1
|
Lu T, Yuan X, Sui C, Yang C, Li D, Liu H, Zhang G, Li G, Li S, Zhang J, Zhou L, Xu M. Exposure to Polypropylene Microplastics Causes Cardiomyocyte Apoptosis Through Oxidative Stress and Activation of the MAPK-Nrf2 Signaling Pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:5371-5381. [PMID: 39248137 DOI: 10.1002/tox.24411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 01/23/2024] [Accepted: 08/17/2024] [Indexed: 09/10/2024]
Abstract
Microplastics are a growing concern as pollutants that impact both public health and the environment. However, the toxic effects of polypropylene microplastics (PP-MPs) are not well understood. This study aimed to investigate the effects of PP-MPs on cardiotoxicity and its underlying mechanisms. The cardiotoxicity of exposure to different amounts of PP-MPs were investigated in both ICR mice and H9C2 cells. Our results demonstrated that sub-chronic exposure to 5 and 50 mg/L PP-MPs led to myocardial structural damage, apoptosis, and fibrosis in mice cardiomyocytes. Flow cytometry analysis revealed that PP-MPs could decrease mitochondrial membrane potential and induce apoptosis in H9C2 cells. Western blotting revealed decreased expression of Bcl-2, poly(ADP-ribose) polymerase (PARP) and caspase 3 and increased expression of Bax, cleaved-PARP, and cleaved-caspase 3 in PP-MPs-treated cardiac tissue and H9C2 cells. These results confirmed the apoptotic effects induced by PP-MPs. Moreover, PP-MPs treatment triggered oxidative stress, as evidenced by the increased levels of malondialdehyde; reduction in glutathione peroxidase, superoxide dismutase, and catalase activities in mice cardiac tissues; and increased reactive oxygen species levels in H9C2 cells. Finally, western blotting demonstrated that exposure to PP-MPs significantly reduced the expression levels of Nrf2 and p-ERK proteins associated with MAPK-Nrf2 pathway in both cardiac tissue and H9C2 cells. Overall, our findings indicate that PP-MPs can induce cardiomyocyte apoptosis through MAPK-Nrf2 signaling pathway, which is triggered by oxidative stress. This study provides a foundation for determining the effects of PP-MPs on cardiotoxicity and their underlying mechanisms.
Collapse
Affiliation(s)
- Tao Lu
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine School of Pharmacy, Binzhou Medical University, YanTai, ShanDong, China
| | - Xiaoqing Yuan
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine School of Pharmacy, Binzhou Medical University, YanTai, ShanDong, China
| | - Changbai Sui
- Department of Neurology, Yantaishan Hospital, Affiliated to Binzhou Medical University, YanTai, ShanDong, China
| | - Chen Yang
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine School of Pharmacy, Binzhou Medical University, YanTai, ShanDong, China
| | - Desheng Li
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine School of Pharmacy, Binzhou Medical University, YanTai, ShanDong, China
| | - Huan Liu
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine School of Pharmacy, Binzhou Medical University, YanTai, ShanDong, China
| | - Guanqing Zhang
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine School of Pharmacy, Binzhou Medical University, YanTai, ShanDong, China
| | - Guozhi Li
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine School of Pharmacy, Binzhou Medical University, YanTai, ShanDong, China
| | - Song Li
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine School of Pharmacy, Binzhou Medical University, YanTai, ShanDong, China
| | - Jiayu Zhang
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine School of Pharmacy, Binzhou Medical University, YanTai, ShanDong, China
| | - Ling Zhou
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine School of Pharmacy, Binzhou Medical University, YanTai, ShanDong, China
| | - Maolei Xu
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine School of Pharmacy, Binzhou Medical University, YanTai, ShanDong, China
| |
Collapse
|
2
|
Shu Q, Xie S, Junaid M, Zheng R, Tang H, Zou J, Zhou A. MPs and PFOS single and combined exposure significantly alter genetic expressions of growth hormone and insulin growth factor-related biomarkers during zebrafish embryonic development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174925. [PMID: 39043301 DOI: 10.1016/j.scitotenv.2024.174925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/20/2024] [Accepted: 07/19/2024] [Indexed: 07/25/2024]
Abstract
Microplastics (MPs) and perfluorooctane sulfonate (PFOS) are emerging pollutants that are ubiquitously present in the environment and can cause series of ecotoxicological effects on aquatic animals. This study examined how the expression of genes related to insulin growth factor (igf1, igf2a, igf2b, igfra, and igfrb) and growth hormone (ghrh, gh1, ghra, and ghrb) changes during the development of zebrafish embryos exposed to 8 μm polyethylene microplastics (PE-MPs) and perfluorooctane sulfonate (PFOS) individually and in combination for 72 h. Our findings revealed that both low-concentrations of MP (50 μg/L) and PFOS (0.02 μg/L) treatments could significantly activate gene expression within a short period. High concentrations of MPs (500 μg/L) and PFOS (0.1 μg/L) not only rapidly activated gene expression but also sustained high expression levels for a longer duration. During combined exposures, peak gene expression in the low concentration groups (50 μg/L MPs and 0.02 μg/L PFOS; 50 μg/L MPs and 0.1 μg/L PFOS) primarily occurred within 12 h after treatment. In the high concentration groups (500 μg/L MPs and 0.02 μg/L PFOS), peak expression was also observed within 12 h. Notably, the combined exposure groups exhibited more pronounced effects on gene expression than the individual exposure groups. The activation of gene expression was both more significant and longer-lasting in the combined exposure, indicating a synergistic regulatory effect of MPs and PFOS. Overall, our study suggests that zebrafish embryo development can be significantly impacted by exposure to MPs, PFOS, and their combination, with combined exposures having a more lasting and profound effect on gene regulation compared to single exposures.
Collapse
Affiliation(s)
- Qingsong Shu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Shaolin Xie
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Ran Zheng
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Huijuan Tang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| | - Jixing Zou
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| | - Aiguo Zhou
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| |
Collapse
|
3
|
Liu TJ, Yang J, Wu JW, Sun XR, Gao XJ. Polyethylene microplastics induced inflammation via the miR-21/IRAK4/NF-κB axis resulting to endoplasmic reticulum stress and apoptosis in muscle of carp. FISH & SHELLFISH IMMUNOLOGY 2024; 145:109375. [PMID: 38218424 DOI: 10.1016/j.fsi.2024.109375] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/24/2023] [Accepted: 01/10/2024] [Indexed: 01/15/2024]
Abstract
As a widespread environmental pollutant, microplastics pose a great threat to the tissues and organs of aquatic animals. The carp's muscles are necessary for movement and survival. However, the mechanism of injury of polyethylene microplastics (PE-MPs) to carp muscle remains unclear. Therefore, in this study, PE-MPs with the diameter of 8 μm and the concentration of 1000 ng/L were used to feed carp for 21 days, and polyethylene microplastic treatment groups was established. The results showed that PE-MPs could cause structural abnormalities and disarrangement of muscle fibers, and aggravate oxidative stress in muscles. Exposure to PE-MPs reduced microRNA (miR-21) in muscle tissue, negatively regulated Interleukin-1 Receptor Associated Kinase 4 (IRAK4), activated Nuclear Factor Kappa-B (NF-κB) pathway, induced inflammation, and led to endoplasmic reticulum stress and apoptosis. The present study provides different targets for the prevention of muscle injury induced by polyethylene microplastics.
Collapse
Affiliation(s)
- Tian-Jing Liu
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jie Yang
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jia-Wei Wu
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xiao-Ran Sun
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xue-Jiao Gao
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
4
|
Gomez NCF, Cragg SM, Ghiglione JF, Onda DFL. Accumulation and exposure classifications of plastics in the different coastal habitats in the western Philippine archipelago. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122602. [PMID: 37741539 DOI: 10.1016/j.envpol.2023.122602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Studies consistently ranked the Philippines as one of the top contributors of plastic wastes leaking into the ocean. However, most of these were based on probabilities and estimates due to lack of comprehensive ground-truth data, resulting also in the limited understanding of the contributing factors and drivers of local pollution. This makes it challenging to develop science-driven and locally-contextualized policies and interventions to mitigate the problem. Here, 56 sites from different coastal habitats in the western Philippine archipelago were surveyed for macroplastics standing stock, representing geographic regions with varying demography and economic activities. Clustering of sites revealed three potential influencing factors to plastic accumulation: population density, wind and oceanic transport, and habitat type. Notably, the amount and types of dominant plastics per geographic region varied significantly. Single-use plastics (food packaging and sachets) were the most abundant in sites adjacent to densely populated and highly urbanized areas (Manila Bay and eastern Palawan), while fishing-related materials dominated in less populated and fishing-dominated communities (western Palawan and Bolinao), suggesting the local industries significantly contributing to the mismanaged plastics in the surveyed sites. Meanwhile, isolated areas such as islands were characterized by the abundance of buoyant materials (drinking bottles and hygiene product containers), emphasizing the role of oceanic transport and strong connectivity in the oceans. Exposure assessment also identified single-use and fishing-related plastics to be of "high exposure (Type 4)" due to their high abundance and high occurrence. These increase their chances of encountering and interacting with organisms and habitats, thus, resulting into more potential harm. This study is the first comprehensive work done in western Philippines, and results will help contextualize local pollution, facilitating more effective management and policymaking.
Collapse
Affiliation(s)
- Norchel Corcia F Gomez
- Microbial Oceanography Laboratory, The Marine Science Institute, University of the Philippines Diliman, Quezon City, 1101, Philippines
| | - Simon M Cragg
- Institute of Marine Sciences and Centre for Enzyme Innovation, School of Biological Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Jean-François Ghiglione
- Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, Laboratoire d'Océanographie Microbienne (LOMIC), UMR 7621, Observatoire Océanologique de Banyuls, Banyuls sur mer, France
| | - Deo Florence L Onda
- Microbial Oceanography Laboratory, The Marine Science Institute, University of the Philippines Diliman, Quezon City, 1101, Philippines; Pag-asa Island Research Station (PIRS), The Marine Science Institute, Pag-asa Island, Kalayaan Island Group, West Philippine Sea, Philippines.
| |
Collapse
|