1
|
Kunat-Budzyńska M, Łabuć E, Ptaszyńska AA. Seasonal detection of pathogens in honeybees kept in natural and laboratory conditions. Parasitol Int 2025; 104:102978. [PMID: 39378965 DOI: 10.1016/j.parint.2024.102978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
The honeybee is one of the most important pollinators in the world. The frequently observed poor health of honeybee colonies can be caused by various factors, e.g. environmental pollution, nutritional stress, and climate changes. Moreover, honeybees are constantly exposed to a wide spectrum of pathogens, such as parasites, bacteria, and viruses. We examined the occurrence of various diseases in different-aged worker honeybees from two colonies kept in natural and laboratory conditions during spring, summer, and autumn in Poland. The honeybees were examined by PCR to detect infection with selected pathogens: Nosema ceranae, N. apis, N. bombi, Acarapis woodi, trypanosomatids, and neogregarines (Mattesia or Apicystis species) and by RT-PCR to identify deformed wing virus (DWV), black queen cell virus (BQCV), and acute bee paralysis virus (ABPV). DWV and N. ceranae turned out to be the dominant pathogens. Trypanosomatids and BQCV were also found in several samples. We did not detect the presence of the other pathogens: N. apis, N. bombi, A. woodi, neogregarines, or ABPV. As shown in the present study, the dynamics and occurrence of pathogens are influenced by keeping conditions, honeybee age, and seasonality.
Collapse
Affiliation(s)
- Magdalena Kunat-Budzyńska
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland.
| | - Emilia Łabuć
- Laboratory of Bioinformatics and Biostatistics, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Aneta A Ptaszyńska
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| |
Collapse
|
2
|
Paduraru E, Jijie R, Simionov IA, Gavrilescu CM, Ilie T, Iacob D, Lupitu A, Moisa C, Muresan C, Copolovici L, Copolovici DM, Mihalache G, Lipsa FD, Solcan G, Danelet GA, Nicoara M, Ciobica A, Solcan C. Honey Enriched with Additives Alleviates Behavioral, Oxidative Stress, and Brain Alterations Induced by Heavy Metals and Imidacloprid in Zebrafish. Int J Mol Sci 2024; 25:11730. [PMID: 39519279 PMCID: PMC11546825 DOI: 10.3390/ijms252111730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/22/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Environmental concerns have consistently been a focal point for the scientific community. Pollution is a critical ecological issue that poses significant threats to human health and agricultural production. Contamination with heavy metals and pesticides is a considerable concern, a threat to the environment, and warrants special attention. In this study, we investigated the significant issues arising from sub-chronic exposure to imidacloprid (IMI), mercury (Hg), and cadmium (Cd), either alone or in combination, using zebrafish (Danio rerio) as an animal model. Additionally, we assessed the potential protective effects of polyfloral honey enriched with natural ingredients, also called honey formulation (HF), against the combined sub-chronic toxic effects of the three contaminants. The effects of IMI (0.5 mg·L-1), Hg (15 μg·L-1), and Cd (5 μg·L-1), both individually and in combination with HF (500 mg·L-1), on zebrafish were evaluated by quantifying acetylcholinesterase (AChE) activity, lipid peroxidation (MDA), various antioxidant enzyme activities like superoxide dismutase and glutathione peroxidase (SOD and GPx), 2D locomotor activity, social behavior, histological and immunohistochemical factors, and changes in body element concentrations. Our findings revealed that all concentrations of pollutants may disrupt social behavior, diminish swimming performances (measured by total distance traveled, inactivity, and swimming speed), and elevate oxidative stress (OS) biomarkers of SOD, GPx, and MDA in zebrafish over the 21-day administration period. Fish exposed to IMI and Hg + Cd + IMI displayed severe lesions and increased GFAP (Glial fibrillary acidic protein) and S100B (S100 calcium-binding protein B) protein expression in the optic tectum and cerebellum, conclusively indicating astrocyte activation and neurotoxic effects. Furthermore, PCNA (Proliferating cell nuclear antigen) staining revealed reduced cell proliferation in the IMI-exposed group, contrasting with intensified proliferation in the Hg + Cd group. The nervous system exhibited significant damage across all studied concentrations, confirming the observed behavioral changes. Moreover, HF supplementation significantly mitigated the toxicity induced by contaminants and reduced OS. Therefore, the exposure to chemical mixtures offers a more complete picture of adverse impacts on aquatic ecosystems and the supplementation with bioactive compounds can help to reduce the toxicity induced by exposure to environmental pollutants.
Collapse
Affiliation(s)
- Emanuela Paduraru
- Doctoral School of Geosciences, Faculty of Geography and Geology, Alexandru Ioan Cuza University of Iasi, No. 20 A Carol I Avenue, 700505 Iasi, Romania; (E.P.); (D.I.); (M.N.)
| | - Roxana Jijie
- Research Center on Advanced Materials and Technologies (RAMTECH), Department of Exact and Natural Sciences, Institute of Interdisciplinary Research, Alexandru Ioan Cuza University of Iasi, No. 11 Carol I Avenue, 700506 Iasi, Romania;
| | - Ira-Adeline Simionov
- Department of Food Science, Food Engineering, Biotechnologies and Aquaculture, Dunarea de Jos University of Galati, No. 47 Domnească Street, 800008 Galati, Romania;
- REXDAN Research Infrastructure, Dunarea de Jos University of Galati, No. 98 George Coșbuc Street, 800385 Galati, Romania
| | - Cristina-Maria Gavrilescu
- Department of Biomedical Sciences, Grigore T. Popa University of Medicine and Pharmacy, No. 16 University Street, 700115 Iasi, Romania;
| | - Tudor Ilie
- Synergy Plant Products, No. 12 Milano Street, Prejmer, 507165 Brasov, Romania;
| | - Diana Iacob
- Doctoral School of Geosciences, Faculty of Geography and Geology, Alexandru Ioan Cuza University of Iasi, No. 20 A Carol I Avenue, 700505 Iasi, Romania; (E.P.); (D.I.); (M.N.)
| | - Andreea Lupitu
- Faculty of Food Engineering, Tourism and Environmental Protection, Institute for Research, Development and Innovation in Technical and Natural Sciences, Aurel Vlaicu University, No. 2 Elena Dragoi Street, 310330 Arad, Romania; (A.L.); (C.M.); (C.M.); (L.C.); (D.M.C.)
| | - Cristian Moisa
- Faculty of Food Engineering, Tourism and Environmental Protection, Institute for Research, Development and Innovation in Technical and Natural Sciences, Aurel Vlaicu University, No. 2 Elena Dragoi Street, 310330 Arad, Romania; (A.L.); (C.M.); (C.M.); (L.C.); (D.M.C.)
| | - Claudia Muresan
- Faculty of Food Engineering, Tourism and Environmental Protection, Institute for Research, Development and Innovation in Technical and Natural Sciences, Aurel Vlaicu University, No. 2 Elena Dragoi Street, 310330 Arad, Romania; (A.L.); (C.M.); (C.M.); (L.C.); (D.M.C.)
| | - Lucian Copolovici
- Faculty of Food Engineering, Tourism and Environmental Protection, Institute for Research, Development and Innovation in Technical and Natural Sciences, Aurel Vlaicu University, No. 2 Elena Dragoi Street, 310330 Arad, Romania; (A.L.); (C.M.); (C.M.); (L.C.); (D.M.C.)
| | - Dana M. Copolovici
- Faculty of Food Engineering, Tourism and Environmental Protection, Institute for Research, Development and Innovation in Technical and Natural Sciences, Aurel Vlaicu University, No. 2 Elena Dragoi Street, 310330 Arad, Romania; (A.L.); (C.M.); (C.M.); (L.C.); (D.M.C.)
| | - Gabriela Mihalache
- Integrated Center of Environmental Science Studies in the North-Eastern Development Region (CERNESIM), Department of Exact and Natural Sciences, Institute of Interdisciplinary Research, Alexandru Ioan Cuza University of Iasi, No. 11 Carol I Avenue, 700506 Iasi, Romania;
| | - Florin Daniel Lipsa
- Department of Food Technologies, Ion Ionescu de la Brad University of Life Sciences, No. 3 Mihail Sadoveanu Alley, 700490 Iasi, Romania;
| | - Gheorghe Solcan
- Faculty of Veterinary Medicine, Ion Ionescu de la Brad University of Life Sciences, No. 8 Mihail Sadoveanu Alley, 700489 Iasi, Romania; (G.S.); (G.-A.D.); (C.S.)
| | - Gabriela-Alexandra Danelet
- Faculty of Veterinary Medicine, Ion Ionescu de la Brad University of Life Sciences, No. 8 Mihail Sadoveanu Alley, 700489 Iasi, Romania; (G.S.); (G.-A.D.); (C.S.)
| | - Mircea Nicoara
- Doctoral School of Geosciences, Faculty of Geography and Geology, Alexandru Ioan Cuza University of Iasi, No. 20 A Carol I Avenue, 700505 Iasi, Romania; (E.P.); (D.I.); (M.N.)
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, No. 20A Carol I Avenue, 700505 Iasi, Romania
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, No. 20A Carol I Avenue, 700505 Iasi, Romania
- Center of Biomedical Research, Romanian Academy, No. 8 Carol I Avenue, 700506 Iasi, Romania
- Academy of Romanian Scientists, No. 54 Independence Street, Sector 5, 050094 Bucharest, Romania
- “Ioan Haulica” Institute, Apollonia University, No. 11 Pacurari Street, 700511 Iasi, Romania
| | - Carmen Solcan
- Faculty of Veterinary Medicine, Ion Ionescu de la Brad University of Life Sciences, No. 8 Mihail Sadoveanu Alley, 700489 Iasi, Romania; (G.S.); (G.-A.D.); (C.S.)
| |
Collapse
|
3
|
Nyarko K, Mensah S, Greenlief CM. Examining the Use of Polyphenols and Sugars for Authenticating Honey on the U.S. Market: A Comprehensive Review. Molecules 2024; 29:4940. [PMID: 39459308 PMCID: PMC11510238 DOI: 10.3390/molecules29204940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
The rise in honey production and imports into the United States necessitates the need for robust methods to authenticate honey origin and ensure consumer safety. This review addresses the scope of honey authentication, with a specific focus on the exploration of polyphenols and sugar markers to evaluate honeys in the U.S. In the absence of comprehensive federal standards for honey in the United States, challenges related to authenticity and adulteration persist. Examining the global landscape of honey authentication research, we observed a significant gap in the literature pertaining to U.S. honeys. While honeys from Europe, Australia, New Zealand, and Asia have been extensively studied, the decentralized nature of the U.S. honey market and the lack of comprehensive standards have limited the number of investigations conducted. This review consolidates the findings of global honey studies and emphasizes the need for further research studies on honey authenticity markers within the United States. We also explore previous studies on the U.S. that focused on identifying potential markers for honey authenticity. However, the inherent variability in polyphenol profiles and the lack of extensive studies of the sugar contents of honey on a global scale pose challenges to establishing universal markers. We conclude that by addressing these challenges, the field of research on polyphenols and sugars in honey can move toward more reliable and standardized methods. This advancement will enhance the use of polyphenols and other constituents like sugars as authenticity markers, ultimately benefiting both researchers and the honey industry in ensuring honey quality.
Collapse
Affiliation(s)
| | | | - C. Michael Greenlief
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA; (K.N.); (S.M.)
| |
Collapse
|
4
|
Peña-Portillo GC, Acuña-Nelson SM, Bastías-Montes JM. From Waste to Wealth: Exploring the Bioactive Potential of Wine By-Products-A Review. Antioxidants (Basel) 2024; 13:992. [PMID: 39199237 PMCID: PMC11351921 DOI: 10.3390/antiox13080992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
The present paper explores the biological potential of bioactive compounds present in wine industry wastes, highlighting their valorization to promote sustainability and circular economy. Wine by-products, such as grape pomace and vine shoots, contain a high concentration of polyphenols, flavonoids, anthocyanins and other phytochemicals with antioxidant, anti-inflammatory and anticarcinogenic properties. Both conventional extraction methods, such as solid-liquid extraction, and emerging technologies, including enzyme-assisted extraction, ultrasound-assisted extraction, supercritical fluid extraction, microwave-assisted extraction, pressurized liquid extraction, high-hydrostatic-pressure extraction, and deep natural solvent-assisted extraction (NaDES), are discussed. In addition, the preservation of polyphenolic extracts by microencapsulation, a key technique to improve the stability and bioavailability of bioactive compounds, is addressed. The combination of advanced extraction methods and innovative preservation techniques offers a promising perspective for the valorization of bioactive compounds from wine residues, driving sustainability and innovation in the industry.
Collapse
Affiliation(s)
| | - Sergio-Miguel Acuña-Nelson
- Departamento de Ingeniería en Alimentos, Universidad del Bío-Bío, Avenida Andrés Bello 720, Chillán 3780000, Chile; (G.-C.P.-P.); (J.-M.B.-M.)
| | | |
Collapse
|
5
|
Dahiya D, Mackin C, Nigam PS. Studies on bioactivities of Manuka and regional varieties of honey for their potential use as natural antibiotic agents for infection control related to wound healing and in pharmaceutical formulations. AIMS Microbiol 2024; 10:288-310. [PMID: 38919717 PMCID: PMC11194624 DOI: 10.3934/microbiol.2024015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/10/2024] [Accepted: 04/23/2024] [Indexed: 06/27/2024] Open
Abstract
Presently, most of the reported infections are of a bacterial origin; however, this leads to a limit within the literature and research around infections caused by fungal pathogens, which are now developing resistance to antibiotic medicines. Of the natural antimicrobial agents, honey has been observed with demonstrable and highly exploitable antimicrobial and infection control related to wound healing properties; therefore, it has been incorporated into many standard pharmaceutical formulations. Generally, these products utilize a pure sample of honey as a bioactive ingredient in a product which has been purposely designed for the convenience of application. This article aims to review information available from published reports on various bioactivities of a variety of medical-grade honey products, including manuka and other conventional non-manuka types sourced from different floral types and geographical regions. Additionally, this review highlights the antibiotic activities of various types of honey products tested against pathogenic strains of bacteria, yeast and fungi, and their applications in the formulation of healthcare products.
Collapse
Affiliation(s)
- Divakar Dahiya
- Wexham Park Hospital, Wexham Street, Slough SL2 4HL, England, UK
- current address: Haematology and Blood Transfusion, Basingstoke and North Hampshire Hospital, Basingstoke RG24 9NA, UK
| | - Caoimhin Mackin
- Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, UK
| | - Poonam Singh Nigam
- Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, UK
| |
Collapse
|
6
|
Torabi S, Hassanzadeh-Tabrizi SA. Effective antibacterial agents in modern wound dressings: a review. BIOFOULING 2024; 40:305-332. [PMID: 38836473 DOI: 10.1080/08927014.2024.2358913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/17/2024] [Indexed: 06/06/2024]
Abstract
Wound infections are a significant concern in healthcare, leading to long healing times. Traditional approaches for managing wound infections rely heavily on systemic antibiotics, which are associated with the emergence of antibiotic-resistant bacteria. Therefore, the development of alternative antibacterial materials for wound care has gained considerable attention. In today's world, new generations of wound dressing are commonly used to heal wounds. These new dressings keep the wound and the area around it moist to improve wound healing. However, this moist environment can also foster an environment that is favorable for the growth of bacteria. Excessive antibiotic use poses a significant threat to human health and causes bacterial resistance, so new-generation wound dressings must be designed and developed to reduce the risk of infection. Wound dressings using antimicrobial compounds minimize wound bacterial colonization, making them the best way to avoid open wound infection. We aim to provide readers with a comprehensive understanding of the latest advancements in antibacterial materials for wound management.
Collapse
Affiliation(s)
- Sadaf Torabi
- Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Sayed Ali Hassanzadeh-Tabrizi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| |
Collapse
|
7
|
Banaś J, Banaś M. Combined Application of Fluorescence Spectroscopy and Principal Component Analysis in Characterisation of Selected Herbhoneys. Molecules 2024; 29:749. [PMID: 38398501 PMCID: PMC10893536 DOI: 10.3390/molecules29040749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/23/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
This study reports the use of front-face fluorescence spectroscopy with principal component analysis (PCA) as a tool for the characterisation of selected Polish herbhoneys (raspberry, lemon balm, rose, mint, black current, instant coffee, pine, hawthorn, and nettle). Fluorimetric spectra registered in the ranges ascribed to fluorescence of amino acids, polyphenols, vitamins, and products of Maillard's reaction enabled the comparison of herbhoney compositions. Obtained synchronous spectra combined with PCA were used to investigate potential differences between analysed samples and interactions between compounds present in them. The most substantial influence on the total variance had the intensities of polyphenols fluorescence. These intensities were the main factor differentiated by the analysed products.
Collapse
Affiliation(s)
- Joanna Banaś
- Department of Biotechnology and General Technology of Food, Faculty of Food Technology, University of Agriculture in Kraków, Balicka 122, 30-149 Kraków, Poland
| | - Marian Banaś
- Department of Power Systems and Environmental Protection Facilities, Faculty of Mechanical Engineering and Robotics, AGH University of Kraków, A. Mickiewicza 30, 30-059 Kraków, Poland;
| |
Collapse
|
8
|
Mad-adam N, Madla S, Lailerd N, Hiransai P, Graidist P. Piper nigrum Extract: Dietary Supplement for Reducing Mammary Tumor Incidence and Chemotherapy-Induced Toxicity. Foods 2023; 12:2053. [PMID: 37238871 PMCID: PMC10216990 DOI: 10.3390/foods12102053] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
A low piperine fractional Piper nigrum extract (PFPE) was prepared by mixing cold-pressed coconut oil and honey in distilled water, namely, PFPE-CH. In this study, PFPE-CH was orally administered as a dietary supplement to decrease the risk of tumor formation and reduce the side effects of chemotherapeutic drugs during breast cancer treatment. The toxicity study demonstrated no mortality or adverse effects after administrating PFPE-CH at 5000 mg/kg during a 14-day observation period. Additionally, PFPE-CH at 86 mg/kg BW/day did not cause any harm to the kidney or liver function of the rats for six months. In a cancer prevention study, treatment with PFPE-CH at 100 mg/kg BW for 101 days induced oxidative stress and increased the immune response by altering the levels of cancer-associated cytokines (IL-4, IL-6, and IFN-g), leading to a reduction in the tumor incidence of up to 71.4% without any adverse effects. In combination with doxorubicin, PFPE-CH did not disrupt the anticancer effects of the drug in rats with mammary tumors. Surprisingly, PFPE-CH reduced chemotherapy-induced toxicity by improving some hematological and biochemical parameters. Therefore, our results suggest that PFPE-CH is safe and effective in reducing breast tumor incidence and toxicity of chemotherapeutic drugs during cancer treatment in mammary tumor rats.
Collapse
Affiliation(s)
- Nadeeya Mad-adam
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Siribhon Madla
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Narissara Lailerd
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Poonsit Hiransai
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Center of Excellence in Marijuana, Hemp, and Kratom, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Potchanapond Graidist
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| |
Collapse
|
9
|
Ziuzia P, Janiec Z, Wróbel-Kwiatkowska M, Lazar Z, Rakicka-Pustułka M. Honey's Yeast-New Source of Valuable Species for Industrial Applications. Int J Mol Sci 2023; 24:ijms24097889. [PMID: 37175595 PMCID: PMC10178026 DOI: 10.3390/ijms24097889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Honey is a rich source of compounds with biological activity; moreover, it is a valuable source of various microorganisms. The aim of this study was to isolate and identify yeast from a sample of lime honey from Poland as well as to assess its ability to biosynthesize value-added chemicals such as kynurenic acid, erythritol, mannitol, and citric acid on common carbon sources. Fifteen yeast strains belonging to the species Yarrowia lipolytica, Candida magnolia, and Starmerella magnoliae were isolated. In shake-flask screening, the best value-added compound producers were chosen. In the last step, scaling up of the culture in the bioreactor was performed. A newly isolated strain of Y. lipolytica No. 12 produced 3.9 mg/L of kynurenic acid growing on fructose. Strain Y. lipolytica No. 9 synthesized 32.6 g/L of erythritol on technical glycerol with a low concentration of byproducts. Strain Y. lipolytica No. 5 produced 15.1 g/L of mannitol on technical glycerol, and strain No. 3 produced a very high amount of citric acid (76.6 g/L) on technical glycerol. In conclusion, to the best of our knowledge this is the first study to report the use of yeast isolates from honey to produce valuable chemicals. This study proves that natural products such as lime honey can be an excellent source of wild-type yeasts with valuable production properties.
Collapse
Affiliation(s)
- Patrycja Ziuzia
- Department of Biochemistry and Molecular Biology, Wroclaw University of Environmental and Life Sciences, 31 Norwida St., 50-375 Wroclaw, Poland
| | - Zuzanna Janiec
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, 37 Chełmońskiego St., 51-630 Wroclaw, Poland
| | - Magdalena Wróbel-Kwiatkowska
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, 37 Chełmońskiego St., 51-630 Wroclaw, Poland
| | - Zbigniew Lazar
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, 37 Chełmońskiego St., 51-630 Wroclaw, Poland
| | - Magdalena Rakicka-Pustułka
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, 37 Chełmońskiego St., 51-630 Wroclaw, Poland
| |
Collapse
|