1
|
Anitua E, Murias-Freijo A, Tierno R, Tejero R, Alkhraisat MH. Assessing peri-implant bacterial community structure: the effect of microbiome sample collection method. BMC Oral Health 2024; 24:1001. [PMID: 39187802 PMCID: PMC11348724 DOI: 10.1186/s12903-024-04675-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/25/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Oral microbiota comprises polymicrobial communities shaped by mutualistic coevolution with the host, contributing to homeostasis and regulating immune function. Nevertheless, dysbiosis of oral bacterial communities is associated with a number of clinical symptoms that ranges from infections to oral cancer. Peri-implant diseases are biofilm-associated inflammatory conditions affecting the soft and hard tissues around dental implants. Characterization and identification of the biofilm community are essential for the understanding of the pathophysiology of such diseases. For that sampling methods should be representative of the biofilm communities Therefore, there is a need to know the effect of different sampling strategies on the biofilm characterization by next generation sequencing. METHODS With the aim of selecting an appropriate microbiome sampling procedure for periimplant biofilms, next generation sequencing was used for characterizing the bacterial communities obtained by three different sampling strategies two months after transepithelial abutment placement: adjacent periodontal crevicular fluid (ToCF), crevicular fluid from transepithelial abutment (TACF) and transepithelial abutment (TA). RESULTS Significant differences in multiple alpha diversity indices were detected at both the OTU and the genus level between different sampling procedures. Differentially abundant taxa were detected between sample collection strategies, including peri-implant health and disease related taxa. At the community level significant differences were also detected between TACF and TA and also between TA and ToCF. Moreover, differential network properties and association patterns were identified. CONCLUSIONS The selection of sample collection strategy can significantly affect the community composition and structure. TRIAL REGISTRATION This research is part of a randomized clinical trial that was designed to assess the effect of transepithelial abutment surface on the biofilm formation. The trial was registered at Trial Registration ClinicalTrials.gov under the number NCT03554876.
Collapse
Affiliation(s)
- Eduardo Anitua
- BTI-Biotechnology Institute, Vitoria, Spain.
- University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), Jacinto Quincoces, 39, Vitoria (Álava), 01007, Spain.
| | - Alia Murias-Freijo
- University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), Jacinto Quincoces, 39, Vitoria (Álava), 01007, Spain
- Biomedical Investigation, Faculty of Medicine and Dentistry, University of the Basque Country, Leioa, Spain
| | - Roberto Tierno
- BTI-Biotechnology Institute, Vitoria, Spain
- University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), Jacinto Quincoces, 39, Vitoria (Álava), 01007, Spain
| | - Ricardo Tejero
- BTI-Biotechnology Institute, Vitoria, Spain
- University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), Jacinto Quincoces, 39, Vitoria (Álava), 01007, Spain
| | - Mohammad Hamdan Alkhraisat
- BTI-Biotechnology Institute, Vitoria, Spain
- University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), Jacinto Quincoces, 39, Vitoria (Álava), 01007, Spain
| |
Collapse
|
2
|
Song L, Lu H, Jiang J, Xu A, Huang Y, Huang JP, Ding PH, He F. Metabolic profiling of peri-implant crevicular fluid in peri-implantitis. Clin Oral Implants Res 2024; 35:719-728. [PMID: 38624226 DOI: 10.1111/clr.14270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/25/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024]
Abstract
OBJECTS This study aims to explore the etiology of peri-implantitis by comparing the metabolic profiles in peri-implant crevicular fluid (PICF) from patients with healthy implants (PH) and those with peri-implantitis (PI). MATERIALS AND METHODS Fifty-six patients were enrolled in this cross-sectional study. PICF samples were collected and analyzed using both non-targeted and targeted metabolomics approaches. The relationship between metabolites and clinical indices including probing depth (PD), bleeding on probing (BOP), and marginal bone loss (MBL) was examined. Additionally, submucosal microbiota was collected and analyzed using 16S rRNA gene sequencing to elucidate the association between the metabolites and microbial communities. RESULTS Significant differences in metabolic profiles were observed between the PH and PI groups, with 179 distinct metabolites identified. In the PI group, specific amino acids and fatty acids were significantly elevated compared to the PH group. Organic acids including succinic acid, fructose-6-phosphate, and glucose-6-phosphate were markedly higher in the PI group, showing positive correlations with mean PD, BOP, and MBL. Metabolites that increased in the PI group positively correlated with the presence of Porphyromonas and Treponema and negatively with Streptococcus and Haemophilus. CONCLUSIONS This study establishes a clear association between metabolic compositions and peri-implant condition, highlighting enhanced metabolite activity in peri-implantitis. These findings open avenues for further research into metabolic mechanisms of peri-implantitis and their potential therapeutic implications.
Collapse
Affiliation(s)
- Lu Song
- School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, Cancer Center of Zhejiang University, Hangzhou, China
| | - Hongye Lu
- School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, Cancer Center of Zhejiang University, Hangzhou, China
| | - Jimin Jiang
- School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, Cancer Center of Zhejiang University, Hangzhou, China
| | - Antian Xu
- School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, Cancer Center of Zhejiang University, Hangzhou, China
| | - Yanli Huang
- School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, Cancer Center of Zhejiang University, Hangzhou, China
| | - Jia-Ping Huang
- School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, Cancer Center of Zhejiang University, Hangzhou, China
| | - Pei-Hui Ding
- School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, Cancer Center of Zhejiang University, Hangzhou, China
| | - Fuming He
- School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, Cancer Center of Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Yin D, Zhan S, Liu Y, Yan L, Shi B, Wang X, Zhang S. Experimental models for peri-implant diseases: a narrative review. Clin Oral Investig 2024; 28:378. [PMID: 38884808 DOI: 10.1007/s00784-024-05755-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/28/2024] [Indexed: 06/18/2024]
Abstract
OBJECTIVES Peri-implant diseases, being the most common implant-related complications, significantly impact the normal functioning and longevity of implants. Experimental models play a crucial role in discovering potential therapeutic approaches and elucidating the mechanisms of disease progression in peri-implant diseases. This narrative review comprehensively examines animal models and common modeling methods employed in peri-implant disease research and innovatively summarizes the in vitro models of peri-implant diseases. MATERIALS AND METHODS Articles published between 2015 and 2023 were retrieved from PubMed/Medline, Web of Science, and Embase. All studies focusing on experimental models of peri-implant diseases were included and carefully evaluated. RESULTS Various experimental models of peri-implantitis have different applications and advantages. The dog model is currently the most widely utilized animal model in peri-implant disease research, while rodent models have unique advantages in gene knockout and systemic disease induction. In vitro models of peri-implant diseases are also continuously evolving to meet different experimental purposes. CONCLUSIONS The utilization of experimental models helps simplify experiments, save time and resources, and promote advances in peri-implant disease research. Animal models have been proven valuable in the early stages of drug development, while technological advancements have brought about more predictive and relevant in vitro models. CLINICAL RELEVANCE This review provides clear and comprehensive model selection strategies for researchers in the field of peri-implant diseases, thereby enhancing understanding of disease pathogenesis and providing possibilities for developing new treatment strategies.
Collapse
Affiliation(s)
- Derong Yin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030032, Shanxi, China
| | - Suying Zhan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yanbo Liu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030032, Shanxi, China
| | - Lichao Yan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Binmian Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiayi Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Shiwen Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
4
|
Cleaver L, Garnett JA. How to study biofilms: technological advancements in clinical biofilm research. Front Cell Infect Microbiol 2023; 13:1335389. [PMID: 38156318 PMCID: PMC10753778 DOI: 10.3389/fcimb.2023.1335389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 11/30/2023] [Indexed: 12/30/2023] Open
Abstract
Biofilm formation is an important survival strategy commonly used by bacteria and fungi, which are embedded in a protective extracellular matrix of organic polymers. They are ubiquitous in nature, including humans and other animals, and they can be surface- and non-surface-associated, making them capable of growing in and on many different parts of the body. Biofilms are also complex, forming polymicrobial communities that are difficult to eradicate due to their unique growth dynamics, and clinical infections associated with biofilms are a huge burden in the healthcare setting, as they are often difficult to diagnose and to treat. Our understanding of biofilm formation and development is a fast-paced and important research focus. This review aims to describe the advancements in clinical biofilm research, including both in vitro and in vivo biofilm models, imaging techniques and techniques to analyse the biological functions of the biofilm.
Collapse
Affiliation(s)
- Leanne Cleaver
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King’s College London, London, United Kingdom
| | - James A. Garnett
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
5
|
Zhang OL, Niu JY, Yu OY, Mei ML, Jakubovics NS, Chu CH. Development of a Novel Peptide with Antimicrobial and Mineralising Properties for Caries Management. Pharmaceutics 2023; 15:2560. [PMID: 38004539 PMCID: PMC10675526 DOI: 10.3390/pharmaceutics15112560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/17/2023] [Accepted: 09/21/2023] [Indexed: 11/26/2023] Open
Abstract
The purpose of the study is to develop a novel peptide for caries management. Gallic-Acid-Polyphemusin-I (GAPI) was synthesised by grafting Polyphemusin I (PI) and gallic acid (GA). Biocompatibility was evaluated using a Cell Counting Kit-8 Assay. Antimicrobial properties were assessed using minimum inhibitory concentration (MIC) and minimum bactericidal/fungicidal concentration (MBC/MFC). The bacterial and fungal morphology after GAPI treatment was investigated using transmission electron microscopy (TEM). The architecture of a consortium biofilm consisting of Streptococcus mutans, Lacticaseibacillus casei and Candida albicans was evaluated using scanning electron microscopy (SEM) and confocal laser scanning microscopy. The growth kinetics of the biofilm was examined using a propidium monoazide-quantitative polymerase chain reaction. The surface and calcium-to-phosphorus molar ratio of GAPI-treated enamel after pH cycling were examined with SEM and energy-dispersive X-ray spectroscopy. Enamel crystal characteristics were analysed using X-ray diffraction. Lesion depths representing the enamel's mineral loss were assessed using micro-computed tomography. The MIC of GAPI against S. mutans, L. casei and C. albicans were 40 μM, 40 μM and 20 μM, respectively. GAPI destroyed the biofilm's three-dimensional structure and inhibited the growth of the biofilm. SEM showed that enamel treated with GAPI had a relatively smooth surface compared to that treated with water. The calcium-to-phosphorus molar ratio of enamel treated with GAPI was higher than that of the control. The lesion depths and mineral loss of the GAPI-treated enamel were less than the control. The crystallinity of the GAPI-treated enamel was higher than the control. This study developed a biocompatible, mineralising and antimicrobial peptide GAPI, which may have potential as an anti-caries agent.
Collapse
Affiliation(s)
- Olivia Lili Zhang
- Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, China; (O.L.Z.); (J.Y.N.); (O.Y.Y.); (M.L.M.)
| | - John Yun Niu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, China; (O.L.Z.); (J.Y.N.); (O.Y.Y.); (M.L.M.)
| | - Ollie Yiru Yu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, China; (O.L.Z.); (J.Y.N.); (O.Y.Y.); (M.L.M.)
| | - May Lei Mei
- Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, China; (O.L.Z.); (J.Y.N.); (O.Y.Y.); (M.L.M.)
- Faculty of Dentistry, The University of Otago, Dunedin 9054, New Zealand
| | - Nicholas Stephen Jakubovics
- Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, China; (O.L.Z.); (J.Y.N.); (O.Y.Y.); (M.L.M.)
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4BW, UK
| | - Chun Hung Chu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, China; (O.L.Z.); (J.Y.N.); (O.Y.Y.); (M.L.M.)
| |
Collapse
|
6
|
Ramachandra SS, Wright P, Han P, Abdal‐hay A, Lee RSB, Ivanovski S. Evaluating models and assessment techniques for understanding oral biofilm complexity. Microbiologyopen 2023; 12:e1377. [PMID: 37642488 PMCID: PMC10464519 DOI: 10.1002/mbo3.1377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/07/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
Oral biofilms are three-dimensional (3D) complex entities initiating dental diseases and have been evaluated extensively in the scientific literature using several biofilm models and assessment techniques. The list of biofilm models and assessment techniques may overwhelm a novice biofilm researcher. This narrative review aims to summarize the existing literature on biofilm models and assessment techniques, providing additional information on selecting an appropriate model and corresponding assessment techniques, which may be useful as a guide to the beginner biofilm investigator and as a refresher to experienced researchers. The review addresses previously established 2D models, outlining their advantages and limitations based on the growth environment, availability of nutrients, and the number of bacterial species, while also exploring novel 3D biofilm models. The growth of biofilms on clinically relevant 3D models, particularly melt electrowritten fibrous scaffolds, is discussed with a specific focus that has not been previously reported. Relevant studies on validated oral microcosm models that have recently gaining prominence are summarized. The review analyses the advantages and limitations of biofilm assessment methods, including colony forming unit culture, crystal violet, 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide inner salt assays, confocal microscopy, fluorescence in situ hybridization, scanning electron microscopy, quantitative polymerase chain reaction, and next-generation sequencing. The use of more complex models with advanced assessment methodologies, subject to the availability of equipment/facilities, may help in developing clinically relevant biofilms and answering appropriate research questions.
Collapse
Affiliation(s)
- Srinivas Sulugodu Ramachandra
- Centre for Orofacial Regeneration, Rehabilitation and Reconstruction (COR3), School of Dentistry, Faculty of Health and Behavioural SciencesThe University of QueenslandBrisbaneAustralia
- Preventive Dental Sciences, College of DentistryGulf Medical UniversityAjmanUnited Arab Emirates
| | - Patricia Wright
- Centre for Orofacial Regeneration, Rehabilitation and Reconstruction (COR3), School of Dentistry, Faculty of Health and Behavioural SciencesThe University of QueenslandBrisbaneAustralia
- School of Dentistry, Faculty of Health and Behavioural SciencesThe University of QueenslandBrisbaneAustralia
| | - Pingping Han
- Centre for Orofacial Regeneration, Rehabilitation and Reconstruction (COR3), School of Dentistry, Faculty of Health and Behavioural SciencesThe University of QueenslandBrisbaneAustralia
- School of Dentistry, Faculty of Health and Behavioural SciencesThe University of QueenslandBrisbaneAustralia
| | - Abdalla Abdal‐hay
- Centre for Orofacial Regeneration, Rehabilitation and Reconstruction (COR3), School of Dentistry, Faculty of Health and Behavioural SciencesThe University of QueenslandBrisbaneAustralia
- Department of Engineering Materials and Mechanical Design, Faculty of EngineeringSouth Valley UniversityQenaEgypt
- Faculty of Industry and Energy Technology, Mechatronics Technology ProgramNew Cairo Technological University, New Cairo‐Fifth SettlementCairoEgypt
| | - Ryan S. B. Lee
- Centre for Orofacial Regeneration, Rehabilitation and Reconstruction (COR3), School of Dentistry, Faculty of Health and Behavioural SciencesThe University of QueenslandBrisbaneAustralia
- School of Dentistry, Faculty of Health and Behavioural SciencesThe University of QueenslandBrisbaneAustralia
| | - Saso Ivanovski
- Centre for Orofacial Regeneration, Rehabilitation and Reconstruction (COR3), School of Dentistry, Faculty of Health and Behavioural SciencesThe University of QueenslandBrisbaneAustralia
- School of Dentistry, Faculty of Health and Behavioural SciencesThe University of QueenslandBrisbaneAustralia
| |
Collapse
|
7
|
Schönbächler N, Thurnheer T, Paqué PN, Attin T, Karygianni L. In vitro versus in situ biofilms for evaluating the antimicrobial effectiveness of herbal mouthrinses. Front Cell Infect Microbiol 2023; 13:1130255. [PMID: 36798085 PMCID: PMC9927218 DOI: 10.3389/fcimb.2023.1130255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/20/2023] [Indexed: 02/01/2023] Open
Abstract
For centuries, diverse mouthrinses have been applied for medicinal purposes in the oral cavity. In view of the growing resistance of oral microorganisms against conventional antimicrobial agents e.g. chlorhexidine, the implementation of alternative treatments inspired by nature has lately gained increasing interest. The aim of the present study was to compare in vitro biofilm models with in situ biofilms in order to evaluate the antimicrobial potential of different natural mouthrinses. For the in vitro study a six-species supragingival biofilm model containing A. oris, V. dispar, C. albicans, F. nucleatum, S. mutans and S. oralis was used. Biofilms were grown anaerobically on hydroxyapatite discs and treated with natural mouthrinses Ratanhia, Trybol and Tebodont. 0.9% NaCl and 10% ethanol served as negative controls, while 0.2% CHX served as positive control. After 64h hours, biofilms were harvested and quantified by cultural analysis CFU. For the in situ study, individual test splints were manufactured for the participants. After 2h and 72h the biofilm-covered samples were removed and treated with the mouthrinses and controls mentioned above. The biofilms were quantified by CFU and stained for vitality under the confocal laser scanning microscope. In the in vitro study, 0.2% CHX yielded the highest antimicrobial effect. Among all mouthrinses, Tebodont (4.708 ± 1.294 log10 CFU, median 5.279, p<0.0001) compared with 0.9% NaCl showed the highest antimicrobial potential. After 72h there was no significant reduction in CFU after 0.2% CHX treatment. Only Trybol showed a statistically significant reduction of aerobic growth of microorganisms in situ (5.331 ± 0.7350 log10 CFU, median 5.579, p<0.0209). After treatment with the positive control 0.2% CHX, a significant percentage of non-vital bacteria (42.006 ± 12.173 log10 CFU, median 42.150) was detected. To sum up, a less pronounced effect of all mouthrinses was shown for the in situ biofilms compared to the in vitro biofilms.
Collapse
Affiliation(s)
- Nicole Schönbächler
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Thomas Thurnheer
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Pune Nina Paqué
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
- Clinic of Reconstructive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Thomas Attin
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Lamprini Karygianni
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
- *Correspondence: Lamprini Karygianni,
| |
Collapse
|