1
|
Ahmed S, Raza B, Hussain L, Sadiq T, Dutta AK. Enhancing multiclass COVID-19 prediction with ESN-MDFS: Extreme smart network using mean dropout feature selection technique. PLoS One 2024; 19:e0310011. [PMID: 39531465 PMCID: PMC11556731 DOI: 10.1371/journal.pone.0310011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/22/2024] [Indexed: 11/16/2024] Open
Abstract
Deep learning and artificial intelligence offer promising tools for improving the accuracy and efficiency of diagnosing various lung conditions using portable chest x-rays (CXRs). This study explores this potential by leveraging a large dataset containing over 6,000 CXR images from publicly available sources. These images encompass COVID-19 cases, normal cases, and patients with viral or bacterial pneumonia. The research proposes a novel approach called "Enhancing COVID Prediction with ESN-MDFS" that utilizes a combination of an Extreme Smart Network (ESN) and a Mean Dropout Feature Selection Technique (MDFS). This study aimed to enhance multi-class lung condition detection in portable chest X-rays by combining static texture features with dynamic deep learning features extracted from a pre-trained VGG-16 model. To optimize performance, preprocessing, data imbalance, and hyperparameter tuning were meticulously addressed. The proposed ESN-MDFS model achieved a peak accuracy of 96.18% with an AUC of 1.00 in a six-fold cross-validation. Our findings demonstrate the model's superior ability to differentiate between COVID-19, bacterial pneumonia, viral pneumonia, and normal conditions, promising significant advancements in diagnostic accuracy and efficiency.
Collapse
Affiliation(s)
- Saghir Ahmed
- Department of Computer Science, COMSATS University, Islamabad Capital Territory, Islamabad, Pakistan
| | - Basit Raza
- Department of Computer Science, COMSATS University, Islamabad Capital Territory, Islamabad, Pakistan
| | - Lal Hussain
- Department of Computer Science & IT, Neelum Campus, The University of Azad Jammu and Kashmir, Athmuqam, Azad Kashmir, Pakistan
- Department of Computer Science & IT, King Abdullah Campus, The University of Azad Jammu and Kashmir, Muzaffarabad, Azad Kashmir, Pakistan
| | - Touseef Sadiq
- Department of Information and Communication Technology, Centre for Artificial Intelligence Research (CAIR), University of Agder, Grimstad, Norway
| | - Ashit Kumar Dutta
- Department of Computer Science and Information Systems, College of Applied Sciences, AlMaarefa University, Ad Diriyah, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
2
|
Almutaani M, Turki T, Taguchi YH. Novel large empirical study of deep transfer learning for COVID-19 classification based on CT and X-ray images. Sci Rep 2024; 14:26520. [PMID: 39489731 PMCID: PMC11532342 DOI: 10.1038/s41598-024-76498-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024] Open
Abstract
The early and highly accurate prediction of COVID-19 based on medical images can speed up the diagnostic process and thereby mitigate disease spread; therefore, developing AI-based models is an inevitable endeavor. The presented work, to our knowledge, is the first to expand the model space and identify a better performing model among 10,000 constructed deep transfer learning (DTL) models as follows. First, we downloaded and processed 4481 CT and X-ray images pertaining to COVID-19 and non-COVID-19 patients, obtained from the Kaggle repository. Second, we provide processed images as inputs to four pre-trained deep learning models (ConvNeXt, EfficientNetV2, DenseNet121, and ResNet34) on more than a million images from the ImageNet database, in which we froze the convolutional and pooling layers pertaining to the feature extraction part while unfreezing and training the densely connected classifier with the Adam optimizer. Third, we generate and take a majority vote of two, three, and four combinations from the four DTL models, resulting in [Formula: see text] DTL models. Then, we combine the 11 DTL models, followed by consecutively generating and taking the majority vote of [Formula: see text] DTL models. Finally, we select [Formula: see text] DTL models from [Formula: see text] Experimental results from the whole datasets using five-fold cross-validation demonstrate that the best generated DTL model, named HC, achieving the best AUC of 0.909 when applied to the CT dataset, while ConvNeXt yielded a higher marginal AUC of 0.933 compared to 0.93 for HX when considering the X-ray dataset. These promising results set the foundation for promoting the large generation of models (LGM) in AI.
Collapse
Affiliation(s)
- Mansour Almutaani
- Department of Computer Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Turki Turki
- Department of Computer Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.
| | - Y-H Taguchi
- Department of Physics, Chuo University, Tokyo, 112-8551, Japan
| |
Collapse
|
3
|
Bani Baker Q, Hammad M, Al-Smadi M, Al-Jarrah H, Al-Hamouri R, Al-Zboon SA. Enhanced COVID-19 Detection from X-ray Images with Convolutional Neural Network and Transfer Learning. J Imaging 2024; 10:250. [PMID: 39452413 PMCID: PMC11508642 DOI: 10.3390/jimaging10100250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/22/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
The global spread of Coronavirus (COVID-19) has prompted imperative research into scalable and effective detection methods to curb its outbreak. The early diagnosis of COVID-19 patients has emerged as a pivotal strategy in mitigating the spread of the disease. Automated COVID-19 detection using Chest X-ray (CXR) imaging has significant potential for facilitating large-scale screening and epidemic control efforts. This paper introduces a novel approach that employs state-of-the-art Convolutional Neural Network models (CNNs) for accurate COVID-19 detection. The employed datasets each comprised 15,000 X-ray images. We addressed both binary (Normal vs. Abnormal) and multi-class (Normal, COVID-19, Pneumonia) classification tasks. Comprehensive evaluations were performed by utilizing six distinct CNN-based models (Xception, Inception-V3, ResNet50, VGG19, DenseNet201, and InceptionResNet-V2) for both tasks. As a result, the Xception model demonstrated exceptional performance, achieving 98.13% accuracy, 98.14% precision, 97.65% recall, and a 97.89% F1-score in binary classification, while in multi-classification it yielded 87.73% accuracy, 90.20% precision, 87.73% recall, and an 87.49% F1-score. Moreover, the other utilized models, such as ResNet50, demonstrated competitive performance compared with many recent works.
Collapse
Affiliation(s)
- Qanita Bani Baker
- Faculty of Computer and Information Technology, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan; (M.H.); (H.A.-J.); (R.A.-H.); (S.A.A.-Z.)
| | - Mahmoud Hammad
- Faculty of Computer and Information Technology, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan; (M.H.); (H.A.-J.); (R.A.-H.); (S.A.A.-Z.)
| | - Mohammed Al-Smadi
- Digital Learning and Online Education Office (DLOE), Qatar University, Doha 2713, Qatar;
| | - Heba Al-Jarrah
- Faculty of Computer and Information Technology, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan; (M.H.); (H.A.-J.); (R.A.-H.); (S.A.A.-Z.)
| | - Rahaf Al-Hamouri
- Faculty of Computer and Information Technology, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan; (M.H.); (H.A.-J.); (R.A.-H.); (S.A.A.-Z.)
| | - Sa’ad A. Al-Zboon
- Faculty of Computer and Information Technology, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan; (M.H.); (H.A.-J.); (R.A.-H.); (S.A.A.-Z.)
| |
Collapse
|
4
|
Turki T, Al Habib S, Taguchi YH. Novel Automatic Classification of Human Adult Lung Alveolar Type II Cells Infected with SARS-CoV-2 through the Deep Transfer Learning Approach. MATHEMATICS 2024; 12:1573. [DOI: 10.3390/math12101573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Transmission electron microscopy imaging provides a unique opportunity to inspect the detailed structure of infected lung cells with SARS-CoV-2. Unlike previous studies, this novel study aims to investigate COVID-19 classification at the lung cellular level in response to SARS-CoV-2. Particularly, differentiating between healthy and infected human alveolar type II (hAT2) cells with SARS-CoV-2. Hence, we explore the feasibility of deep transfer learning (DTL) and introduce a highly accurate approach that works as follows: First, we downloaded and processed 286 images pertaining to healthy and infected hAT2 cells obtained from the electron microscopy public image archive. Second, we provided processed images to two DTL computations to induce ten DTL models. The first DTL computation employs five pre-trained models (including DenseNet201 and ResNet152V2) trained on more than one million images from the ImageNet database to extract features from hAT2 images. Then, it flattens and provides the output feature vectors to a trained, densely connected classifier with the Adam optimizer. The second DTL computation works in a similar manner, with a minor difference in that we freeze the first layers for feature extraction in pre-trained models while unfreezing and jointly training the next layers. The results using five-fold cross-validation demonstrated that TFeDenseNet201 is 12.37× faster and superior, yielding the highest average ACC of 0.993 (F1 of 0.992 and MCC of 0.986) with statistical significance (P<2.2×10−16 from a t-test) compared to an average ACC of 0.937 (F1 of 0.938 and MCC of 0.877) for the counterpart (TFtDenseNet201), showing no significance results (P=0.093 from a t-test).
Collapse
Affiliation(s)
- Turki Turki
- Department of Computer Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sarah Al Habib
- Department of Computer Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Computer Science, King Khalid University, Abha 62529, Saudi Arabia
| | - Y-h. Taguchi
- Department of Physics, Chuo University, Tokyo 112-8551, Japan
| |
Collapse
|
5
|
Farghaly O, Deshpande P. Texture-Based Classification to Overcome Uncertainty between COVID-19 and Viral Pneumonia Using Machine Learning and Deep Learning Techniques. Diagnostics (Basel) 2024; 14:1017. [PMID: 38786315 PMCID: PMC11119936 DOI: 10.3390/diagnostics14101017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
The SARS-CoV-2 virus, responsible for COVID-19, often manifests symptoms akin to viral pneumonia, complicating early detection and potentially leading to severe COVID pneumonia and long-term effects. Particularly affecting young individuals, the elderly, and those with weakened immune systems, the accurate classification of COVID-19 poses challenges, especially with highly dimensional image data. Past studies have faced limitations due to simplistic algorithms and small, biased datasets, yielding inaccurate results. In response, our study introduces a novel classification model that integrates advanced texture feature extraction methods, including GLCM, GLDM, and wavelet transform, within a deep learning framework. This innovative approach enables the effective classification of chest X-ray images into normal, COVID-19, and viral pneumonia categories, overcoming the limitations encountered in previous studies. Leveraging the unique textures inherent to each dataset class, our model achieves superior classification performance, even amidst the complexity and diversity of the data. Moreover, we present comprehensive numerical findings demonstrating the superiority of our approach over traditional methods. The numerical results highlight the accuracy (random forest (RF): 0.85; SVM (support vector machine): 0.70; deep learning neural network (DLNN): 0.92), recall (RF: 0.85, SVM: 0.74, DLNN: 0.93), precision (RF: 0.86, SVM: 0.71, DLNN: 0.87), and F1-Score (RF: 0.86, SVM: 0.72, DLNN: 0.89) of our proposed model. Our study represents a significant advancement in AI-based diagnostic systems for COVID-19 and pneumonia, promising improved patient outcomes and healthcare management strategies.
Collapse
Affiliation(s)
- Omar Farghaly
- Data-Intensive Computing Distributed Systems Laboratory, Department of Electrical and Computer Engineering, Marquette University, Milwaukee, WI 53233, USA
| | - Priya Deshpande
- Data-Intensive Computing Distributed Systems Laboratory, Department of Electrical and Computer Engineering, Marquette University, Milwaukee, WI 53233, USA
| |
Collapse
|
6
|
Malik H, Anees T. Multi-modal deep learning methods for classification of chest diseases using different medical imaging and cough sounds. PLoS One 2024; 19:e0296352. [PMID: 38470893 DOI: 10.1371/journal.pone.0296352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/11/2023] [Indexed: 03/14/2024] Open
Abstract
Chest disease refers to a wide range of conditions affecting the lungs, such as COVID-19, lung cancer (LC), consolidation lung (COL), and many more. When diagnosing chest disorders medical professionals may be thrown off by the overlapping symptoms (such as fever, cough, sore throat, etc.). Additionally, researchers and medical professionals make use of chest X-rays (CXR), cough sounds, and computed tomography (CT) scans to diagnose chest disorders. The present study aims to classify the nine different conditions of chest disorders, including COVID-19, LC, COL, atelectasis (ATE), tuberculosis (TB), pneumothorax (PNEUTH), edema (EDE), pneumonia (PNEU). Thus, we suggested four novel convolutional neural network (CNN) models that train distinct image-level representations for nine different chest disease classifications by extracting features from images. Furthermore, the proposed CNN employed several new approaches such as a max-pooling layer, batch normalization layers (BANL), dropout, rank-based average pooling (RBAP), and multiple-way data generation (MWDG). The scalogram method is utilized to transform the sounds of coughing into a visual representation. Before beginning to train the model that has been developed, the SMOTE approach is used to calibrate the CXR and CT scans as well as the cough sound images (CSI) of nine different chest disorders. The CXR, CT scan, and CSI used for training and evaluating the proposed model come from 24 publicly available benchmark chest illness datasets. The classification performance of the proposed model is compared with that of seven baseline models, namely Vgg-19, ResNet-101, ResNet-50, DenseNet-121, EfficientNetB0, DenseNet-201, and Inception-V3, in addition to state-of-the-art (SOTA) classifiers. The effectiveness of the proposed model is further demonstrated by the results of the ablation experiments. The proposed model was successful in achieving an accuracy of 99.01%, making it superior to both the baseline models and the SOTA classifiers. As a result, the proposed approach is capable of offering significant support to radiologists and other medical professionals.
Collapse
Affiliation(s)
- Hassaan Malik
- Department of Computer Science, School of Systems and Technology, University of Management and Technology, Lahore, Pakistan
| | - Tayyaba Anees
- Department of Software Engineering, School of Systems and Technology, University of Management and Technology, Lahore, Pakistan
| |
Collapse
|
7
|
Sobiecki A, Hadjiiski LM, Chan HP, Samala RK, Zhou C, Stojanovska J, Agarwal PP. Detection of Severe Lung Infection on Chest Radiographs of COVID-19 Patients: Robustness of AI Models across Multi-Institutional Data. Diagnostics (Basel) 2024; 14:341. [PMID: 38337857 PMCID: PMC10855789 DOI: 10.3390/diagnostics14030341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
The diagnosis of severe COVID-19 lung infection is important because it carries a higher risk for the patient and requires prompt treatment with oxygen therapy and hospitalization while those with less severe lung infection often stay on observation. Also, severe infections are more likely to have long-standing residual changes in their lungs and may need follow-up imaging. We have developed deep learning neural network models for classifying severe vs. non-severe lung infections in COVID-19 patients on chest radiographs (CXR). A deep learning U-Net model was developed to segment the lungs. Inception-v1 and Inception-v4 models were trained for the classification of severe vs. non-severe COVID-19 infection. Four CXR datasets from multi-country and multi-institutional sources were used to develop and evaluate the models. The combined dataset consisted of 5748 cases and 6193 CXR images with physicians' severity ratings as reference standard. The area under the receiver operating characteristic curve (AUC) was used to evaluate model performance. We studied the reproducibility of classification performance using the different combinations of training and validation data sets. We also evaluated the generalizability of the trained deep learning models using both independent internal and external test sets. The Inception-v1 based models achieved AUC ranging between 0.81 ± 0.02 and 0.84 ± 0.0, while the Inception-v4 models achieved AUC in the range of 0.85 ± 0.06 and 0.89 ± 0.01, on the independent test sets, respectively. These results demonstrate the promise of using deep learning models in differentiating COVID-19 patients with severe from non-severe lung infection on chest radiographs.
Collapse
Affiliation(s)
- André Sobiecki
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA; (A.S.); (H.-P.C.); (C.Z.); (P.P.A.)
| | - Lubomir M. Hadjiiski
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA; (A.S.); (H.-P.C.); (C.Z.); (P.P.A.)
| | - Heang-Ping Chan
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA; (A.S.); (H.-P.C.); (C.Z.); (P.P.A.)
| | - Ravi K. Samala
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA;
| | - Chuan Zhou
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA; (A.S.); (H.-P.C.); (C.Z.); (P.P.A.)
| | | | - Prachi P. Agarwal
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA; (A.S.); (H.-P.C.); (C.Z.); (P.P.A.)
| |
Collapse
|
8
|
Popov A, Ivanko K. Introduction to biomedical signals and biomedical imaging. ADVANCES IN ARTIFICIAL INTELLIGENCE 2024:1-57. [DOI: 10.1016/b978-0-443-19073-5.00013-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
9
|
Kim MH, Shin HJ, Kim J, Jo S, Kim EK, Park YS, Kyong T. Novel Risks of Unfavorable Corticosteroid Response in Patients with Mild-to-Moderate COVID-19 Identified Using Artificial Intelligence-Assisted Analysis of Chest Radiographs. J Clin Med 2023; 12:5852. [PMID: 37762792 PMCID: PMC10532025 DOI: 10.3390/jcm12185852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/25/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The prediction of corticosteroid responses in coronavirus disease 2019 (COVID-19) patients is crucial in clinical practice, and exploring the role of artificial intelligence (AI)-assisted analysis of chest radiographs (CXR) is warranted. This retrospective case-control study involving mild-to-moderate COVID-19 patients treated with corticosteroids was conducted from 4 September 2021, to 30 August 2022. The primary endpoint of the study was corticosteroid responsiveness, defined as the advancement of two or more of the eight-categories-ordinal scale. Serial abnormality scores for consolidation and pleural effusion on CXR were obtained using a commercial AI-based software based on days from the onset of symptoms. Amongst the 258 participants included in the analysis, 147 (57%) were male. Multivariable logistic regression analysis revealed that high pleural effusion score at 6-9 days from onset of symptoms (adjusted odds ratio of (aOR): 1.022, 95% confidence interval (CI): 1.003-1.042, p = 0.020) and consolidation scores up to 9 days from onset of symptoms (0-2 days: aOR: 1.025, 95% CI: 1.006-1.045, p = 0.010; 3-5 days: aOR: 1.03 95% CI: 1.011-1.051, p = 0.002; 6-9 days: aOR; 1.052, 95% CI: 1.015-1.089, p = 0.005) were associated with an unfavorable corticosteroid response. AI-generated scores could help intervene in the use of corticosteroids in COVID-19 patients who would not benefit from them.
Collapse
Affiliation(s)
- Min Hyung Kim
- Department of Internal Medicine, Division of Infectious Disease, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin-si 16995, Republic of Korea; (M.H.K.); (Y.S.P.)
| | - Hyun Joo Shin
- Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin-si 16995, Republic of Korea; (H.J.S.); (E.-K.K.)
- Center for Digital Health, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin-si 16995, Republic of Korea
| | - Jaewoong Kim
- Department of Hospital Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin-si 16995, Republic of Korea; (J.K.); (S.J.)
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sunhee Jo
- Department of Hospital Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin-si 16995, Republic of Korea; (J.K.); (S.J.)
| | - Eun-Kyung Kim
- Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin-si 16995, Republic of Korea; (H.J.S.); (E.-K.K.)
- Center for Digital Health, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin-si 16995, Republic of Korea
| | - Yoon Soo Park
- Department of Internal Medicine, Division of Infectious Disease, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin-si 16995, Republic of Korea; (M.H.K.); (Y.S.P.)
| | - Taeyoung Kyong
- Department of Hospital Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin-si 16995, Republic of Korea; (J.K.); (S.J.)
| |
Collapse
|
10
|
Malik H, Anees T, Al-Shamaylehs AS, Alharthi SZ, Khalil W, Akhunzada A. Deep Learning-Based Classification of Chest Diseases Using X-rays, CT Scans, and Cough Sound Images. Diagnostics (Basel) 2023; 13:2772. [PMID: 37685310 PMCID: PMC10486427 DOI: 10.3390/diagnostics13172772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Chest disease refers to a variety of lung disorders, including lung cancer (LC), COVID-19, pneumonia (PNEU), tuberculosis (TB), and numerous other respiratory disorders. The symptoms (i.e., fever, cough, sore throat, etc.) of these chest diseases are similar, which might mislead radiologists and health experts when classifying chest diseases. Chest X-rays (CXR), cough sounds, and computed tomography (CT) scans are utilized by researchers and doctors to identify chest diseases such as LC, COVID-19, PNEU, and TB. The objective of the work is to identify nine different types of chest diseases, including COVID-19, edema (EDE), LC, PNEU, pneumothorax (PNEUTH), normal, atelectasis (ATE), and consolidation lung (COL). Therefore, we designed a novel deep learning (DL)-based chest disease detection network (DCDD_Net) that uses a CXR, CT scans, and cough sound images for the identification of nine different types of chest diseases. The scalogram method is used to convert the cough sounds into an image. Before training the proposed DCDD_Net model, the borderline (BL) SMOTE is applied to balance the CXR, CT scans, and cough sound images of nine chest diseases. The proposed DCDD_Net model is trained and evaluated on 20 publicly available benchmark chest disease datasets of CXR, CT scan, and cough sound images. The classification performance of the DCDD_Net is compared with four baseline models, i.e., InceptionResNet-V2, EfficientNet-B0, DenseNet-201, and Xception, as well as state-of-the-art (SOTA) classifiers. The DCDD_Net achieved an accuracy of 96.67%, a precision of 96.82%, a recall of 95.76%, an F1-score of 95.61%, and an area under the curve (AUC) of 99.43%. The results reveal that DCDD_Net outperformed the other four baseline models in terms of many performance evaluation metrics. Thus, the proposed DCDD_Net model can provide significant assistance to radiologists and medical experts. Additionally, the proposed model was also shown to be resilient by statistical evaluations of the datasets using McNemar and ANOVA tests.
Collapse
Affiliation(s)
- Hassaan Malik
- School of Systems and Technology, University of Management and Technology, Lahore 54770, Pakistan; (H.M.); (T.A.)
| | - Tayyaba Anees
- School of Systems and Technology, University of Management and Technology, Lahore 54770, Pakistan; (H.M.); (T.A.)
| | - Ahmad Sami Al-Shamaylehs
- Department of Networks and Cybersecurity, Faculty of Information Technology, Al-Ahliyya Amman University, Amman 19328, Jordan;
| | - Salman Z. Alharthi
- Department of Information System, College of Computers and Information Systems, Al-Lith Campus, Umm AL-Qura University, P.O. Box 7745, AL-Lith 21955, Saudi Arabia
| | - Wajeeha Khalil
- Department of Computer Science and Information Technology, University of Engineering and Technology Peshawar, Peshawar 25000, Pakistan;
| | - Adnan Akhunzada
- College of Computing & IT, University of Doha for Science and Technology, Doha P.O. Box 24449, Qatar;
| |
Collapse
|
11
|
Wu Y, Dai Q, Lu H. COVID-19 diagnosis utilizing wavelet-based contrastive learning with chest CT images. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS : AN INTERNATIONAL JOURNAL SPONSORED BY THE CHEMOMETRICS SOCIETY 2023; 236:104799. [PMID: 36883063 PMCID: PMC9981271 DOI: 10.1016/j.chemolab.2023.104799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/20/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
The pandemic caused by the coronavirus disease 2019 (COVID-19) has continuously wreaked havoc on human health. Computer-aided diagnosis (CAD) system based on chest computed tomography (CT) has been a hotspot option for COVID-19 diagnosis. However, due to the high cost of data annotation in the medical field, it happens that the number of unannotated data is much larger than the annotated data. Meanwhile, having a highly accurate CAD system always requires a large amount of labeled data training. To solve this problem while meeting the needs, this paper presents an automated and accurate COVID-19 diagnosis system using few labeled CT images. The overall framework of this system is based on the self-supervised contrastive learning (SSCL). Based on the framework, our enhancement of our system can be summarized as follows. 1) We integrated a two-dimensional discrete wavelet transform with contrastive learning to fully use all the features from the images. 2) We use the recently proposed COVID-Net as the encoder, with a redesign to target the specificity of the task and learning efficiency. 3) A new pretraining strategy based on contrastive learning is applied for broader generalization ability. 4) An additional auxiliary task is exerted to promote performance during classification. The final experimental result of our system attained 93.55%, 91.59%, 96.92% and 94.18% for accuracy, recall, precision, and F1-score respectively. By comparing results with the existing schemes, we demonstrate the performance enhancement and superiority of our proposed system.
Collapse
Affiliation(s)
- Yanfu Wu
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, PR China
| | - Qun Dai
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, PR China
| | - Han Lu
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, PR China
| |
Collapse
|
12
|
Lin KH, Lu NH, Okamoto T, Huang YH, Liu KY, Matsushima A, Chang CC, Chen TB. Fusion-Extracted Features by Deep Networks for Improved COVID-19 Classification with Chest X-ray Radiography. Healthcare (Basel) 2023; 11:healthcare11101367. [PMID: 37239653 DOI: 10.3390/healthcare11101367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Convolutional neural networks (CNNs) have shown promise in accurately diagnosing coronavirus disease 2019 (COVID-19) and bacterial pneumonia using chest X-ray images. However, determining the optimal feature extraction approach is challenging. This study investigates the use of fusion-extracted features by deep networks to improve the accuracy of COVID-19 and bacterial pneumonia classification with chest X-ray radiography. A Fusion CNN method was developed using five different deep learning models after transferred learning to extract image features (Fusion CNN). The combined features were used to build a support vector machine (SVM) classifier with a RBF kernel. The performance of the model was evaluated using accuracy, Kappa values, recall rate, and precision scores. The Fusion CNN model achieved an accuracy and Kappa value of 0.994 and 0.991, with precision scores for normal, COVID-19, and bacterial groups of 0.991, 0.998, and 0.994, respectively. The results indicate that the Fusion CNN models with the SVM classifier provided reliable and accurate classification performance, with Kappa values no less than 0.990. Using a Fusion CNN approach could be a possible solution to enhance accuracy further. Therefore, the study demonstrates the potential of deep learning and fusion-extracted features for accurate COVID-19 and bacterial pneumonia classification with chest X-ray radiography.
Collapse
Affiliation(s)
- Kuo-Hsuan Lin
- Department of Information Engineering, I-Shou University, Kaohsiung City 82445, Taiwan
- Department of Emergency Medicine, E-DA Hospital, I-Shou University, Kaohsiung City 82445, Taiwan
| | - Nan-Han Lu
- Department of Pharmacy, Tajen University, Pingtung City 90741, Taiwan
- Department of Radiology, E-DA Cancer Hospital, I-Shou University, No. 1, Yida Road, Jiao-su Village, Yan-Chao District, Kaohsiung City 82445, Taiwan
- Department of Medical Imaging and Radiological Science, I-Shou University, Kaohsiung City 82445, Taiwan
| | - Takahide Okamoto
- Department of Radiological Technology, Faculty of Medical Technology, Teikyo University, Tokyo 173-8605, Japan
| | - Yung-Hui Huang
- Department of Medical Imaging and Radiological Science, I-Shou University, Kaohsiung City 82445, Taiwan
| | - Kuo-Ying Liu
- Department of Radiology, E-DA Cancer Hospital, I-Shou University, No. 1, Yida Road, Jiao-su Village, Yan-Chao District, Kaohsiung City 82445, Taiwan
- Department of Medical Imaging and Radiological Science, I-Shou University, Kaohsiung City 82445, Taiwan
| | - Akari Matsushima
- Department of Radiological Technology, Faculty of Medical Technology, Teikyo University, Tokyo 173-8605, Japan
| | - Che-Cheng Chang
- Department of Radiology, E-DA Hospital, I-Shou University, Kaohsiung City 82445, Taiwan
| | - Tai-Been Chen
- Department of Medical Imaging and Radiological Science, I-Shou University, Kaohsiung City 82445, Taiwan
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
13
|
Althaqafi T, Al-Ghamdi ASAM, Ragab M. Artificial Intelligence Based COVID-19 Detection and Classification Model on Chest X-ray Images. Healthcare (Basel) 2023; 11:healthcare11091204. [PMID: 37174746 PMCID: PMC10177894 DOI: 10.3390/healthcare11091204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/06/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Diagnostic and predictive models of disease have been growing rapidly due to developments in the field of healthcare. Accurate and early diagnosis of COVID-19 is an underlying process for controlling the spread of this deadly disease and its death rates. The chest radiology (CT) scan is an effective device for the diagnosis and earlier management of COVID-19, meanwhile, the virus mainly targets the respiratory system. Chest X-ray (CXR) images are extremely helpful in the effective diagnosis of COVID-19 due to their rapid outcomes, cost-effectiveness, and availability. Although the radiological image-based diagnosis method seems faster and accomplishes a better recognition rate in the early phase of the epidemic, it requires healthcare experts to interpret the images. Thus, Artificial Intelligence (AI) technologies, such as the deep learning (DL) model, play an integral part in developing automated diagnosis process using CXR images. Therefore, this study designs a sine cosine optimization with DL-based disease detection and classification (SCODL-DDC) for COVID-19 on CXR images. The proposed SCODL-DDC technique examines the CXR images to identify and classify the occurrence of COVID-19. In particular, the SCODL-DDC technique uses the EfficientNet model for feature vector generation, and its hyperparameters can be adjusted by the SCO algorithm. Furthermore, the quantum neural network (QNN) model can be employed for an accurate COVID-19 classification process. Finally, the equilibrium optimizer (EO) is exploited for optimum parameter selection of the QNN model, showing the novelty of the work. The experimental results of the SCODL-DDC method exhibit the superior performance of the SCODL-DDC technique over other approaches.
Collapse
Affiliation(s)
- Turki Althaqafi
- Information Systems Department, HECI School, Dar Al-Hekma University, Jeddah 34801, Saudi Arabia
| | - Abdullah S Al-Malaise Al-Ghamdi
- Information Systems Department, HECI School, Dar Al-Hekma University, Jeddah 34801, Saudi Arabia
- Information Systems Department, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mahmoud Ragab
- Information Technology Department, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mathematics Department, Faculty of Science, Al-Azhar University, Naser City 11884, Cairo, Egypt
| |
Collapse
|
14
|
Akinyelu AA, Bah B. COVID-19 Diagnosis in Computerized Tomography (CT) and X-ray Scans Using Capsule Neural Network. Diagnostics (Basel) 2023; 13:diagnostics13081484. [PMID: 37189585 DOI: 10.3390/diagnostics13081484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/14/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
This study proposes a deep-learning-based solution (named CapsNetCovid) for COVID-19 diagnosis using a capsule neural network (CapsNet). CapsNets are robust for image rotations and affine transformations, which is advantageous when processing medical imaging datasets. This study presents a performance analysis of CapsNets on standard images and their augmented variants for binary and multi-class classification. CapsNetCovid was trained and evaluated on two COVID-19 datasets of CT images and X-ray images. It was also evaluated on eight augmented datasets. The results show that the proposed model achieved classification accuracy, precision, sensitivity, and F1-score of 99.929%, 99.887%, 100%, and 99.319%, respectively, for the CT images. It also achieved a classification accuracy, precision, sensitivity, and F1-score of 94.721%, 93.864%, 92.947%, and 93.386%, respectively, for the X-ray images. This study presents a comparative analysis between CapsNetCovid, CNN, DenseNet121, and ResNet50 in terms of their ability to correctly identify randomly transformed and rotated CT and X-ray images without the use of data augmentation techniques. The analysis shows that CapsNetCovid outperforms CNN, DenseNet121, and ResNet50 when trained and evaluated on CT and X-ray images without data augmentation. We hope that this research will aid in improving decision making and diagnostic accuracy of medical professionals when diagnosing COVID-19.
Collapse
Affiliation(s)
- Andronicus A Akinyelu
- Research Centre, African Institute for Mathematical Sciences (AIMS) South Africa, Cape Town 7945, South Africa
- Department of Computer Science and Informatics, University of the Free State, Phuthaditjhaba 9866, South Africa
| | - Bubacarr Bah
- Research Centre, African Institute for Mathematical Sciences (AIMS) South Africa, Cape Town 7945, South Africa
- Department of Mathematical Sciences, Stellenbosch University, Cape Town 7945, South Africa
| |
Collapse
|
15
|
Shaheed K, Szczuko P, Abbas Q, Hussain A, Albathan M. Computer-Aided Diagnosis of COVID-19 from Chest X-ray Images Using Hybrid-Features and Random Forest Classifier. Healthcare (Basel) 2023; 11:healthcare11060837. [PMID: 36981494 PMCID: PMC10047954 DOI: 10.3390/healthcare11060837] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
In recent years, a lot of attention has been paid to using radiology imaging to automatically find COVID-19. (1) Background: There are now a number of computer-aided diagnostic schemes that help radiologists and doctors perform diagnostic COVID-19 tests quickly, accurately, and consistently. (2) Methods: Using chest X-ray images, this study proposed a cutting-edge scheme for the automatic recognition of COVID-19 and pneumonia. First, a pre-processing method based on a Gaussian filter and logarithmic operator is applied to input chest X-ray (CXR) images to improve the poor-quality images by enhancing the contrast, reducing the noise, and smoothing the image. Second, robust features are extracted from each enhanced chest X-ray image using a Convolutional Neural Network (CNNs) transformer and an optimal collection of grey-level co-occurrence matrices (GLCM) that contain features such as contrast, correlation, entropy, and energy. Finally, based on extracted features from input images, a random forest machine learning classifier is used to classify images into three classes, such as COVID-19, pneumonia, or normal. The predicted output from the model is combined with Gradient-weighted Class Activation Mapping (Grad-CAM) visualisation for diagnosis. (3) Results: Our work is evaluated using public datasets with three different train–test splits (70–30%, 80–20%, and 90–10%) and achieved an average accuracy, F1 score, recall, and precision of 97%, 96%, 96%, and 96%, respectively. A comparative study shows that our proposed method outperforms existing and similar work. The proposed approach can be utilised to screen COVID-19-infected patients effectively. (4) Conclusions: A comparative study with the existing methods is also performed. For performance evaluation, metrics such as accuracy, sensitivity, and F1-measure are calculated. The performance of the proposed method is better than that of the existing methodologies, and it can thus be used for the effective diagnosis of the disease.
Collapse
Affiliation(s)
- Kashif Shaheed
- Department of Multimedia Systems, Faculty of Electronics, Telecommunication and Informatics, Gdansk University of Technology, 80-233 Gdansk, Poland
| | - Piotr Szczuko
- Department of Multimedia Systems, Faculty of Electronics, Telecommunication and Informatics, Gdansk University of Technology, 80-233 Gdansk, Poland
| | - Qaisar Abbas
- College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia;
| | - Ayyaz Hussain
- Department of Computer Science, Quaid-i-Azam University, Islamabad 44000, Pakistan
| | - Mubarak Albathan
- College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia;
- Correspondence: ; Tel.: +966-503451575
| |
Collapse
|
16
|
Aldhahi W, Sull S. Uncertain-CAM: Uncertainty-Based Ensemble Machine Voting for Improved COVID-19 CXR Classification and Explainability. Diagnostics (Basel) 2023; 13:441. [PMID: 36766546 PMCID: PMC9914375 DOI: 10.3390/diagnostics13030441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/08/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic has had a significant impact on patients and healthcare systems across the world. Distinguishing non-COVID-19 patients from COVID-19 patients at the lowest possible cost and in the earliest stages of the disease is a major issue. Additionally, the implementation of explainable deep learning decisions is another issue, especially in critical fields such as medicine. The study presents a method to train deep learning models and apply an uncertainty-based ensemble voting policy to achieve 99% accuracy in classifying COVID-19 chest X-rays from normal and pneumonia-related infections. We further present a training scheme that integrates the cyclic cosine annealing approach with cross-validation and uncertainty quantification that is measured using prediction interval coverage probability (PICP) as final ensemble voting weights. We also propose the Uncertain-CAM technique, which improves deep learning explainability and provides a more reliable COVID-19 classification system. We introduce a new image processing technique to measure the explainability based on ground-truth, and we compared it with the widely adopted Grad-CAM method.
Collapse
Affiliation(s)
| | - Sanghoon Sull
- School of Electrical Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|