1
|
Chien M, Chen S, Huang K, Moja TN, Hwang S. Cell Morphology, Material Property and Ni(II) Adsorption of Microcellular Injection-Molded Polystyrene Reinforced with Graphene Nanoparticles. Polymers (Basel) 2025; 17:189. [PMID: 39861262 PMCID: PMC11768097 DOI: 10.3390/polym17020189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
Graphene's incorporation into polymers has enabled the development of advanced polymer/graphene nanocomposites with superior properties. This study focuses on the use of a microcellular foamed polystyrene (PS)/graphene (GP) nanocomposite (3 wt%) for nickel (II) ion removal from aqueous solutions. Adsorption behavior was evaluated through FTIR, TEM, SEM, TGA, and XRD analyses. Key factors, including initial ion concentration, pH, temperature, and sorbent dosage, were examined. Results showed optimal nickel removal at specific pH levels with removal efficiency decreasing from 91 to 80% as Ni (II) concentrations increased from 10 to 100 mg/L. The adsorption capacity improved from 11 to 130 mg/g. Equilibrium data aligned with Langmuir and Freundlich isotherm models, while adsorption kinetics followed a second-order kinetic model. These findings highlight the potential of PS/GP nanocomposites for nickel ion removal, offering a promising solution for small-scale industrial applications.
Collapse
Affiliation(s)
- Minyuan Chien
- Department of Vehicle Engineering, Chien-hsin University of Science and Technology, Taoyuan 320678, Taiwan;
| | - Shiachung Chen
- R&D Center for Smart Manufacturing, Chung Yuan Christian University, Taoyuan 32023, Taiwan;
- Department of Mechanical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan;
| | - Kuanyi Huang
- Department of Mechanical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan;
| | - Tlou Nathaniel Moja
- Institute for Nanotechnology and Water Sustainability Research Unit, College of Science, Engineering and Technology, University of South Africa, Florida Campus, Johannesburg 1709, South Africa
| | - Shyhshin Hwang
- Department of Mechanical Engineering, Chien-hsin University of Science and Technology, Taoyuan 320678, Taiwan
| |
Collapse
|
2
|
Shi H, Wei A, Zhu Y, Tang K, Hu H, Li N. Accurate and robust ammonia level forecasting of aeration tanks using long short-term memory ensembles: A comparative study of Adaboost and Bagging approaches. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123173. [PMID: 39500158 DOI: 10.1016/j.jenvman.2024.123173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/15/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024]
Abstract
As wastewater treatment aeration systems are embracing innovative solutions to data management for operational sustainability, deep learning approaches like long short-term memory (LSTM) networks become imperative. However, how to enhance LSTMs to forecast aeration status through ensemble learning is still in its infancy. This study tackles this challenge by comprehensively comparing two ensemble learning algorithms, AdaBoost and Bagging. Both one-step and multi-step predictions were compared using performance metrics like Z-score derived from aeration set-points. The robustness of models was evaluated under quantified extreme events, such as sudden spikes in ammonia concentration. The results indicate that while AdaBoost-LSTM models slightly outperformed Bagging-LSTM models in one-step-ahead predictions, their true advantage lies in enabling precise decisions for switching aeration blowers on or off, which could avoid excess energy usage of aeration systems. This advantage was even more pronounced in multi-step forecasting. In 4-step-ahead prediction, the AdaBoost-LSTM model attained an optimal precision of 92.77%, marking an 8.88% improvement over the Bagging-LSTM model. Furthermore, AdaBoost-LSTM models showed greater resilience to fluctuations in ammonia levels, ensuring continued stable aeration. Therefore, AdaBoost-LSTM ensembles demonstrate greater suitability for accurate and robust ammonia forecasting of aeration tanks, leading to sustainable operation and target costs/energy savings.
Collapse
Affiliation(s)
- Hanxiao Shi
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, Shaanxi, 710127, China; Institute of Environmental Sciences, Northwest University, Xi'an, Shaanxi, 710127, China.
| | - Anlei Wei
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, Shaanxi, 710127, China; Institute of Environmental Sciences, Northwest University, Xi'an, Shaanxi, 710127, China.
| | - Yaqi Zhu
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, Shaanxi, 710127, China; Institute of Environmental Sciences, Northwest University, Xi'an, Shaanxi, 710127, China.
| | - Kangrong Tang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, Shaanxi, 710127, China; Institute of Environmental Sciences, Northwest University, Xi'an, Shaanxi, 710127, China.
| | - Hao Hu
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, Shaanxi, 710127, China; Institute of Environmental Sciences, Northwest University, Xi'an, Shaanxi, 710127, China.
| | - Nan Li
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, Shaanxi, 710127, China; Institute of Environmental Sciences, Northwest University, Xi'an, Shaanxi, 710127, China.
| |
Collapse
|
3
|
Cai CH, Then CK, Lin YL, Shih CC, Li CC, Yang TS. Associative analysis of sludge microbiota and wastewater degradation efficacy within swine farm sludge systems. Heliyon 2024; 10:e39997. [PMID: 39568825 PMCID: PMC11577235 DOI: 10.1016/j.heliyon.2024.e39997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/16/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024] Open
Abstract
Industrial wastewater management is a significant global challenge. Sludge microbiota from swine farms may play a crucial role in enhancing wastewater treatment processes, thereby reducing water pollution from industrial activities. A deeper understanding of this complex community could lead to innovative approaches for improving wastewater treatment methods. Sludge samples were collected from the anaerobic, sedimentation, and thickening tanks of ten swine farms. The microbiota communities were analyzed using 16S rRNA full-length sequencing on the PacBio platform, with subsequent data analysis conducted on the QIIME2 platform utilizing the SILVA database. Compared to anaerobic and thickening tanks, the sedimentation tanks exhibited a unique profile of sludge microbiota, with higher abundances of the phyla Proteobacteria, Bacteroidota, and Caldatribacteriota. Additionally, sludges from farms already utilized in processing industrial water-specifically farms B, G, and J-contained higher concentrations of bacteria (>20 ng/μL), indicating the robustness of the bacterial load for practical industrial use. Furthermore, sludge from farms with higher alpha diversity, such as E, G, I, and J, exhibited enriched degradation profiles, including the degradation of aromatic compounds, polymers, industrial compounds, toluene, and vanillin. The farms were categorized based on wastewater ammonia nitrogen degradation levels, revealing a clustering effect of the microbiota from the sedimentation tanks in the Principal Coordinates Analysis (PCoA) plot. A higher relative abundance of the families Rhodocyclaceae, AKYH767, and Comamonadaceae, and a lower abundance of the families Anaerolineaceae and Christensenellaceae, were found in groups with high ammonia nitrogen reduction, suggesting potential targets for bioaugmentation strategies. In conclusion, this study underscores the critical role of microbial abundance, composition, and biodiversity in optimizing wastewater treatment and advocates for comprehensive microbiota analysis to identify suitable sludge for industrial applications.
Collapse
Affiliation(s)
- Cheng-Han Cai
- Industry Technology Research Institute, Nantou City, Taiwan
| | - Chee Kin Then
- Department of Radiation Oncology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Yan-Ling Lin
- Industry Technology Research Institute, Nantou City, Taiwan
| | | | - Chih-Chieh Li
- Industry Technology Research Institute, Nantou City, Taiwan
| | - Tzu-Sen Yang
- Graduate Institute of Biomedical Optomechatronics, Taipei Medical University, Taipei, 110, Taiwan
- International Ph.D. Program in Biomedical Engineering, Taipei Medical University, Taipei, 110, Taiwan
- School of Dental Technology, Taipei Medical University, Taipei, 110, Taiwan
- Research Center of Biomedical Device, Taipei Medical University, Taipei, 110, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 110, Taiwan
| |
Collapse
|
4
|
Ghori FA, Wu Y, Lin X, He Y, Yu Q, Chen H, Xue G. Insight into simultaneous urea hydrolysis and total nitrogen removal in textile printing wastewater: Focus on the impact of sodium sulfate salinity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122551. [PMID: 39299128 DOI: 10.1016/j.jenvman.2024.122551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/22/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
The textile printing industry discharges large volumes of effluent containing high concentrations of urea and nitrogenous compounds. Anoxic-oxic (AO) treatment is a promising method for treating printing wastewater. However, the effect of sodium sulfate (Na2SO4) salinity on the urea hydrolysis and nitrogen removal simultaneously in the AO process has received little attention. In this study, five batch reactors were used to treat synthetic printing wastewater with high urea and nitrogen concentrations. A strategy was applied to increase the Na2SO4 concentration from 0 to 19 g/L in the anoxic stage of each reactor. The effect of Na2SO4 on urea hydrolysis, total nitrogen removal and COD removal, sludge characteristics, and bacterial community structure were investigated. The findings showed that urea hydrolysis increased with increasing Na2SO4 concentration. The main mechanism of urea removal was intracellular hydrolysis, with a urea removal efficiency (URE%) of approximately 98% in all batch reactors. In addition, under the stress of Na2SO4, the total nitrogen and COD removal performances were partially inhibited. The most significant removal performances after AO treatment were observed at 0 g/L Na2SO4, with nitrogen and COD removal efficiencies of 88% and 95%, respectively. When Na2SO4 concentration reached 19 g/L, the sludge settling performance and compactness were enhanced. The extracellular polymeric substance (EPS) components in the sludge were dependent on their ability of removing organics. Bacterial community diversity analysis revealed that the enrichment of the Proteobacteria, Firmicutes, and Gemmatimonadota phyla in the anoxic stages of batch reactors was related to intracellular urea hydrolysis. Bacteriodota and Chloroflexi were responsible for total nitrogen removal in all anoxic and oxic stages. This research will develop the understanding of Na2SO4 salinity impact on simultaneous urea hydrolysis and nitrogen removal during AO treatment process.
Collapse
Affiliation(s)
- Faheem Ahmed Ghori
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Ying Wu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Xumeng Lin
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Yueling He
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Qianjiang Yu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Hong Chen
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Gang Xue
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China.
| |
Collapse
|
5
|
Li Y, Barati B, Li J, Verhoestraete E, Rousseau DPL, Van Hulle SWH. Lab-scale evaluation of Microalgal-Bacterial granular sludge as a sustainable alternative for brewery wastewater treatment. BIORESOURCE TECHNOLOGY 2024; 411:131331. [PMID: 39181512 DOI: 10.1016/j.biortech.2024.131331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Microalgal-bacterial granular sludge (MBGS) could offer a sustainable alternative to traditional aerobic methods in brewery wastewater (BWW) treatment. This study compared MBGS with conventional activated sludge (AS) in treating real BWW and highlighted its advantages and challenges. MBGS achieved comparable chemical oxygen demand removal efficiency (93%) compared to AS (89%). Additionally, MBGS exhibited higher phosphate removal capabilities than AS. Extra nitrogen was added to influent to balance C/N ratio of BWW. MBGS was robust in handling C/N ratio fluctuations with an 82% total nitrogen removal efficiency. Metagenomic analysis further indicated that most of the genes involved in carbon, nitrogen and phosphorus metabolism were up-regulated in MBGS compared to AS. Despite changes in the microbial community and settling ability due to high starch and sugar content in BWW, MBGS demonstrated high efficiency and sustainability. Further research should optimize MBGS operation strategies to fully realize its potential for sustainable BWW treatment.
Collapse
Affiliation(s)
- Yanyao Li
- LIWET, Department of Green Chemistry and Technology, Ghent University Campus Kortrijk, Sint-Martens-Latemlaan 2B, 8500 Kortrijk, Belgium.
| | - Bahram Barati
- LIWET, Department of Green Chemistry and Technology, Ghent University Campus Kortrijk, Sint-Martens-Latemlaan 2B, 8500 Kortrijk, Belgium
| | - Jue Li
- Department of Environmental Science & Engineering, Fudan University, Songhu Road 2005, 200438 Shanghai, China
| | - Emma Verhoestraete
- LIWET, Department of Green Chemistry and Technology, Ghent University Campus Kortrijk, Sint-Martens-Latemlaan 2B, 8500 Kortrijk, Belgium
| | - Diederik P L Rousseau
- LIWET, Department of Green Chemistry and Technology, Ghent University Campus Kortrijk, Sint-Martens-Latemlaan 2B, 8500 Kortrijk, Belgium; Centre for Advanced Process Technology and Urban Resource Recovery (CAPTURE), Frieda Saeysstraat, 9052 Ghent, Belgium
| | - Stijn W H Van Hulle
- LIWET, Department of Green Chemistry and Technology, Ghent University Campus Kortrijk, Sint-Martens-Latemlaan 2B, 8500 Kortrijk, Belgium; Centre for Advanced Process Technology and Urban Resource Recovery (CAPTURE), Frieda Saeysstraat, 9052 Ghent, Belgium
| |
Collapse
|
6
|
Alayande AB, Qi W, Karthikeyan R, Popat SC, Ladner DA, Amy G. Use of reclaimed municipal wastewater in agriculture: Comparison of present practice versus an emerging paradigm of anaerobic membrane bioreactor treatment coupled with hydroponic controlled environment agriculture. WATER RESEARCH 2024; 265:122197. [PMID: 39137457 DOI: 10.1016/j.watres.2024.122197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/06/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024]
Abstract
Advancements in anaerobic membrane bioreactor (AnMBR) technology have opened up exciting possibilities for sustaining precise water quality control in wastewater treatment and reuse. This approach not only presents an opportunity for energy generation and recovery but also produces an effluent that can serve as a valuable nutrient source for crop cultivation in hydroponic controlled environment agriculture (CEA). In this perspective article, we undertake a comparative analysis of two approaches to municipal wastewater utilization in agriculture. The conventional method, rooted in established practices of conventional activated sludge (CAS) wastewater treatment for soil/land-based agriculture, is contrasted with a new paradigm that integrates AnMBR technology with hydroponic (soilless) CEA. This work encompasses various facets, including wastewater treatment efficiency, effluent quality, resource recovery, and sustainability metrics. By juxtaposing the established methodologies with this emerging synergistic model, this work aims to shed light on the transformative potential of the integration of AnMBR and hydroponic-CEA for enhanced agricultural sustainability and resource utilization.
Collapse
Affiliation(s)
- Abayomi Babatunde Alayande
- Department of Environmental Engineering and Earth Sciences, Clemson University, 342 Computer Ct, Anderson, SC 29625, United States.
| | - Weiming Qi
- Department of Environmental Engineering and Earth Sciences, Clemson University, 342 Computer Ct, Anderson, SC 29625, United States
| | | | - Sudeep C Popat
- Department of Environmental Engineering and Earth Sciences, Clemson University, 342 Computer Ct, Anderson, SC 29625, United States
| | - David A Ladner
- Department of Environmental Engineering and Earth Sciences, Clemson University, 342 Computer Ct, Anderson, SC 29625, United States
| | - Gary Amy
- Department of Environmental Engineering and Earth Sciences, Clemson University, 342 Computer Ct, Anderson, SC 29625, United States
| |
Collapse
|
7
|
Khanal A, Song HG, Cho YS, Yang SY, Kim WS, Joshi A, Min J, Lee JH. Evidence of Potential Anammox Activities from Rice Paddy Soils in Microaerobic and Anaerobic Conditions. BIOLOGY 2024; 13:548. [PMID: 39056740 PMCID: PMC11273733 DOI: 10.3390/biology13070548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Anammox, a reaction in which microorganisms oxidize ammonia under anaerobic conditions, is used in the industry to remove ammonium from wastewater in an environmentally friendly manner. This process does not produce intermediate products such as nitrite or nitrate, which can act as secondary pollutants in soil and water environments. For industrial applications, anammox bacteria should be obtained from the environment and cultivated. Anammox bacteria generally exhibit a slow growth rate and may not produce a large number of cells due to their anaerobic metabolism. Additionally, their habitats appear to be limited to specific environments, such as oxidation-reduction transition zones. Consequently, most of the anammox bacteria that are used or studied originate from marine environments. In this study, anammox bacterial evidence was found in rice paddy soil and cultured under various conditions of aerobic, microaerobic, and anaerobic batch incubations to determine whether enrichment was possible. The anammox-specific gene (hzsA) and microbial community analyses were performed on the incubated soils. Although it was not easy to enrich anammox bacteria due to co-occurrence of denitrification and nitrification based on the chemistry data, potential existence of anammox bacteria was assumed in the terrestrial paddy soil environment. For potential industrial uses, anammox bacteria could be searched for in rice paddy soils by applying optimal enrichment conditions.
Collapse
Affiliation(s)
- Anamika Khanal
- Department of Agricultural Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea; (A.K.); (H.-G.S.); (Y.-S.C.); (S.-Y.Y.)
| | - Hyung-Geun Song
- Department of Agricultural Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea; (A.K.); (H.-G.S.); (Y.-S.C.); (S.-Y.Y.)
| | - Yu-Sung Cho
- Department of Agricultural Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea; (A.K.); (H.-G.S.); (Y.-S.C.); (S.-Y.Y.)
| | - Seo-Yeon Yang
- Department of Agricultural Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea; (A.K.); (H.-G.S.); (Y.-S.C.); (S.-Y.Y.)
| | - Won-Seok Kim
- Division of Advanced Nuclear Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea;
| | - Alpana Joshi
- Department of Agriculture Technology & Agri-Informatics, Shobhit Institute of Engineering & Technology, Meerut 250110, India;
- Department of Bioenvironmental Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Jiho Min
- School of Chemical Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Ji-Hoon Lee
- Department of Agricultural Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea; (A.K.); (H.-G.S.); (Y.-S.C.); (S.-Y.Y.)
- Department of Bioenvironmental Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Institute of Agricultural Science & Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
8
|
Omidinia-Anarkoli T, Shayannejad M. Nitrate and ammonium removal in constructed wetlands: Experimental insights and zero-dimensional numerical modeling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174761. [PMID: 39004356 DOI: 10.1016/j.scitotenv.2024.174761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/09/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Constructed wetlands (CWs) have emerged as effective wastewater treatment systems, mimicked natural wetland processes but engineered for enhanced pollutant removal efficiency. Ammonium (NH4+) and nitrate (NO3-) are among common pollutants in wastewater, posing significant environmental and health risks. The primary objective of this study is to compares the performance of CWs using gravel and three sizes of natural pumice, along with phragmites australis, in horizontal and horizontal-vertical CWs for nitrate and ammonium removal in the complementary treatment of domestic wastewater. Additionally, the study aims to develop and validate a numerical model using MATLAB software to predict the removal efficiency of these pollutants, thereby contributing to the optimization of CW design and operation. The model operates as a zero-dimensional model based on the law of mass conservation, treating the wetland as a completely mixed reactor, thus avoiding complexities associated with solute movement in porous media. It accurately could predict removal efficiency of chemical, biochemical, and biological indicators while considering active and passive absorption mechanisms by plant uptake. Notably, the determination of coefficients in the model equation does not rely on potentially error-prone laboratory measurements due to sampling issues. Instead, optimization techniques alongside field data robustly estimate these coefficients, ensuring reliability and practicality. Results indicate that higher pollutant concentrations increase reaction rates, particularly enhancing CW efficiency in ammonium removal. Pumice, especially in larger sizes, exhibits superior absorption due to increased porosity and surface area. Overall, the model accurately predicts nitrates concentrations, demonstrating its potential for CW performance optimization and confirming the significance of effective pollutant removal strategies in wastewater treatment.
Collapse
Affiliation(s)
- Tayebeh Omidinia-Anarkoli
- Department of Water Science and Engineering, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mohammad Shayannejad
- Department of Water Science and Engineering, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| |
Collapse
|
9
|
Rangel-Buitrago N, Galgani F, Neal WJ. Addressing the global challenge of coastal sewage pollution. MARINE POLLUTION BULLETIN 2024; 201:116232. [PMID: 38457879 DOI: 10.1016/j.marpolbul.2024.116232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Coastal environments, essential for about half of the world's population living near coastlines, face severe threats from human-induced activities such as intensified urbanization, aggressive development, and particularly, coastal sewage pollution. This type of pollution, comprising untreated sewage discharging nutrients, pathogens, heavy metals, microplastics, and organic compounds, significantly endangers these ecosystems. The issue of sewage in coastal areas is complex, influenced by factors like inadequate sewage systems, septic tanks, industrial and agricultural runoff, and natural processes like coastal erosion, further complicated by oceanic dynamics like tides and currents. A global statistic reveals that over 80 % of sewage enters the environment without treatment, contributing significantly to nitrogen pollution in coastal ecosystems. This pollution not only harms marine life and ecosystems through chemical contaminants and eutrophication, leading to hypoxic zones and biodiversity loss, but also affects human health through waterborne diseases and seafood contamination. Additionally, it has substantial economic repercussions, impacting tourism, recreation, and fisheries, and causing revenue and employment losses. Addressing this issue globally involves international agreements and national legislations, but their effectiveness is hindered by infrastructural disparities, particularly in developing countries. Thus, effective management requires a comprehensive approach including advanced treatment technologies, stringent regulations, regular monitoring, and international cooperation. The international scientific community plays a crucial role in fostering a collaborative and equitable response to this pressing environmental challenge.
Collapse
Affiliation(s)
- Nelson Rangel-Buitrago
- Programade Física, Facultad de Ciencias Básicas, Universidad del Atlántico, Barranquilla, Atlántico, Colombia.
| | - Francois Galgani
- Unité Ressources marines en Polynésie Francaise, Institut français de recherche pour l'exploitation de la mer (Ifremer), BP 49, Vairao, Tahiti, French Polynesia
| | - William J Neal
- Department of Geology, Grand Valley State University, The Seymour K. & Esther R. Padnos Hall of Science 213A, Allendale, MI, USA
| |
Collapse
|
10
|
Arcas-Pilz V, Gabarrell X, Orsini F, Villalba G. Literature review on the potential of urban waste for the fertilization of urban agriculture: A closer look at the metropolitan area of Barcelona. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167193. [PMID: 37741375 DOI: 10.1016/j.scitotenv.2023.167193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/20/2023] [Accepted: 09/16/2023] [Indexed: 09/25/2023]
Abstract
Urban agriculture (UA) activities are increasing in popularity and importance due to greater food demands and reductions in agricultural land, also advocating for greater local food supply and security as well as the social and community cohesion perspective. This activity also has the potential to enhance the circularity of urban flows, repurposing nutrients from waste sources, increasing their self-sufficiency, reducing nutrient loss into the environment, and avoiding environmental cost of nutrient extraction and synthetization. The present work is aimed at defining recovery technologies outlined in the literature to obtain relevant nutrients such as N and P from waste sources in urban areas. Through literature research tools, the waste sources were defined, differentiating two main groups: (1) food, organic, biowaste and (2) wastewater. Up to 7 recovery strategies were identified for food, organic, and biowaste sources, while 11 strategies were defined for wastewater, mainly focusing on the recovery of N and P, which are applicable in UA in different forms. The potential of the recovered nutrients to cover existing and prospective UA sites was further assessed for the metropolitan area of Barcelona. Nutrient recovery from current composting and anaerobic digestion of urban sourced organic matter obtained each year in the area as well as the composting of wastewater sludge, struvite precipitation and ion exchange in wastewater effluent generated yearly in existing WWTPs were assessed. The results show that the requirements for the current and prospective UA in the area can be met 2.7 to 380.2 times for P and 1.7 to 117.5 times for N depending on the recovery strategy. While the present results are promising, current perceptions, legislation and the implementation and production costs compared to existing markets do not facilitate the application of nutrient recovery strategies, although a change is expected in the near future.
Collapse
Affiliation(s)
- Verónica Arcas-Pilz
- Sostenipra Research Group (2021 SGR 00734), Institut de Ciència i Tecnologia Ambientals ICTA-UAB (CEX2019-0940-M), Z Building, Universitat Autònoma de Barcelona (UAB), Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Xavier Gabarrell
- Sostenipra Research Group (2021 SGR 00734), Institut de Ciència i Tecnologia Ambientals ICTA-UAB (CEX2019-0940-M), Z Building, Universitat Autònoma de Barcelona (UAB), Campus UAB, 08193 Bellaterra, Barcelona, Spain; Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona (UAB), Campus UAB, 08193 Bellaterra, Barcelona, Spain.
| | - Francesco Orsini
- DISTAL-Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, 40127 Bologna, Italy
| | - Gara Villalba
- Sostenipra Research Group (2021 SGR 00734), Institut de Ciència i Tecnologia Ambientals ICTA-UAB (CEX2019-0940-M), Z Building, Universitat Autònoma de Barcelona (UAB), Campus UAB, 08193 Bellaterra, Barcelona, Spain; Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona (UAB), Campus UAB, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
11
|
Espinosa-Ortiz EJ, Gerlach R, Peyton BM, Roberson L, Yeh DH. Biofilm reactors for the treatment of used water in space:potential, challenges, and future perspectives. Biofilm 2023; 6:100140. [PMID: 38078057 PMCID: PMC10704334 DOI: 10.1016/j.bioflm.2023.100140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 02/29/2024] Open
Abstract
Water is not only essential to sustain life on Earth, but also is a crucial resource for long-duration deep space exploration and habitation. Current systems in space rely on the resupply of water from Earth, however, as missions get longer and move farther away from Earth, resupply will no longer be a sustainable option. Thus, the development of regenerative reclamation water systems through which useable water can be recovered from "waste streams" (i.e., used waters) is sorely needed to further close the loop in space life support systems. This review presents the origin and characteristics of different used waters generated in space and discusses the intrinsic challenges of developing suitable technologies to treat such streams given the unique constrains of space exploration and habitation (e.g., different gravity conditions, size and weight limitations, compatibility with other systems, etc.). In this review, we discuss the potential use of biological systems, particularly biofilms, as possible alternatives or additions to current technologies for water reclamation and waste treatment in space. The fundamentals of biofilm reactors, their advantages and disadvantages, as well as different reactor configurations and their potential for use and challenges to be incorporated in self-sustaining and regenerative life support systems in long-duration space missions are also discussed. Furthermore, we discuss the possibility to recover value-added products (e.g., biomass, nutrients, water) from used waters and the opportunity to recycle and reuse such products as resources in other life support subsystems (e.g., habitation, waste, air, etc.).
Collapse
Affiliation(s)
- Erika J. Espinosa-Ortiz
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, 59717, USA
| | - Robin Gerlach
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, 59717, USA
| | - Brent M. Peyton
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, 59717, USA
| | - Luke Roberson
- Exploration Research and Technology Directorate, NASA, Kennedy Space Center, 32899, USA
| | - Daniel H. Yeh
- Department of Civil & Environmental Engineering, University of South Florida, Tampa, FL, 33620, USA
| |
Collapse
|
12
|
Gonzales RR, Nakagawa K, Kumagai K, Hasegawa S, Matsuoka A, Li Z, Mai Z, Yoshioka T, Hori T, Matsuyama H. Hybrid osmotically assisted reverse osmosis and reverse osmosis (OARO-RO) process for minimal liquid discharge of high strength nitrogenous wastewater and enrichment of ammoniacal nitrogen. WATER RESEARCH 2023; 246:120716. [PMID: 37837900 DOI: 10.1016/j.watres.2023.120716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/04/2023] [Accepted: 10/08/2023] [Indexed: 10/16/2023]
Abstract
Ammoniacal nitrogen (NH4N) is a ubiquitous nitrogen pollutant found in wastewater, which could cause eutrophication and severe environmental stress. It is therefore necessary to manage NH4N by enrichment and recovery for potential reuse, as well as to regulate the amount of environmental discharge. Hybridization of membrane-based processes is an attractive option for further enhancing water and nutrient reclamation from waste streams; thus, in this present work, a hybrid osmotically assisted reverse osmosis (OARO) and reverse osmosis (RO) process was demonstrated for subsequent ammoniacal nitrogen enrichment and wastewater discharge management. Using a commercially-available cellulose triacetate membrane module, model and real wastewater containing approximately 4,000ppm NH4N were effectively dewatered and enriched to a final NH4N content of 40,300ppm. This corresponds to enrichment of around 10 times and approximately 90% pure water recovery. The effective combination of both processes resulted in high efficiency, as well as economical and energy-saving benefits, as shown by the process performance and our preliminary techno-economic analysis. The specific energy consumption of the hybrid process projected to operate at a capacity of 2,000 m3h-1 was determined to be 8.8kWh m-3, or 0.56kWh kg-1 NH4Cl removed/recovered for an initial feed solution containing around 15,300ppm NH4Cl. Hybrid OARO and RO operation was able to achieve satisfactory enrichment by the OARO process and obtaining clean water by the RO process. The hybrid OARO-RO process has shown great potential as a suitable end-stage membrane-based process for wastewater dewatering and NH4N enrichment and recovery toward a circular economy and environmental management, as well as clean water recovery.
Collapse
Affiliation(s)
| | - Keizo Nakagawa
- Research Center for Membrane and Film Technology, Kobe University, Kobe, Japan; Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan.
| | - Kazuo Kumagai
- Research Center for Membrane and Film Technology, Kobe University, Kobe, Japan; Department of Chemical Science and Engineering, Kobe University, Kobe, Japan
| | - Susumu Hasegawa
- Research Center for Membrane and Film Technology, Kobe University, Kobe, Japan
| | - Atsushi Matsuoka
- Research Center for Membrane and Film Technology, Kobe University, Kobe, Japan; Department of Chemical Science and Engineering, Kobe University, Kobe, Japan
| | - Zhan Li
- Research Center for Membrane and Film Technology, Kobe University, Kobe, Japan
| | - Zhaohuan Mai
- Research Center for Membrane and Film Technology, Kobe University, Kobe, Japan
| | - Tomohisa Yoshioka
- Research Center for Membrane and Film Technology, Kobe University, Kobe, Japan; Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Tomoyuki Hori
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Kobe University, Kobe, Japan; Department of Chemical Science and Engineering, Kobe University, Kobe, Japan.
| |
Collapse
|
13
|
Zhu J, Zhu Y, Zhou Y, Wu C, Chen Z, Chen G. Synergistic Promotion of Photocatalytic Degradation of Methyl Orange by Fluorine- and Silicon-Doped TiO 2/AC Composite Material. Molecules 2023; 28:5170. [PMID: 37446833 PMCID: PMC10343765 DOI: 10.3390/molecules28135170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
The direct or indirect discharge of organic pollutants causes serious environmental problems and endangers human health. The high electron-hole recombination rate greatly limits the catalytic efficiency of traditional TiO2-based catalysts. Therefore, starting from low-cost activated carbon (AC), a photocatalyst (F-Si-TiO2/AC) comprising fluorine (F)- and silicon (Si)-doped TiO2 loaded on AC has been developed. F-Si-TiO2/AC has a porous structure. TiO2 nanoparticles were uniformly fixed on the surface or pores of AC, producing many catalytic sites. The band gap of F-Si-TiO2/AC is only 2.7 eV. In addition, F-Si-TiO2/AC exhibits an excellent adsorption capacity toward methyl orange (MO) (57%) in the dark after 60 min. Under the optimal preparation conditions, F-Si-TiO2/AC showed a significant photodegradation performance toward MO, reaching 97.7% after irradiation with visible light for 70 min. Even under the action of different anions and cations, its degradation efficiency is the lowest, at 64.0%, which has good prospects for practical application. At the same time, F-Si-TiO2/AC has long-term, stable, practical application potential and can be easily recovered from the solution. Therefore, this work provides new insights for the fabrication of low-cost, porous, activated, carbon-based photocatalysts, which can be used as high-performance photocatalysts for the degradation of organic pollutants.
Collapse
Affiliation(s)
- Jinyuan Zhu
- Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China; (J.Z.); (Y.Z.); (Z.C.); (G.C.)
| | - Yingying Zhu
- Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China; (J.Z.); (Y.Z.); (Z.C.); (G.C.)
| | - Yifan Zhou
- Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China; (J.Z.); (Y.Z.); (Z.C.); (G.C.)
| | - Chen Wu
- Ningbo Energy Group Co., Ltd., Ningbo 315000, China;
| | - Zhen Chen
- Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China; (J.Z.); (Y.Z.); (Z.C.); (G.C.)
| | - Geng Chen
- Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China; (J.Z.); (Y.Z.); (Z.C.); (G.C.)
| |
Collapse
|