1
|
Reece AS, Hulse GK. Key insights into cannabis-cancer pathobiology and genotoxicity. Addict Biol 2024; 29:e70003. [PMID: 39538372 PMCID: PMC11560801 DOI: 10.1111/adb.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 11/16/2024]
Abstract
Whilst mitochondrial inhibition and micronuclear fragmentation are well established features of the cannabis literature mitochondrial stress and dysfunction has recently been shown to be a powerful and direct driver of micronucleus formation and chromosomal breakage by multiple mechanisms. In turn genotoxic damage can be expected to be expressed as increased rates of cancer, congenital anomalies and aging; pathologies which are increasingly observed in modern continent-wide studies. Whilst cannabinoid genotoxicity has long been essentially overlooked it may in fact be all around us through the rapid induction of aging of eggs, sperm, zygotes, foetus and adult organisms with many lines of evidence demonstrating transgenerational impacts. Indeed this multigenerational dimension of cannabinoid genotoxicity reframes the discussion of cannabis legalization within the absolute imperative to protect the genomic and epigenomic integrity of multiple generations to come.
Collapse
Affiliation(s)
- Albert Stuart Reece
- University of Western AustraliaCrawleyWestern AustraliaAustralia
- School of Health SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia
| | - Gary Kenneth Hulse
- University of Western AustraliaCrawleyWestern AustraliaAustralia
- School of Health SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia
| |
Collapse
|
2
|
Reece AS, Hulse GK. Perturbation of 3D nuclear architecture, epigenomic aging and dysregulation, and cannabinoid synaptopathy reconfigures conceptualization of cannabinoid pathophysiology: part 2-Metabolome, immunome, synaptome. Front Psychiatry 2023; 14:1182536. [PMID: 37854446 PMCID: PMC10579598 DOI: 10.3389/fpsyt.2023.1182536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/11/2023] [Indexed: 10/20/2023] Open
Abstract
The second part of this paper builds upon and expands the epigenomic-aging perspective presented in Part 1 to describe the metabolomic and immunomic bases of the epigenomic-aging changes and then considers in some detail the application of these insights to neurotoxicity, neuronal epigenotoxicity, and synaptopathy. Cannabinoids are well-known to have bidirectional immunomodulatory activities on numerous parts of the immune system. Immune perturbations are well-known to impact the aging process, the epigenome, and intermediate metabolism. Cannabinoids also impact metabolism via many pathways. Metabolism directly impacts immune, genetic, and epigenetic processes. Synaptic activity, synaptic pruning, and, thus, the sculpting of neural circuits are based upon metabolic, immune, and epigenomic networks at the synapse, around the synapse, and in the cell body. Many neuropsychiatric disorders including depression, anxiety, schizophrenia, bipolar affective disorder, and autistic spectrum disorder have been linked with cannabis. Therefore, it is important to consider these features and their complex interrelationships in reaching a comprehensive understanding of cannabinoid dependence. Together these findings indicate that cannabinoid perturbations of the immunome and metabolome are important to consider alongside the well-recognized genomic and epigenomic perturbations and it is important to understand their interdependence and interconnectedness in reaching a comprehensive appreciation of the true nature of cannabinoid pathophysiology. For these reasons, a comprehensive appreciation of cannabinoid pathophysiology necessitates a coordinated multiomics investigation of cannabinoid genome-epigenome-transcriptome-metabolome-immunome, chromatin conformation, and 3D nuclear architecture which therefore form the proper mechanistic underpinning for major new and concerning epidemiological findings relating to cannabis exposure.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
3
|
Reece AS, Hulse GK. Perturbation of 3D nuclear architecture, epigenomic dysregulation and aging, and cannabinoid synaptopathy reconfigures conceptualization of cannabinoid pathophysiology: part 1-aging and epigenomics. Front Psychiatry 2023; 14:1182535. [PMID: 37732074 PMCID: PMC10507876 DOI: 10.3389/fpsyt.2023.1182535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/07/2023] [Indexed: 09/22/2023] Open
Abstract
Much recent attention has been directed toward the spatial organization of the cell nucleus and the manner in which three-dimensional topologically associated domains and transcription factories are epigenetically coordinated to precisely bring enhancers into close proximity with promoters to control gene expression. Twenty lines of evidence robustly implicate cannabinoid exposure with accelerated organismal and cellular aging. Aging has recently been shown to be caused by increased DNA breaks. These breaks rearrange and maldistribute the epigenomic machinery to weaken and reverse cellular differentiation, cause genome-wide DNA demethylation, reduce gene transcription, and lead to the inhibition of developmental pathways, which contribute to the progressive loss of function and chronic immune stimulation that characterize cellular aging. Both cell lineage-defining superenhancers and the superanchors that control them are weakened. Cannabis exposure phenocopies the elements of this process and reproduces DNA and chromatin breakages, reduces the DNA, RNA protein and histone synthesis, interferes with the epigenomic machinery controlling both DNA and histone modifications, induces general DNA hypomethylation, and epigenomically disrupts both the critical boundary elements and the cohesin motors that create chromatin loops. This pattern of widespread interference with developmental programs and relative cellular dedifferentiation (which is pro-oncogenic) is reinforced by cannabinoid impairment of intermediate metabolism (which locks in the stem cell-like hyper-replicative state) and cannabinoid immune stimulation (which perpetuates and increases aging and senescence programs, DNA damage, DNA hypomethylation, genomic instability, and oncogenesis), which together account for the diverse pattern of teratologic and carcinogenic outcomes reported in recent large epidemiologic studies in Europe, the USA, and elsewhere. It also accounts for the prominent aging phenotype observed clinically in long-term cannabis use disorder and the 20 characteristics of aging that it manifests. Increasing daily cannabis use, increasing use in pregnancy, and exponential dose-response effects heighten the epidemiologic and clinical urgency of these findings. Together, these findings indicate that cannabinoid genotoxicity and epigenotoxicity are prominent features of cannabis dependence and strongly indicate coordinated multiomics investigations of cannabinoid genome-epigenome-transcriptome-metabolome, chromatin conformation, and 3D nuclear architecture. Considering the well-established exponential dose-response relationships, the diversity of cannabinoids, and the multigenerational nature of the implications, great caution is warranted in community cannabinoid penetration.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
4
|
Reece AS, Bennett K, Hulse GK. Cannabis- and Substance-Related Carcinogenesis in Europe: A Lagged Causal Inferential Panel Regression Study. J Xenobiot 2023; 13:323-385. [PMID: 37489337 PMCID: PMC10366890 DOI: 10.3390/jox13030024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023] Open
Abstract
Recent European data facilitate an epidemiological investigation of the controversial cannabis-cancer relationship. Of particular concern were prior findings associating high-dose cannabis use with reproductive problems and potential genetic impacts. Cancer incidence data age-standardised to the world population was obtained from the European Cancer Information System 2000-2020 and many European national cancer registries. Drug use data were obtained from the European Monitoring Centre for Drugs and Drug Addiction. Alcohol and tobacco consumption was sourced from the WHO. Median household income was taken from the World bank. Cancer rates in high-cannabis-use countries were significantly higher than elsewhere (β-estimate = 0.4165, p = 3.54 × 10-115). Eighteen of forty-one cancers (42,675 individual rates) were significantly associated with cannabis exposure at bivariate analysis. Twenty-five cancers were linked in inverse-probability-weighted multivariate models. Temporal lagging in panel models intensified these effects. In multivariable models, cannabis was a more powerful correlate of cancer incidence than tobacco or alcohol. Reproductive toxicity was evidenced by the involvement of testis, ovary, prostate and breast cancers and because some of the myeloid and lymphoid leukaemias implicated occur in childhood, indicating inherited intergenerational genotoxicity. Cannabis is a more important carcinogen than tobacco and alcohol and fulfills epidemiological qualitative and quantitative criteria for causality for 25/41 cancers. Reproductive and transgenerational effects are prominent. These findings confirm the clinical and epidemiological salience of cannabis as a major multigenerational community carcinogen.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Kellie Bennett
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia
- Faculty of Health Sciences, Curtin University, 208 Kent St., Bentley, Perth, WA 6102, Australia
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| |
Collapse
|
5
|
Congenital Gastrointestinal Anomalies in Europe 2010–2019: A Geo-Spatiotemporal and Causal Inferential Study of Epidemiological Patterns in Relationship to Cannabis- and Substance Exposure. GASTROENTEROLOGY INSIGHTS 2023. [DOI: 10.3390/gastroent14010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Introduction: Congenital anomalies (CA’s) of most of the gastrointestinal tract have been linked causally with prenatal or community cannabis exposure. Therefore, we studied this relationship in Europe. Methods: CA data were from Eurocat. Drug-use data were sourced from the European Monitoring Centre for Drugs and Drug Addiction. Income data were taken from the World Bank. Results: When countries with increasing rates of daily cannabis use were compared with those which were not, the overall rate of gastrointestinal CA’s (GCA’s) was higher in the former group (p = 0.0032). The five anomalies which were related to the metrics of cannabis exposure on bivariate analysis were bile duct atresia, Hirschsprungs, digestive disorders, annular pancreas and anorectal stenosis or atresia. The following sequence of GCA’s was significantly linked with cannabis metrics at inverse-probability-weighted-panel modelling, as indicated: esophageal stenosis or atresia, bile duct atresia, small intestinal stenosis or atresia, anorectal stenosis or atresia, Hirschsprungs disease: p = 1.83 × 10−5, 0.0046, 3.55 × 10−12, 7.35 × 10−6 and 2.00 × 10−12, respectively. When this GCA series was considered in geospatial modelling, the GCA’s were significantly cannabis-related from p = 0.0003, N.S., 0.0086, 6.652 × 10−5, 0.0002, 71.4% of 35 E-value estimates and 54.3% minimum E-values (mEVv’s) > 9 (high zone) and 100% and 97.1% > 1.25 (causality threshold). The order of cannabis sensitivity by median mEVv was Hirschsprungs > esophageal atresia > small intestinal atresia > anorectal atresia > bile duct atresia. Conclusions: Seven of eight GCA’s were related to cannabis exposure and fulfilled the quantitative criteria for epidemiologically causal relationships. Penetration of cannabinoids into the community should be carefully scrutinized and controlled to protect against exponential and multigenerational genotoxicity ensuing from multiple cannabinoids.
Collapse
|
6
|
Reece AS, Hulse GK. Clinical Epigenomic Explanation of the Epidemiology of Cannabinoid Genotoxicity Manifesting as Transgenerational Teratogenesis, Cancerogenesis and Aging Acceleration. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3360. [PMID: 36834053 PMCID: PMC9967951 DOI: 10.3390/ijerph20043360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 05/16/2023]
Abstract
As global interest in the therapeutic potential of cannabis and its' derivatives for the management of selected diseases increases, it is increasingly imperative that the toxic profile of cannabinoids be thoroughly understood in order to correctly assess the balance between the therapeutic risks and benefits. Modern studies across a number of jurisdictions, including Canada, Australia, the US and Europe have confirmed that some of the most worrying and severe historical reports of both congenital anomalies and cancer induction following cannabis exposure actually underestimate the multisystem thousand megabase-scale transgenerational genetic damage. These findings from teratogenic and carcinogenic literature are supported by recent data showing the accelerated patterns of chronic disease and the advanced DNA methylation epigenomic clock age in cannabis exposed patients. Together, the increased multisystem carcinogenesis, teratogenesis and accelerated aging point strongly to cannabinoid-related genotoxicity being much more clinically significant than it is widely supposed and, thus, of very considerable public health and multigenerational impact. Recently reported longitudinal epigenome-wide association studies elegantly explain many of these observed effects with considerable methodological sophistication, including multiple pathways for the inhibition of the normal chromosomal segregation and DNA repair, the inhibition of the basic epigenetic machinery for DNA methylation and the demethylation and telomerase acceleration of the epigenomic promoter hypermethylation characterizing aging. For cancer, 810 hits were also noted. The types of malignancy which were observed have all been documented epidemiologically. Detailed epigenomic explications of the brain, heart, face, uronephrological, gastrointestinal and limb development were provided, which amply explained the observed teratological patterns, including the inhibition of the key morphogenic gradients. Hence, these major epigenomic insights constituted a powerful new series of arguments which advanced both our understanding of the downstream sequalae of multisystem multigenerational cannabinoid genotoxicity and also, since mechanisms are key to the causal argument, inveighed strongly in favor of the causal nature of the relationship. In this introductory conceptual overview, we present the various aspects of this novel synthetic paradigmatic framework. Such concepts suggest and, indeed, indicate numerous fields for further investigation and basic science research to advance the exploration of many important issues in biology, clinical medicine and population health. Given this, it is imperative we correctly appraise the risk-benefit ratio for each potential cannabis application, considering the potency, severity of disease, stage of human development and duration of use.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| |
Collapse
|
7
|
Reece AS, Hulse GK. Novel Insights into Potential Cannabis-Related Cancerogenesis from Recent Key Whole Epigenome Screen of Cannabis Dependence and Withdrawal: Epidemiological Commentary and Explication of Schrott et al. Genes (Basel) 2022; 14:32. [PMID: 36672773 PMCID: PMC9858221 DOI: 10.3390/genes14010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022] Open
Abstract
Whilst the cannabis-cancer link has been traditionally described as controversial recent whole nation and whole continent studies have demonstrated that well documented laboratory-based multimodal cannabinoid genotoxicity is indeed reflected in numerous cancer types in larger epidemiological series. A recent longitudinal human sperm epigenome-wide DNA methylation screen in both cannabis dependence and cannabis withdrawal has revealed remarkable insights into the manner in which widespread perturbations of DNA methylation may lead to cancerogenic changes in both the exposed and subsequent generations as a result of both cannabis exposure and withdrawal. These results therefore powerfully strengthen and further robustify the causal nature of the relationship between cannabinoid exposure and cancerous outcomes well beyond the previously published extensive mechanistic literature on cannabinoid genotoxicity. The reported epigenomic results are strongly hypothesis generating and call powerfully for further work to investigate oncogenic mechanisms in many tissues, organs and preclinical models. These epigenomic results provide an extraordinarily close predictive account for the epidemiologically observed pattern of cannabis-related malignant disease and indicate that malignant and multigenerational cannabinoid epigenotoxicity is potentially a significant and major public health concern.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, Perth, QLD 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, Perth, QLD 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| |
Collapse
|
8
|
Reece AS, Hulse GK. Epidemiological Patterns of Cannabis- and Substance- Related Congenital Uronephrological Anomalies in Europe: Geospatiotemporal and Causal Inferential Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13769. [PMID: 36360648 PMCID: PMC9657099 DOI: 10.3390/ijerph192113769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 05/16/2023]
Abstract
INTRODUCTION Recent reports linking prenatal and community cannabis exposure to elevated uronephrological congenital anomaly (UCA) rates (UCAR's) raise the question of its European epidemiology given recent increases in community cannabinoid penetration there. METHODS UCAR data from Eurocat. Drug use data from European Monitoring Centre for Drugs and Drug Addiction. Income from World bank. RESULTS UCAR increased across Spain, Netherlands, Poland and France. UCAR's and cannabis resin THC increased simultaneously in France, Spain, Netherlands and Bulgaria. At bivariate analysis all UCA's were related to cannabis herb and resin THC concentrations. All UCAR's were bivariately related to cannabis metrics ordered by median minimum E-value (mEV) as hypospadias > multicystic renal disease > bilateral renal agenesis > UCA's > hydronephrosis > posterior urethral valve > bladder exstrophy/epispadias. At inverse probability weighted multivariable analysis terms including cannabis were significant for the following series of anomalies: UCA's, multicystic renal disease, bilateral renal agenesis, hydronephrosis, congenital posterior urethral valves from P = 1.91 × 10-5, 2.61 × 10-8, 4.60 × 10-15, 4.60 × 10-15 and 2.66 × 10-10. At geospatial analysis the same series of UCA's were significantly related to cannabis from P = 7.84 × 10-15, 7.72 × 10-5, 0.0023, 6.95 × 10-5, and 8.82 × 10-5. 45/51 (88.2%) of E-value estimates and 31/51 (60.8%) of mEV's >9. CONCLUSION Analysis confirms a close relationship between cannabis metrics and all seven UCA's and fulfill formal criteria for quantitative causal inference. Given the exponential cannabinoid genotoxicity dose-response relationship results provide a powerful stimulus to constrain community cannabinoid exposure including protection of the food chain to preserve the genome and epigenome of coming generations.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| |
Collapse
|