1
|
Yang X, Hameed U, Zhang AF, Zang HY, Gu CY, Chen Y, Xu YL. Development of a nested-PCR assay for the rapid detection of Pilidiella granati in pomegranate fruit. Sci Rep 2017; 7:40954. [PMID: 28106107 PMCID: PMC5247718 DOI: 10.1038/srep40954] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 12/14/2016] [Indexed: 12/03/2022] Open
Abstract
Pilidiella granati, a causal agent of twig blight and crown rot of pomegranate, is an emerging threat that may cause severe risk to the pomegranate industry in the future. Development of a rapid assay for the timely and accurate detection of P. granati will be helpful in the active surveillance and management of the disease caused by this pathogen. In this study, a nested PCR method was established for the detection of P. granati. Comparative analysis of genetic diversity within 5.8S rDNA internal transcribed spacer (ITS) sequences of P. granati and 21 other selected fungal species was performed to design species-specific primers (S1 and S2). This primer pair successfully amplified a 450 bp product exclusively from the genomic DNA of P. granati. The developed method can detect 10 pg genomic DNA of the pathogen in about 6 h. This technique was successfully applied to detect the natural infection of P. granati in the pomegranate fruit. The designed protocol is rapid and precise with a high degree of sensitivity.
Collapse
Affiliation(s)
- Xue Yang
- Institute of Plant Protection and Agro-products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Scientific Observing and Experimental Station of Crop Pests in Hefei, Ministry of Agriculture, China
- Laboratory of Quality and Safety Risk Assessment for Agro-Products (Hefei), Ministry of Agriculture, China
| | - Uzma Hameed
- Institute of Plant Protection and Agro-products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Ai-Fang Zhang
- Institute of Plant Protection and Agro-products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Scientific Observing and Experimental Station of Crop Pests in Hefei, Ministry of Agriculture, China
- Laboratory of Quality and Safety Risk Assessment for Agro-Products (Hefei), Ministry of Agriculture, China
| | - Hao-Yu Zang
- Institute of Plant Protection and Agro-products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Scientific Observing and Experimental Station of Crop Pests in Hefei, Ministry of Agriculture, China
- Laboratory of Quality and Safety Risk Assessment for Agro-Products (Hefei), Ministry of Agriculture, China
| | - Chun-Yan Gu
- Institute of Plant Protection and Agro-products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Scientific Observing and Experimental Station of Crop Pests in Hefei, Ministry of Agriculture, China
- Laboratory of Quality and Safety Risk Assessment for Agro-Products (Hefei), Ministry of Agriculture, China
| | - Yu Chen
- Institute of Plant Protection and Agro-products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Scientific Observing and Experimental Station of Crop Pests in Hefei, Ministry of Agriculture, China
- Laboratory of Quality and Safety Risk Assessment for Agro-Products (Hefei), Ministry of Agriculture, China
| | - Yi-Liu Xu
- Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Anhui Province, China
| |
Collapse
|
2
|
Heterologous production of an acidic thermostable lipase with broad-range pH activity from thermophilic fungus Neosartorya fischeri P1. J Biosci Bioeng 2016; 122:539-544. [DOI: 10.1016/j.jbiosc.2016.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/06/2016] [Accepted: 05/08/2016] [Indexed: 11/22/2022]
|
3
|
Wongwatanapaiboon J, Klinbunga S, Ruangchainikom C, Thummadetsak G, Chulalaksananukul S, Marty A, Chulalaksananukul W. Cloning, expression, and characterization of Aureobasidium melanogenum lipase in Pichia pastoris. Biosci Biotechnol Biochem 2016; 80:2231-2240. [DOI: 10.1080/09168451.2016.1206809] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abstract
cDNA of Aureobasidium melanogenum lipase comprises 1254 bp encoding 417 amino acids, whereas genomic DNA of lipase comprises 1311 bp with one intron (57 bp). The lipase gene contains a putative signal peptide encoding 26 amino acids. The A. melanogenum lipase gene was successfully expressed in Pichia pastoris. Recombinant lipase in an inducible expression system showed the highest lipase activity of 3.8 U/mL after six days of 2% v/v methanol induction. The molecular mass of purified recombinant lipase was estimated as 39 kDa using SDS-PAGE. Optimal lipase activity was observed at 35–37 °C and pH 7.0 using p-nitrophenyl laurate as the substrate. Lipase activity was enhanced by Mg2+, Mn2+, Li+, Ca2+, Ni2+, CHAPS, DTT, and EDTA and inhibited by Hg2+, Ag+, SDS, Tween 20, and Triton X-100. The addition of 10% v/v acetone, DMSO, p-xylene, and octanol increased lipase activity, whereas that of propanol and butanol strongly inhibited it.
Collapse
Affiliation(s)
- Jinaporn Wongwatanapaiboon
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Biofuels by Biocatalysts Research Unit, Faculty of Science, Department of Botany, Chulalongkorn University, Bangkok, Thailand
| | - Sirawut Klinbunga
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
- Faculty of Science, Center of Excellence for Marine Biotechnology, Chulalongkorn University, Bangkok, Thailand
| | - Chalermchai Ruangchainikom
- Environmental Research and Management Department, PTT Research and Technology Institute, PTT Public Co. Ltd., Ayutthaya, Thailand
| | - Gamgarn Thummadetsak
- Environmental Research and Management Department, PTT Research and Technology Institute, PTT Public Co. Ltd., Ayutthaya, Thailand
| | - Suphang Chulalaksananukul
- Faculty of Engineering, Department of Chemical Engineering, Mahidol University, Nakhon Pathom, Thailand
| | - Alain Marty
- Université de Toulouse, INSA, UPS, INP, LISBP, Toulouse, France
- CNRS, UMR5504, Toulouse, France
- INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, Toulouse, France
| | - Warawut Chulalaksananukul
- Biofuels by Biocatalysts Research Unit, Faculty of Science, Department of Botany, Chulalongkorn University, Bangkok, Thailand
- Faculty of Science, Department of Botany, Chulalongkorn University, Bangkok, Thailand
- Aquatic Resources Research Institute, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
4
|
Spohner SC, Müller H, Quitmann H, Czermak P. Expression of enzymes for the usage in food and feed industry with Pichia pastoris. J Biotechnol 2015; 202:118-34. [DOI: 10.1016/j.jbiotec.2015.01.027] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 12/28/2014] [Accepted: 01/07/2015] [Indexed: 12/29/2022]
|
5
|
High-level expression of pro-form lipase from Rhizopus oryzae in Pichia pastoris and its purification and characterization. Int J Mol Sci 2013; 15:203-17. [PMID: 24368519 PMCID: PMC3907806 DOI: 10.3390/ijms15010203] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 12/11/2013] [Accepted: 12/13/2013] [Indexed: 11/16/2022] Open
Abstract
A gene encoding Rhizopus oryzae lipase containing prosequence (ProROL) was cloned into the pPICZαA and electrotransformed into the Pichia pastoris X-33 strain. The lipase was functionally expressed and secreted in Pichia pastoris with a molecular weight of 35 kDa. The maximum lipase activity of recombinant lipase (rProROL) was 21,000 U/mL, which was obtained in a fed-batch cultivation after 168 h induction with methanol in a 50-L bioreactor. After fermentation, the supernatant was concentrated by ultrafiltration with a 10 kDa cut off membrane and purified with ion exchange chromatography using SP Sepharose Fast Flow chromatography. The optimum pH and temperature of the rProROL were pH 9.0 and 40 °C, respectively. The lipase was stable from pH 4.0 to 9.0 and from 25 to 55 °C. The enzyme activity was enhanced by Ca2+ and inhibited by Hg2+ and Ag+. The lipase showed high activity toward triglyceride-Tripalmitin (C16:0) and triglyceride-Trilaurin (C12:0).
Collapse
|
6
|
Zheng J, Liu C, Liu L, Jin Q. Characterisation of a thermo-alkali-stable lipase from oil-contaminated soil using a metagenomic approach. Syst Appl Microbiol 2013; 36:197-204. [PMID: 23415486 DOI: 10.1016/j.syapm.2012.12.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 11/27/2012] [Accepted: 12/02/2012] [Indexed: 10/27/2022]
Abstract
Lipases are widely used for a variety of biotechnological applications. Screening these industrial enzymes directly from environmental microorganisms is a more efficient and practical approach than conventional cultivation-dependent methods. Combined with activity-based functional screening, six clones with lipase activity were detected and a gene (termed lipZ01) isolated from a target clone with the highest lipase activity was cloned from an oil-contaminated soil-derived metagenomic library and then sequenced. Gene lipZ01 was expressed in Pichia pastoris GS115 and the molecular weight of the recombinant lipase LipZ01 was estimated by electrophoresis analysis to be approximately 50 kDa. The maximum activity of the purified lipase was 42 U/mL, and the optimum reaction temperature and pH value were 45 °C and 8.0, respectively. The enzyme was highly stable in the temperature range 35-60 °C and under alkaline conditions (pH 7-10). The presence of Ca(2+) and Mn(2+) ions could significantly enhance the activity of the lipase. The purified lipase preferentially hydrolysed triacylglycerols with acyl chain lengths ≥8 carbon atoms, and the conversion degree of biodiesel production was nearly 92% in a transesterification reaction using olive oil and methanol. Some attractive properties suggested that the recombinant lipase may be valuable in industrial applications.
Collapse
Affiliation(s)
- Jianhua Zheng
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | | | | | | |
Collapse
|
7
|
Shangguan JJ, Fan LQ, Ju X, Zhu QQ, Wang FJ, Zhao J, Xu JH. Expression and Characterization of a Novel Enantioselective Lipase from Aspergillus fumigatus. Appl Biochem Biotechnol 2012; 168:1820-33. [DOI: 10.1007/s12010-012-9899-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 09/04/2012] [Indexed: 11/30/2022]
|
8
|
Zheng J, Liu L, Liu C, Jin Q. Molecular Cloning and Heterologous Expression of a True Lipase inPichia pastorisIsolated via a Metagenomic Approach. J Mol Microbiol Biotechnol 2012; 22:300-11. [DOI: 10.1159/000343819] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
9
|
Jin X, Meng N, Xia LM. Expression of an endo-β-1,4-glucanase gene from orpinomyces PC-2 in Pichia pastoris. Int J Mol Sci 2011; 12:3366-80. [PMID: 21686190 PMCID: PMC3116196 DOI: 10.3390/ijms12053366] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 05/03/2011] [Accepted: 05/23/2011] [Indexed: 12/03/2022] Open
Abstract
The endo-β-1,4-glucanase gene celE from the anaerobic fungus Orpinomyces PC-2 was placed under the control of an alcohol oxidase promoter (AOX1) in the plasmid pPIC9K, and integrated into the genome of a methylotrophic yeast P. pastoris GS115 by electroporation. The strain with highest endo-β-1,4-glucanase activity was selected and designed as P. pastoris egE, and cultivated in shaking flasks. The culture supernatant was assayed by SDS-polyacrylamide gel electrophoresis and showed a single band at about 52 kDa. Furthermore, the recombinant P. pastoris egE was proved to possess the ability to utilize sodium carboxymethyl cellulose as a carbon source. The recombinant endoglucanase produced by P. pastoris showed maximum activity at pH 6.0 and temperature 45 °C, indicating it was a mesophilic neutral endo-β-1,4-glucanase, suitable for denim biofinishing/washing. Further research was carried out in suitable fermentation medium in shaking flasks. The most favorable methanol addition concentration was discussed and given as 1.0%. After methanol induction for 96 h, the endo-β-1,4-glucanase activity reached 72.5 IU mL−1. This is the first report on expression and characterization of endo-β-1,4-glucanase from Orpinomyces in P. pastoris. The endo-β-1,4-glucanase secreted by recombinant P. pastoris represents an attractive potential for both academic research and textile industry application.
Collapse
Affiliation(s)
- Xin Jin
- Department of Chemical Engineering and Bioengineering, Zhejiang University, Hangzhou 310027, China; E-Mails: (X.J.); (N.M.)
| | | | | |
Collapse
|