1
|
Ren W, Wang Y, Yan Z, Chu Z, Yang F, Jan YK, Yao J, Pu F. Adaptive Changes in Longitudinal Arch During Long-distance Running. Int J Sports Med 2024. [PMID: 39084326 DOI: 10.1055/a-2362-1267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
This study investigates the biomechanical adaptations of the longitudinal arch (LA) in long-distance runners, focusing on changes in stiffness, angle, and moment during a 60-minute run. Twenty runners participated in this experiment, and were asked to run at a speed of 2.7 m·s-1 for 60 minutes. The kinematic and kinetic data collected at five-minute intervals during running were calculated, including the stiffness of LA in the loading phase (k load ) and the stiffness of LA in the unloading phase (k unload ), the maximum LA moment (M max ), the range of LA angle change (∆θ range ), and the maximum LA angle change (∆θ max ). Foot morphology was also scanned before and after running. Variations of kinematic and kinetic data were analyzed throughout the running activity, as well as variations of foot morphology pre- and post-run. Results showed that there was a significant decrease in k load (p<0.001), coupled with increases in ∆θ range (p=0.002) and ∆θ max (p<0.001), during the first 15 minutes of running, which was followed by a period of mechanical stability. No differences were found in k unload and M max throughout the running process and the foot morphology remained unchanged after running. These results highlight a critical adaptation phase that may be pivotal for improving running economy and performance.
Collapse
Affiliation(s)
- Weiyan Ren
- School of Engineering Medicine, Beihang University, Beijing, China
| | - Yan Wang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Zhaoqi Yan
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Zhaowei Chu
- Li Ning Sports Science Research Center, Li Ning Co Ltd, Beijing, China
| | - Fan Yang
- Li Ning Sports Science Research Center, Li Ning Co Ltd, Beijing, China
| | - Yih-Kuen Jan
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Jie Yao
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Fang Pu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
2
|
Saito R, Shagawa M, Sugimoto Y, Hirai T, Kato K, Sekine C, Yokota H, Hirabayashi R, Ishigaki T, Akuzawa H, Togashi R, Yamada Y, Osanami H, Edama M. Changes in the mechanical properties of the thigh and lower leg muscle-tendon units during the early follicular and early luteal phases. Front Sports Act Living 2024; 6:1323598. [PMID: 38596640 PMCID: PMC11002163 DOI: 10.3389/fspor.2024.1323598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/12/2024] [Indexed: 04/11/2024] Open
Abstract
Background This study aimed to determine changes in the muscle and tendon stiffness of the thigh and lower leg muscle-tendon units during the early follicular and early luteal phases, and check for possible relations between muscle and tendon stiffness in each phase. Methods The sample consisted of 15 female university students with regular menstrual cycles. The basal body temperature method, ovulation kit, and salivary estradiol concentration measurement were used to estimate the early follicular and early luteal phases. A portable digital palpation device measured muscle-tendon stiffness in the early follicular and early luteal phases. The measurement sites were the rectus femoris (RF), vastus medialis (VM), patellar tendon (PT), medial head of gastrocnemius muscle, soleus muscle, and Achilles tendon. Results No statistically significant differences in the thigh and lower leg muscle-tendon unit stiffness were seen between the early follicular and early luteal phases. Significant positive correlations were found between the stiffness of the RF and PT (r = 0.608, p = 0.016) and between the VM and PT (r = 0.737, p = 0.002) during the early luteal phase. Conclusion The present results suggest that the stiffness of leg muscle-tendon units of the anterior thigh and posterior lower leg do not change between the early follicular and early luteal phases and that tendons may be stiffer in those women who have stiffer anterior thigh muscles during the early luteal phase.
Collapse
|
3
|
Anazawa S, Yamashiro K, Makibuchi T, Ikarashi K, Fujimoto T, Ochi G, Sato D. Sex Differences in Excitatory and Inhibitory Function in the Primary Somatosensory Cortex during the Early Follicular Phase: A Preliminary Study. Brain Sci 2023; 13:brainsci13050761. [PMID: 37239233 DOI: 10.3390/brainsci13050761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 04/30/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND AND OBJECTIVES We examined sex differences in the excitatory and inhibitory functions of the primary somatosensory cortex (S1) between males and females during the early follicular phase, when estradiol hormones are unaffected. METHODS Fifty participants (25 males and 25 females) underwent measurement of somatosensory evoked potentials (SEPs) and paired-pulse inhibition (PPI) in the S1; SEPs and PPI were elicited by constant current square-wave pulses (0.2 ms duration) delivered to the right median nerve by electrical stimulation. Paired-pulse stimulation occurred at 30- and 100-ms interstimulus intervals. Participants were randomly presented with 1500 (500 stimuli each) single- and paired-pulse stimuli at 2 Hz. RESULTS The N20 amplitude was significantly larger in female subjects than in male subjects, and the PPI-30 ms was significantly potentiated in female subjects compared to that in male subjects. CONCLUSIONS The excitatory and inhibitory functions in S1 differ between male and female subjects, at least during the early follicular phase.
Collapse
Affiliation(s)
- Sayaka Anazawa
- Field of Health and Sports, Graduate School of Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata 950-3198, Japan
| | - Koya Yamashiro
- Department of Health and Sports, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata 950-3198, Japan
- Institute for Human Movement and Medical Sciences, 1398 Shimami-cho, Kita-Ku, Niigata 950-3198, Japan
| | - Taiki Makibuchi
- Field of Health and Sports, Graduate School of Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata 950-3198, Japan
- Department of Health and Sports, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata 950-3198, Japan
| | - Koyuki Ikarashi
- Department of Health and Sports, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata 950-3198, Japan
- Institute for Human Movement and Medical Sciences, 1398 Shimami-cho, Kita-Ku, Niigata 950-3198, Japan
| | - Tomomi Fujimoto
- Department of Health and Sports, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata 950-3198, Japan
- Institute for Human Movement and Medical Sciences, 1398 Shimami-cho, Kita-Ku, Niigata 950-3198, Japan
| | - Genta Ochi
- Department of Health and Sports, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata 950-3198, Japan
- Institute for Human Movement and Medical Sciences, 1398 Shimami-cho, Kita-Ku, Niigata 950-3198, Japan
| | - Daisuke Sato
- Department of Health and Sports, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata 950-3198, Japan
- Institute for Human Movement and Medical Sciences, 1398 Shimami-cho, Kita-Ku, Niigata 950-3198, Japan
| |
Collapse
|