1
|
Zhang Y, Li X, Dong H, Lens PNL. Pollutant removal and greenhouse gas emissions in horizontal subsurface flow constructed wetlands with iron ore treating ammonium-rich wastewater. ENVIRONMENTAL TECHNOLOGY 2024:1-12. [PMID: 39740025 DOI: 10.1080/09593330.2024.2443601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/23/2024] [Indexed: 01/02/2025]
Abstract
Horizontal subsurface flow constructed wetlands (HFCWs) are capable of eliminating organic matter and nitrogen while emitting less methane (CH4) and nitrous oxide (N2O) than free water surface flow wetlands. However, the simultaneous removal of pollutants and reduction of greenhouse gases (GHG) emissions from high-strength wastewater containing high levels of organic matter and ammonium nitrogen (NH4+-N) has not get been investigated. The influent COD concentration affected the efficiency of nitrogen removal, GHG emissions and the presence of iron from iron ore, but the COD and TP removal efficiencies remained unaffected. CO2 and CH4 fluxes were significantly influenced by influent COD concentrations, whereas less N2O emissions were obtained during 7d. The highest CO2 and CH4 fluxes, along with the GHG emissions, were observed in HFCWs with COD concentrations of 375.6 mg/L and NH4+-N concentrations of 159.0 mg/L at a COD/N ratio of 2.4. Conversely, the lowest CH4 (-1.72 mg/m2/h) and N2O fluxes (0.13 mg/m2/h) were recorded in HFCWs with COD concentrations of 375.6 mg/L and NH4+-N concentrations of 162.4 mg/L at a COD/N of 4.5, although nitrogen removal was weak in these HFCWs. HFCWs at a COD/N ratio of 3.6 exhibited greater removal of nitrogen and other pollutants, along with a lower global warming potential (GWP). In conclusion, the concentrations of organic matter and NH4+-N in wastewater affected both pollutant removal and GHG emissions. The simultaneous enhancement of pollutant removal and the reduction of GHG emissions can be achieved in HFCWs with a COD/N ratio of 3.6.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Nutrient Use and Management, Jinan Key Laboratory of Technology for Agricultural Double-Carbon, Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Ji'nan, People's Republic of China
| | - Xinhua Li
- State Key Laboratory of Nutrient Use and Management, Jinan Key Laboratory of Technology for Agricultural Double-Carbon, Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Ji'nan, People's Republic of China
- Yellow River Delta Modern Agriculture Research Center, Dongying, People's Republic of China
| | - Hongyun Dong
- State Key Laboratory of Nutrient Use and Management, Jinan Key Laboratory of Technology for Agricultural Double-Carbon, Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Ji'nan, People's Republic of China
| | | |
Collapse
|
2
|
Salinas-Toledano MA, Gómez-Borraz TL, Belmont MA, Garcia-Becerra FY. Optimizing constructed wetland design and operation for dual benefits: A critical review to enhance micropollutant removal while mitigating greenhouse gas emissions. ENVIRONMENTAL RESEARCH 2024; 263:120144. [PMID: 39414101 DOI: 10.1016/j.envres.2024.120144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
Constructed wetlands (CWs) are increasingly considered for secondary wastewater treatment, removing both conventional contaminants and emerging pollutants, notably pharmaceutical and personal care products (PPCPs). However, the CW design and operational conditions to biodegrade PPCPs as micropollutants may promote greenhouse gas (GHG) emissions, raising sustainability concerns. This meta-analysis investigates the relationship between PPCP removal (caffeine, ibuprofen, naproxen, diclofenac, ketoprofen, carbamazepine, sulfonamide compounds) and GHG emissions (methane, carbon dioxide, nitrous oxide) in CWs. We uniquely integrate two sets of studies, as prior research has not linked PPCP biodegradation with GHG emissions. Data from 26 papers identify factors driving PPCP removal and 26 publications inform GHG emission factors. Spearman's correlation coefficient and multiple linear regression assess parameter effects and interlinkages. Results highlight biological processes, particularly secondary metabolism or co-metabolism, as pivotal for PPCP removal and GHG emissions, with inlet PPCP concentration, carbon load, and temperature being significant influencers (p < 0.05). Challenges persist in optimizing operations to improve PPCP removal and abate GHG emissions simultaneously. Still, CW depth, influent chemical oxygen demand (COD), hydraulic retention time, and subsurface flow wetland configuration emerge as strategic parameters. This study underscores the need for integrated approaches to enhance PPCP removal and decrease GHG emissions in CWs, thereby advancing sustainable water management practices.
Collapse
Affiliation(s)
- M A Salinas-Toledano
- School of Engineering, University of Northern British Columbia, Prince George, BC V2N AZ9, Canada.
| | - T L Gómez-Borraz
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - M A Belmont
- Toronto Public Health, Toronto, ON, M5B 1W2, Canada.
| | - F Y Garcia-Becerra
- School of Engineering, University of Northern British Columbia, Prince George, BC V2N AZ9, Canada.
| |
Collapse
|
3
|
Dimitriadou S, Kokkinos PA, Kyzas GZ, Kalavrouziotis IK. Fit-for-purpose WWTP unmanned aerial systems: A game changer towards an integrated and sustainable management strategy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174966. [PMID: 39069181 DOI: 10.1016/j.scitotenv.2024.174966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
In the ongoing Anthropocene era, air quality monitoring constitutes a primary axis of European and international policies for all sectors, including Waste Water Treatment Plants (WWTPs). Unmanned Aerial Systems (UASs) with proper sensing equipment provide an edge technology for air quality and odor monitoring. In addition, Unmanned Aerial Vehicle (UAV) photogrammetry has been used in civil engineering, environmental (water) quality assessment and lately for industrial facilities monitoring. This study constitutes a systematic review of the late advances and limitations of germane equipment and implementations. Despite their unassailable flexibility and efficiency, the employment of the aforementioned technologies in WWTP remote monitoring is yet sparse, partial, and concerns only particular aspects. The main finding of the review was the lack of a tailored UAS for WWTP monitoring in the literature. Therefore, to fill in this gap, we propose a fit-for-purpose remote monitoring system consisting of a UAS with a platform that would integrate all the required sensors for air quality (i.e., emissions of H2S, NH3, NOx, SO2, CH4, CO, CO2, VOCs, and PM) and odor monitoring, multispectral and thermal cameras for photogrammetric structural health monitoring (SHM) and wastewater/effluent properties (e.g., color, temperature, etc.) of a WWTP. It constitutes a novel, supreme and integrated approach to improve the sustainable management of WWTPs. Specifically, the developments that a fit-for-purpose WWTP UAS would launch, are fostering the decision-making of managers, administrations, and policymakers, both in operational conditions and in case of failures, accidents or natural disasters. Furthermore, it would significantly reduce the operational expenditure of a WWTP, ensuring personnel and population health standards, and local area sustainability.
Collapse
Affiliation(s)
- Stavroula Dimitriadou
- Laboratory of Sustainable Waste Management Technologies, School of Science and Technology, Hellenic Open University, Building D, 1(st) Floor, Parodos Aristotelous 18, 26335, Patras, Greece.
| | - Petros A Kokkinos
- Laboratory of Sustainable Waste Management Technologies, School of Science and Technology, Hellenic Open University, Building D, 1(st) Floor, Parodos Aristotelous 18, 26335, Patras, Greece.
| | - George Z Kyzas
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala, Greece.
| | - Ioannis K Kalavrouziotis
- Laboratory of Sustainable Waste Management Technologies, School of Science and Technology, Hellenic Open University, Building D, 1(st) Floor, Parodos Aristotelous 18, 26335, Patras, Greece.
| |
Collapse
|
4
|
Xiang C, Du Y, Han W, Guan B, Liu H, An Y, Liu Y, Jiang H, Chang J, Ge Y. Proper C/N ratio enhances the effect of plant diversity on nitrogen removal and greenhouse effect mitigation in floating constructed wetlands. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:12036-12051. [PMID: 38225493 DOI: 10.1007/s11356-024-31985-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 01/08/2024] [Indexed: 01/17/2024]
Abstract
Treating wastewater with low carbon-to-nitrogen (C/N) ratios by constructed wetlands (CWs) is still problematic. Adding chemicals is costly and may cause secondary pollution. Configuring plant diversity in substrate-based CWs has been found to be a better way to treat low-C/N wastewater, but wastewater treatment in floating CWs needs to be studied. In this study, wastewater with C/N ratios of 5 and 10 were set in simulated floating CWs, and 9 combinations with plant species richness (SR) of 1, 3, and 4 were configured. The results showed that (1) increasing SR improved the total N mass removal (NMR) by 29% at a C/N ratio of 5 but not 10; (2) the presence of Oenanthe javanica in the microcosms increased the NMR by 13% and 20% with C/N ratios of 5 and 10, respectively; (3) increasing SR mitigated the net global warming potential (GWP) by 120% at a C/N ratio of 5 but not 10; and (4) a Hemerocallis fulva × O. javanica × Echinodorus parviflours × Iris hybrids mixture resulted in a high NMR and low net GWP. In summary, assembling plant diversity in floating CWs is an efficient and clean measure during the treatment of wastewater with a C/N ratio of 5.
Collapse
Affiliation(s)
- Chenxu Xiang
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Yuanyuan Du
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
- Huaxin Design Group Co., Ltd, Wuxi, 214100, People's Republic of China
| | - Wenjuan Han
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, People's Republic of China
| | - Baohua Guan
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
| | - Hua Liu
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Yu An
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Yu Liu
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Hang Jiang
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Jie Chang
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Ying Ge
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
5
|
Yang L, Shen K, Xu X, Xiao D, Cao H, Lin Y, Zheng X, Zhao M, Han W. Adding Corbicula fluminea altered the effect of plant species diversity on greenhouse gas emissions and nitrogen removal from constructed wetlands in the low-temperature season. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168092. [PMID: 37879465 DOI: 10.1016/j.scitotenv.2023.168092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/18/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023]
Abstract
Plant species diversity is crucial in greenhouse gas emissions and nitrogen removal from constructed wetlands (CWs). However, previous studies have overlooked the impact of benthos on cumulative greenhouse gas emissions during the low-temperature season in CWs. In this study, we established 66 vertical flow CWs with three levels of species richness (1, 2, and 4 species) and eleven species compositions. The Corbicula fluminea was added or not added at each diversity level and monitored greenhouse gas emissions and effluent nitrogen concentration. Our findings indicated that (1) in microcosms without C. fluminea, high species richness significantly increased effluent nitrogen concentrations (NO3--N, NH4+-N, and TIN), but plant species richness did not affect cumulative CH4, N2O, and CO2 emissions. The presence of Hemerocallis fulva significantly increased cumulative CO2 emissions, while the presence of Iris tectorum significantly increased effluent nitrogen (NO3--N and TIN) concentrations and cumulative N2O emissions; (2) in microcosms with C. fluminea, the lowest cumulative CH4 emissions occurred when there were two species, but plant species richness did not affect cumulative CO2 and N2O emissions. The presence of H. fulva significantly increased cumulative CH4 emissions, while the presence of Reineckea carnea significantly increased effluent nitrogen (NO3--N, NH4+- N, TIN) concentrations; (3) at the same diversity level, the addition of C. fluminea significantly increased cumulative CH4 and N2O emissions, as well as effluent nitrogen concentrations. These results demonstrate that C. fluminea alters the effect of plant species diversity on cumulative greenhouse gas emissions and nitrogen removal from CWs during the low-temperature season. We recommend using a two-species mixture to reduce greenhouse gas emissions. However, we caution against using plant compositions with H. fulva or I. tectorum for effective wastewater treatment and greenhouse gas reduction in CWs.
Collapse
Affiliation(s)
- Luping Yang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, Zhejiang, People's Republic of China
| | - Kai Shen
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, Zhejiang, People's Republic of China
| | - Xile Xu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, Zhejiang, People's Republic of China
| | - Derong Xiao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, Zhejiang, People's Republic of China; National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou 325035, People's Republic of China; Institute for Eco-environmental Research of Sanyang Wetland, Wenzhou University, Wenzhou 325035, Zhejiang, People's Republic of China
| | - Huijuan Cao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, Zhejiang, People's Republic of China
| | - Yishi Lin
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, Zhejiang, People's Republic of China
| | - Xiangyong Zheng
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, Zhejiang, People's Republic of China; National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou 325035, People's Republic of China; Institute for Eco-environmental Research of Sanyang Wetland, Wenzhou University, Wenzhou 325035, Zhejiang, People's Republic of China
| | - Min Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, Zhejiang, People's Republic of China; National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou 325035, People's Republic of China; Institute for Eco-environmental Research of Sanyang Wetland, Wenzhou University, Wenzhou 325035, Zhejiang, People's Republic of China
| | - Wenjuan Han
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, Zhejiang, People's Republic of China; National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou 325035, People's Republic of China; Institute for Eco-environmental Research of Sanyang Wetland, Wenzhou University, Wenzhou 325035, Zhejiang, People's Republic of China.
| |
Collapse
|
6
|
Li Z, Liu W, Rahaman MH, Chen Z, Yan J, Zhai J. Polystyrene microplastics accumulation in lab-scale vertical flow constructed wetlands: impacts and fate. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132576. [PMID: 37738848 DOI: 10.1016/j.jhazmat.2023.132576] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/29/2023] [Accepted: 09/16/2023] [Indexed: 09/24/2023]
Abstract
Microplastics (MPs) are ubiquitous pollutants that significantly threaten organisms and ecosystems. Constructed wetlands (CWs), a nature-based treatment technology, can effectively remove MPs from wastewater. However, the responses of CWs when exposed to MPs remain unclear. In this study, lab-scale vertical flow constructed wetlands (VFCWs) were installed for receiving polystyrene (PS) MPs at concentrations of 100 μg/L and 1000 μg/L. The results showed that exposure to PS-MPs has no effects on COD and TP removal in VFCWs, but TN removal decreased by 3.69-5.37 %. Further investigation revealed that PS-MPs significantly impacted microbial communities and metabolic functions. The abundances of predominant nitrifiers (Nitrospira and Nitrosomonas) and denitrifiers (Nakamurella, Bradyrhizobium, and Bacillus) in VFCWs were significantly reduced, aligning with the responses of key enzymes. The presence of PS-MPs also decreased nitrogen removal by plant uptake, leading to decreased plant biomass and chlorophyll by 39.32-48.75 % and 5.92-32.19 %, respectively. Notably, > 90 % removal rates were observed for PS-MPs within VFCWs. In addition to PS-MPs interception by VFCWs substrate, the increase of released benzenes indicated that the PS-MPs biodegradation occurred. Such insights are vital for developing sustainable solutions to mitigate MPs' adverse effects on ecosystems.
Collapse
Affiliation(s)
- Zhenchen Li
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Wenbo Liu
- Institute for Smart City of Chongqing University in Liyang, Chongqing University, Jiangsu 213300, China
| | - Md Hasibur Rahaman
- Institute for Smart City of Chongqing University in Liyang, Chongqing University, Jiangsu 213300, China
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, Praha-Suchdol 16500, Czech Republic
| | - Jixia Yan
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Jun Zhai
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China; Institute for Smart City of Chongqing University in Liyang, Chongqing University, Jiangsu 213300, China.
| |
Collapse
|
7
|
Li Z, Kong L, Hu L, Wei J, Zhang X, Guo W, Shi W. Greenhouse gas emissions from constructed wetlands: A bibliometric analysis and mini-review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167582. [PMID: 37797756 DOI: 10.1016/j.scitotenv.2023.167582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Constructed wetlands (CWs) have been widely applied in wastewater treatment; however, the degradation of organic pollutants within CWs leads to substantial emissions of greenhouse gases (GHGs), such as carbon dioxide, methane and nitrous oxide. Under the low-carbon economy, GHG emissions have emerged as a major concern, and have been intensively studied in the CW field. In this study, we conducted a bibliometric review using CiteSpace and a global-scale analysis of GHG emission levels based on 286 records and proposed potential approaches for the future control of GHG emissions in CWs. We found that the research has generally evolved through three stages over the past 15 years: GHG emission level assessment (2007-2010), mechanisms (2011-2016), and control (2017-2022). The type of CWs is closely related to GHG emissions, with free water surface CWs emitting higher levels of methane and vertical subsurface flow CWs emitting higher levels of carbon dioxide and nitrous oxide. By optimizing CW operation, it is conceivable to synergistically reduce GHG emissions while enhancing pollutant removal.
Collapse
Affiliation(s)
- Ziqian Li
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technologies, Jiangsu Key Laboratory of Atmospheric Environmental Monitoring & Pollution Control, School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Lingwei Kong
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Liping Hu
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technologies, Jiangsu Key Laboratory of Atmospheric Environmental Monitoring & Pollution Control, School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Jun Wei
- Power China Huadong Engineering Corporation Limited, Hangzhou 311122, China
| | - Xinzhi Zhang
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technologies, Jiangsu Key Laboratory of Atmospheric Environmental Monitoring & Pollution Control, School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Weijie Guo
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan 430010, China
| | - Wenqing Shi
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technologies, Jiangsu Key Laboratory of Atmospheric Environmental Monitoring & Pollution Control, School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| |
Collapse
|
8
|
Feng WD, Cui H, Zhu H, Shutes B, Yan BX, Hou SN. FeCa-based layered double hydroxide, a high-performance phosphorus adsorbent in constructed wetlands and ecological dams - A pilot scale study. CHEMOSPHERE 2023; 339:139764. [PMID: 37557995 DOI: 10.1016/j.chemosphere.2023.139764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/27/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023]
Abstract
Research studies have modified traditional substances to seek fast-acting removal of phosphorus in constructed wetlands (CWs) and ecological dams, rather than develop a brand-new nano-adsorbent. This work synthesized FeCa-based layered double hydroxide (FeCa-LDH) with a chemical co-precipitation method, and the performance, mechanism and factors of phosphorus removal were investigated. FeCa-LDH showed a marked ability to adsorb phosphorus from waste water, with a removal efficiency of 94.4% and 98.2% in CWs and ecological dams, respectively. Both FTIR and XPS spectrum evidenced that FeCa-LDH removed phosphorus via electrostatic and hydrogen-bonding adsorption, as well as a coordination reaction and interlayer anion exchange. FeCa-LDH showed a higher capacity to remove phosphorus in alkaline and neutral waste water than in acid conditions. Co-occurrence anions, which influenced the efficiency of the phosphorus removal capacity are considered in the sequence below: CO32- ≈ HCO3- > SO42- > NO3-. Innovatively, FeCa-LDH was not affected by the low-temperature limitation for CWs, and phosphorus removal efficiency at 5 °C was almost equal to that at 25 °C. These results cast a new idea on the construction, application and phosphorus removal performance of CWs and ecological dams.
Collapse
Affiliation(s)
- Wei-Dong Feng
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; State Key Laboratory of Black Soils Conservation and Utilization, Changchun, 130102, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hu Cui
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; State Key Laboratory of Black Soils Conservation and Utilization, Changchun, 130102, China.
| | - Hui Zhu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; State Key Laboratory of Black Soils Conservation and Utilization, Changchun, 130102, China.
| | - Brian Shutes
- Department of Natural Sciences, Middlesex University, Hendon, London, NW4 4BT, UK
| | - Bai-Xing Yan
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; State Key Laboratory of Black Soils Conservation and Utilization, Changchun, 130102, China
| | - Sheng-Nan Hou
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; State Key Laboratory of Black Soils Conservation and Utilization, Changchun, 130102, China
| |
Collapse
|