Chemin du Thil, 80025 Amiens, France; (M.L.); (N.D.); (S.T.-Z.); (A.C.); (V.B.); (M.B.)
| | - Aurélie Corona
- PERITOX-(UMR-I 01), UPJV/INERIS, UPJV, CURS, Chemin du Thil, 80025 Amiens, France; (M.L.); (N.D.); (S.T.-Z.); (A.C.); (V.B.); (M.B.)
| | - Isabelle Lafosse
- MP3CV—UPJV—UR 7517, Jules Verne University of Picardie, 80025 Amiens, France;
| | - Habib Ben Ali
- Laboratory Histology Embryology, Faculty of Medicine Sousse, University of Sousse, Sousse 4000, Tunisia;
| | - Mounir Ajina
- Exercise Physiology and Physiopathology: From Integrated to Molecular “Biology, Medicine and 9 Health” (Code: LR19ES09), Sousse 4002, Tunisia;
- Service of Reproductive Medicine, University Hospital Farhat Hached, Sousse 4000, Tunisia
| | - Véronique Bach
- PERITOX-(UMR-I 01), UPJV/INERIS, UPJV, CURS, Chemin du Thil, 80025 Amiens, France; (M.L.); (N.D.); (S.T.-Z.); (A.C.); (V.B.); (M.B.)
| | - Moncef Benkhalifa
- PERITOX-(UMR-I 01), UPJV/INERIS, UPJV, CURS, Chemin du Thil, 80025 Amiens, France; (M.L.); (N.D.); (S.T.-Z.); (A.C.); (V.B.); (M.B.)
- ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, CHU Sud, 80025 Amiens, France
| | - Hafida Khorsi-Cauet
- PERITOX-(UMR-I 01), UPJV/INERIS, UPJV, CURS, Chemin du Thil, 80025 Amiens, France; (M.L.); (N.D.); (S.T.-Z.); (A.C.); (V.B.); (M.B.)
| |
Collapse
|
29
|
Ruiz-Arias MA, Medina-Díaz IM, Bernal-Hernández YY, Barrón-Vivanco BS, González-Arias CA, Romero-Bañuelos CA, Verdín-Betancourt FA, Herrera-Moreno JF, Ponce-Vélez G, Gaspar-Ramírez O, Bastidas-Bastidas PDJ, González FB, Rojas-García AE. The situation of chlorpyrifos in Mexico: a case study in environmental samples and aquatic organisms. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:6323-6351. [PMID: 37301778 DOI: 10.1007/s10653-023-01618-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/11/2023] [Indexed: 06/12/2023]
Abstract
Chlorpyrifos (CPF) is one of the most commonly used organophosphate pesticides. Because CPF was described as a toxic compound without safe levels of exposure for children, certain countries in Latin America and the European Union have banned or restricted its use; however, in Mexico it is used very frequently. The aim of this study was to describe the current situation of CPF in Mexico, as well as its use, commercialization, and presence in soil, water, and aquatic organisms in an agricultural region of Mexico. Structured questionnaires were applied to pesticide retailers to determine the sales pattern of CPF (ethyl and methyl); in addition, monthly censuses were conducted with empty pesticide containers to assess the CPF pattern of use. Furthermore, samples of soil (48 samples), water (51 samples), and fish (31 samples) were collected, which were analyzed chromatographically. Descriptive statistics were performed. The results indicate that CPF was one of the most sold (3.82%) and employed OP (14.74%) during 2021. Only one soil sample was found above the CPF limit of quantification (LOQ); in contrast, all water samples had CPF levels above the LOQ (x̄ = 4614.2 ng/L of CPF). In the case of fish samples, 6.45% demonstrated the presence of methyl-CPF. In conclusion, the information obtained in this study indicates the need for constant monitoring in the area, since the presence of CPF in soil, water, and fish constitutes a threat to the health of wildlife and humans. Therefore, CPF should be banned in Mexico to avoid a serious neurocognitive health problem.
Collapse
Affiliation(s)
- Miguel Alfonso Ruiz-Arias
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura S/N. Col. Centro, C.P. 63000, Tepic, Nayarit, México
- Programa de Doctorado en Ciencias Biológico Agropecuarias. Área de Ciencias Ambientales, Universidad Autónoma de Nayarit, Unidad Académica de Agricultura. Km. 9 Carretera Tepic-Compostela, C.P. 63780, Xalisco, Nayarit, México
| | - Irma Martha Medina-Díaz
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura S/N. Col. Centro, C.P. 63000, Tepic, Nayarit, México
| | - Yael Yvette Bernal-Hernández
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura S/N. Col. Centro, C.P. 63000, Tepic, Nayarit, México
| | - Briscia Socorro Barrón-Vivanco
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura S/N. Col. Centro, C.P. 63000, Tepic, Nayarit, México
| | - Cyndia Azucena González-Arias
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura S/N. Col. Centro, C.P. 63000, Tepic, Nayarit, México
| | - Carlos Alberto Romero-Bañuelos
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura S/N. Col. Centro, C.P. 63000, Tepic, Nayarit, México
| | - Francisco Alberto Verdín-Betancourt
- Unidad Especializada de Ciencias Ambientales, CENITT, Av. Emilio M. González S/N, Ciudad del Conocimiento, Tepic, Nayarit, C.P. 63173, México
| | - José Francisco Herrera-Moreno
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura S/N. Col. Centro, C.P. 63000, Tepic, Nayarit, México
| | - Guadalupe Ponce-Vélez
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, C.P. 04510, Cd. de México, México
| | - Octavio Gaspar-Ramírez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Unidad Noreste (CIATEJ), Apodaca, N.L, C.P. 66629, Mexico
| | - Pedro de Jesús Bastidas-Bastidas
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (Residuos de Plaguicidas), Centro de Investigación en Alimentación Y Desarrollo, A.C. (CIAD), Carretera a Eldorado Km. 5.5, Unidad Culiacán, C.P. 80110, Mexico
| | - Fernando Bejarano González
- Red de Acción Sobre Plaguicidas y Alternativas en México, A. C. (RAPAM), Amado Nervo 23, Int. 3, Col. San Juanito, C.P. 56121, Texcoco, Estado de México, Mexico
| | - Aurora Elizabeth Rojas-García
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura S/N. Col. Centro, C.P. 63000, Tepic, Nayarit, México.
| |
Collapse
|
30
|
Leskovac A, Petrović S. Pesticide Use and Degradation Strategies: Food Safety, Challenges and Perspectives. Foods 2023; 12:2709. [PMID: 37509801 PMCID: PMC10379487 DOI: 10.3390/foods12142709] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
While recognizing the gaps in pesticide regulations that impact consumer safety, public health concerns associated with pesticide contamination of foods are pointed out. The strategies and research directions proposed to prevent and/or reduce pesticide adverse effects on human health and the environment are discussed. Special attention is paid to organophosphate pesticides, as widely applied insecticides in agriculture, veterinary practices, and urban areas. Biotic and abiotic strategies for organophosphate pesticide degradation are discussed from a food safety perspective, indicating associated challenges and potential for further improvements. As food systems are endangered globally by unprecedented challenges, there is an urgent need to globally harmonize pesticide regulations and improve methodologies in the area of food safety to protect human health.
Collapse
Affiliation(s)
- Andreja Leskovac
- Vinca Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, M. Petrovića Alasa 12-14, 11000 Belgrade, Serbia
| | - Sandra Petrović
- Vinca Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, M. Petrovića Alasa 12-14, 11000 Belgrade, Serbia
| |
Collapse
|
31
|
Omar AAAH, Gad MF, Refaie AA, Abdelhafez HM, Mossa ATH. Benchmark Dose Approach to DNA and Liver Damage by Chlorpyrifos and Imidacloprid in Male Rats: The Protective Effect of a Clove-Oil-Based Nanoemulsion Loaded with Pomegranate Peel Extract. TOXICS 2023; 11:569. [PMID: 37505536 PMCID: PMC10383980 DOI: 10.3390/toxics11070569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023]
Abstract
Pesticides are widely used around the world to increase crop production. They also have negative impacts on animals, humans, and the ecosystem. This is the first report evaluating a novel pomegranate-extract-loaded clove-oil-based nanoemulsion (PELCN) and its potential for reducing oxidative stress and DNA damage, as well as its hepatoprotective effects against imidacloprid (IM) and chlorpyrifos (CPF) toxicity in male rats. The benchmark dose (BMD) approach was also used to study the dose-response toxicity of IM and CPF. IM and CPF were administered daily for 28 days at doses of 14, 28, and 54 mg/kg body weight (bw) of IM and 1, 2, and 4 mg/kg bw of CPF via drinking water. The PELCN was administered orally at a dose of 50 mg/kg bw/day of pomegranate extract, 500 mg/kg bw of the clove oil nanoemulsion, and IM or CPF at high doses in the drinking water. In male rats, IM and CPF caused a reduction in body weight gain and hepatotoxic effects as evidenced by increases in the liver enzymes AST, ALT, and ALP. They caused oxidative damage in the liver of male rats as indicated by the decreased liver activity of the GST, GPX, SOD, and CAT enzymes and decreased serum TAC. IM and CPF produced a significant dose-dependent increase in DNA damage in hepatocyte cells, resulting in moderate to severe liver damage with cells that are more inflammatory and have enlarged sinusoids and compacted nuclei. IM had a higher BMD than CPF for both body and liver weight, suggesting that CPF was more dose-dependently toxic than IM. Albumin was a highly sensitive liver biomarker for IM, while total protein was a biomarker for the CPF-treated rats. GPx was an extremely sensitive biomarker of oxidative stress in the IM treatment, while CAT and GPx were highly sensitive parameters in the CPF-treated rats. Therefore, at comparable doses, CPF has a higher potential to cause liver damage and oxidative stress than IM. The hepatotoxicity of IM and CPF can be mitigated by administering a nanoemulsion containing clove oil and pomegranate extract. The nanoemulsion acts as a protector against the oxidative stress caused by these insecticides, especially at high doses. The nanoemulsion based on clove oil increases the bioavailability and stability of the pomegranate extract, which has antioxidant properties.
Collapse
Affiliation(s)
- Alia Ahmed Abdel-Hamid Omar
- Pesticide Chemistry Department, Chemical Industries Research Institute, National Research Centre, 33 El Bohouth Street (Former El Tahrir St.), Dokki, Giza 12622, Egypt
| | - Marwa Farouk Gad
- Pesticide Chemistry Department, Chemical Industries Research Institute, National Research Centre, 33 El Bohouth Street (Former El Tahrir St.), Dokki, Giza 12622, Egypt
| | - Amel A Refaie
- Pesticide Chemistry Department, Chemical Industries Research Institute, National Research Centre, 33 El Bohouth Street (Former El Tahrir St.), Dokki, Giza 12622, Egypt
| | - Hemmat Mansour Abdelhafez
- Cytochemistry and Histology, Zoology and Entomology Department, Faculty of Science (For Girls), Al-Azhar University, Cairo 11651, Egypt
| | - Abdel-Tawab H Mossa
- Pesticide Chemistry Department, Chemical Industries Research Institute, National Research Centre, 33 El Bohouth Street (Former El Tahrir St.), Dokki, Giza 12622, Egypt
| |
Collapse
|
32
|
Rimoldi F, Salgado Costa C, Pantucci Saralegui MJ, Bahl MF, Natale GS. Recovery of Ceratophrys ornata tadpoles exposed to environmental concentrations of chlorpyrifos: evaluation of biomarkers of exposure. ECOTOXICOLOGY (LONDON, ENGLAND) 2023:10.1007/s10646-023-02670-7. [PMID: 37277545 DOI: 10.1007/s10646-023-02670-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 06/07/2023]
Abstract
Chlorpyrifos (CPF) is one of the most widely used insecticides worldwide despite the fact that many authors have warned about its effects in non-target biota. The effects of CPF on anurans are well known, but the process of recovery from these effects after exposure is less explored. The aim of this study was to evaluate the duration of sublethal effects induced by environmental concentrations of CPF on Ceratophrys ornata tadpoles after exposure. The experimental design consisted of an exposure phase (96 h) in which tadpoles were individually exposed to three concentrations of CPF (0, 0.01 and 0.02 mg CPF/L) and a post-exposure phase (72 h) in which exposed tadpoles were transferred to CPF-free media. Individuals that survived the exposure phase to CPF showed neither long-term lethal effects nor long-term swimming alterations and altered prey consumption after being transferred to CPF-free media. No morphological abnormalities were observed either. However, at the end of both phases, tadpoles emitted shorter sounds with a higher dominant frequency than the tadpoles in the control group, i.e., the tadpoles did not recover their normal sounds. Thus, for the first time in this species, we have shown that effects on sounds should be prioritized as biomarkers of exposure, as they not only provide longer detection times after cessation of exposure, but also involve non-destructive methods. The following order of priority could be established for the selection of biomarkers that diagnose the health status of individuals and precede irreversible responses such as mortality: alterations in sounds > swimming alterations > prey consumption.
Collapse
Affiliation(s)
- Federico Rimoldi
- Centro de Investigaciones del Medio Ambiente (CIM), Universidad Nacional de La Plata (UNLP)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bv. 120 n° 1489 (1900), La Plata, Buenos Aires, Argentina
| | - Carolina Salgado Costa
- Centro de Investigaciones del Medio Ambiente (CIM), Universidad Nacional de La Plata (UNLP)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bv. 120 n° 1489 (1900), La Plata, Buenos Aires, Argentina
| | - Morena Johana Pantucci Saralegui
- Instituto de Limnología Dr. Raúl A. Ringuelet (ILPLA), CONICET- UNLP, Boulevard 120 y 62 (1900), La Plata, Buenos Aires, Argentina
| | - María Florencia Bahl
- Centro de Investigaciones del Medio Ambiente (CIM), Universidad Nacional de La Plata (UNLP)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bv. 120 n° 1489 (1900), La Plata, Buenos Aires, Argentina
| | - Guillermo Sebastián Natale
- Centro de Investigaciones del Medio Ambiente (CIM), Universidad Nacional de La Plata (UNLP)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bv. 120 n° 1489 (1900), La Plata, Buenos Aires, Argentina.
| |
Collapse
|
33
|
Peluso T, Nittoli V, Reale C, Porreca I, Russo F, Roberto L, Giacco A, Silvestri E, Mallardo M, De Felice M, Ambrosino C. Chronic Exposure to Chlorpyrifos Damages Thyroid Activity and Imbalances Hepatic Thyroid Hormones Signaling and Glucose Metabolism: Dependency of T3-FOXO1 Axis by Hyperglycemia. Int J Mol Sci 2023; 24:ijms24119582. [PMID: 37298533 DOI: 10.3390/ijms24119582] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/08/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Early life exposure to Endocrine Disruptor Chemicals (EDCs), such as the organophosphate pesticide Chlorpyrifos (CPF), affects the thyroid activity and dependent process, including the glucose metabolism. The damage of thyroid hormones (THs) as a mechanism of action of CPF is underestimated because the studies rarely consider that TH levels and signaling are customized peripherally. Here, we investigated the impairment of metabolism/signaling of THs and lipid/glucose metabolism in the livers of 6-month-old mice, developmentally and lifelong exposed to 0.1, 1, and 10 mg/kg/die CPF (F1) and their offspring similarly exposed (F2), analyzing the levels of transcripts of the enzymes involved in the metabolism of T3 (Dio1), lipids (Fasn, Acc1), and glucose (G6pase, Pck1). Both processes were altered only in F2 males, affected by hypothyroidism and by a systemic hyperglycemia linked to the activation of gluconeogenesis in mice exposed to 1 and 10 mg/kg/die CPF. Interestingly, we observed an increase in active FOXO1 protein due to a decrease in AKT phosphorylation, despite insulin signaling activation. Experiments in vitro revealed that chronic exposure to CPF affected glucose metabolism via the direct modulation of FOXO1 activity and T3 levels in hepatic cells. In conclusion, we described different sex and intergenerational effects of CPF exposure on the hepatic homeostasis of THs, their signaling, and, finally, glucose metabolism. The data points to FOXO1-T3-glucose signaling as a target of CPF in liver.
Collapse
Affiliation(s)
- Teresa Peluso
- Department of Science and Technology, University of Sannio, Via de Sanctis, 82100 Benevento, Italy
- Biogem Scarl, Institute of Molecular Biology and Genetics Research, Via Camporeale, 83031 Ariano Irpino, Italy
| | - Valeria Nittoli
- Biogem Scarl, Institute of Molecular Biology and Genetics Research, Via Camporeale, 83031 Ariano Irpino, Italy
| | - Carla Reale
- Biogem Scarl, Institute of Molecular Biology and Genetics Research, Via Camporeale, 83031 Ariano Irpino, Italy
| | - Immacolata Porreca
- Biogem Scarl, Institute of Molecular Biology and Genetics Research, Via Camporeale, 83031 Ariano Irpino, Italy
| | - Filomena Russo
- Biogem Scarl, Institute of Molecular Biology and Genetics Research, Via Camporeale, 83031 Ariano Irpino, Italy
| | - Luca Roberto
- Biogem Scarl, Institute of Molecular Biology and Genetics Research, Via Camporeale, 83031 Ariano Irpino, Italy
| | - Antonia Giacco
- Department of Science and Technology, University of Sannio, Via de Sanctis, 82100 Benevento, Italy
| | - Elena Silvestri
- Department of Science and Technology, University of Sannio, Via de Sanctis, 82100 Benevento, Italy
| | - Massimo Mallardo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Mario De Felice
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), CNR, Via Pansini 6, 80131 Naples, Italy
| | - Concetta Ambrosino
- Department of Science and Technology, University of Sannio, Via de Sanctis, 82100 Benevento, Italy
- Biogem Scarl, Institute of Molecular Biology and Genetics Research, Via Camporeale, 83031 Ariano Irpino, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), CNR, Via Pansini 6, 80131 Naples, Italy
| |
Collapse
|
34
|
Naviaux RK. Mitochondrial and metabolic features of salugenesis and the healing cycle. Mitochondrion 2023; 70:131-163. [PMID: 37120082 DOI: 10.1016/j.mito.2023.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/24/2023] [Accepted: 04/23/2023] [Indexed: 05/01/2023]
Abstract
Pathogenesis and salugenesis are the first and second stages of the two-stage problem of disease production and health recovery. Salugenesis is the automatic, evolutionarily conserved, ontogenetic sequence of molecular, cellular, organ system, and behavioral changes that is used by living systems to heal. It is a whole-body process that begins with mitochondria and the cell. The stages of salugenesis define a circle that is energy- and resource-consuming, genetically programmed, and environmentally responsive. Energy and metabolic resources are provided by mitochondrial and metabolic transformations that drive the cell danger response (CDR) and create the three phases of the healing cycle: Phase 1-Inflammation, Phase 2-Proliferation, and Phase 3-Differentiation. Each phase requires a different mitochondrial phenotype. Without different mitochondria there can be no healing. The rise and fall of extracellular ATP (eATP) signaling is a key driver of the mitochondrial and metabolic reprogramming required to progress through the healing cycle. Sphingolipid and cholesterol-enriched membrane lipid rafts act as rheostats for tuning cellular sensitivity to purinergic signaling. Abnormal persistence of any phase of the CDR inhibits the healing cycle, creates dysfunctional cellular mosaics, causes the symptoms of chronic disease, and accelerates the process of aging. New research reframes the rising tide of chronic disease around the world as a systems problem caused by the combined action of pathogenic triggers and anthropogenic factors that interfere with the mitochondrial functions needed for healing. Once chronic pain, disability, or disease is established, salugenesis-based therapies will start where pathogenesis-based therapies end.
Collapse
Affiliation(s)
- Robert K Naviaux
- The Mitochondrial and Metabolic Disease Center, Departments of Medicine, and Pediatrics, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, MC#8467, San Diego, CA 92103.
| |
Collapse
|
35
|
Herrera A, Acosta-Dacal A, Pérez-Luzardo O, Martínez I, Rapp J, Reinold S, Montesdeoca-Esponda S, Montero D, Gómez M. Trophic transfer of DDE, BP-3 and chlorpyrifos from microplastics to tissues in Dicentrarchus labrax. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163295. [PMID: 37086996 DOI: 10.1016/j.scitotenv.2023.163295] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/28/2023] [Accepted: 04/01/2023] [Indexed: 05/03/2023]
Abstract
Microplastic pollution and associated chemical contaminants is a topic of growing interest. In recent years, the number of publications reporting the presence of microplastics (MPs) in marine organisms has increased exponentially. However, there is a gap in knowledge about the trophic transfer of contaminants from microplastics to animal tissues, as well as possible health effects. In this study we analyzed the trophic transfer and biomagnification of three chemical pollutants present in microplastics: dichlorodiphenyldichloroethylene (DDE-p,p'), benzophenone 3 (BP-3) and chlorpyrifos (CPS). The reference values used were concentrations found in environmental microplastics in the Canary Islands (minimum and maximum). European seabass (Dicentrarchus labrax) were fed for 60 days with 5 different treatments: A) feed; B) feed with chemical pollutants at maximum concentration; C) feed + 10 % virgin MPs; D) feed + 10 % MPs with chemical pollutants at minimum concentration; E) feed + 10 % MPs with chemical pollutants at maximum concentration. We detected trophic transfer of DDE-p,p', CPS and BP-3 from the feed (treatment B) to the muscle and liver of fish. In the case of DDE-p,p', transfer to liver and muscle was also observed in the treatments consisting of feed plus plastics with different levels of contamination (C, D and E). No effect of the experimental treatments on fish condition indices was observed.
Collapse
Affiliation(s)
- Alicia Herrera
- Marine Ecophysiology Group (EOMAR), Iu-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain.
| | - Andrea Acosta-Dacal
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Octavio Pérez-Luzardo
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Ico Martínez
- Marine Ecophysiology Group (EOMAR), Iu-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Jorge Rapp
- Marine Ecophysiology Group (EOMAR), Iu-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Stefanie Reinold
- Marine Ecophysiology Group (EOMAR), Iu-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Sarah Montesdeoca-Esponda
- Instituto de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Daniel Montero
- Grupo de Investigación en Acuicultura (GIA), Iu-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
| | - May Gómez
- Marine Ecophysiology Group (EOMAR), Iu-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
| |
Collapse
|