1
|
Lai J, Li C. Review on the pharmacological effects and pharmacokinetics of scutellarein. Arch Pharm (Weinheim) 2024; 357:e2400053. [PMID: 38849327 DOI: 10.1002/ardp.202400053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/13/2024] [Accepted: 05/18/2024] [Indexed: 06/09/2024]
Abstract
Scutellarein is a flavonoid from Scutellaria baicalensis Georgi that has been shown to have a variety of pharmacological activities. This review aims to summarize the pharmacological and pharmacokinetic studies on scutellarein and provide useful information for relevant scholars. Pharmacological studies indicate that scutellarein possesses a diverse range of pharmacological properties, including but not limited to anti-inflammatory, antioxidant, antiviral, neuroprotective, hypoglycemic, hypolipidemic, anticancer, and cardiovascular protective effects. Further investigation reveals that the pharmacological effects of scutellarein are driven by multiple mechanisms. These mechanisms encompass the scavenging of free radicals, inhibition of the activation of inflammatory signaling pathways and expression of inflammatory mediators, inhibition of the activity of crucial viral proteins, suppression of gluconeogenesis, amelioration of insulin resistance, improvement of cerebral ischemia-reperfusion injury, induction of apoptosis in cancer cells, and prevention of myocardial hypertrophy, among others. In summary, these pharmacological studies suggest that scutellarein holds promise for the treatment of various diseases. It is imperative to conduct clinical studies to further elucidate the therapeutic effects of scutellarein. However, it is worth noting that studies on the pharmacokinetics reveal an inhibitory effect of scutellarein on uridine 5'-diphosphate glucuronide transferases and cytochrome P450 enzymes, potentially posing safety risks.
Collapse
Affiliation(s)
- Jiang Lai
- Department of Anorectal Surgery, The Third People's Hospital of Chengdu, Chengdu, China
| | - Chunxiao Li
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Li X, Zhang X, Kang Y, Cai M, Yan J, Zang C, Gao Y, Qi Y. Scutellarein Suppresses the Production of ROS and Inflammatory Mediators of LPS-Activated Bronchial Epithelial Cells and Attenuates Acute Lung Injury in Mice. Antioxidants (Basel) 2024; 13:710. [PMID: 38929149 PMCID: PMC11200809 DOI: 10.3390/antiox13060710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Scutellarein is a key active constituent present in many plants, especially in Scutellaria baicalensis Georgi and Erigeron breviscapus (vant.) Hand-Mazz which possesses both anti-inflammatory and anti-oxidative activities. It also is the metabolite of scutellarin, with the ability to relieve LPS-induced acute lung injury (ALI), strongly suggesting that scutellarein could suppress respiratory inflammation. The present study aimed to investigate the effects of scutellarein on lung inflammation by using LPS-activated BEAS-2B cells (a human bronchial epithelial cell line) and LPS-induced ALI mice. The results showed that scutellarein could reduce intracellular reactive oxygen species (ROS) accumulation through inhibiting the activation of NADPH oxidases, markedly downregulating the transcription and translation of pro-inflammatory cytokines, including interleukin-6 (IL-6), C-C motif chemokine ligand 2 (CCL2), and C-X-C motif chemokine ligand (CXCL) 8 in LPS-activated BEAS-2B cells. The mechanism study revealed that it suppressed the phosphorylation and degradation of IκBα, consequently hindering the translocation of p65 from the cytoplasm to the nucleus and its subsequent binding to DNA, thereby decreasing NF-κB-regulated gene transcription. Notably, scutellarein had no impact on the activation of AP-1 signaling. In LPS-induced ALI mice, scutellarein significantly decreased IL-6, CCL2, and tumor necrosis factor-α (TNF-α) levels in the bronchoalveolar lavage fluid, attenuated lung injury, and inhibited neutrophil infiltration. Our findings suggest that scutellarein may be a beneficial agent for the treatment of infectious pneumonia by virtue of its anti-oxidative and anti-inflammatory activities.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yuan Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (X.L.); (X.Z.); (Y.K.); (M.C.); (J.Y.); (C.Z.)
| | - Yun Qi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (X.L.); (X.Z.); (Y.K.); (M.C.); (J.Y.); (C.Z.)
| |
Collapse
|
3
|
Zhang X, Dong Z, Fan H, Yang Q, Yu G, Pan E, He N, Li X, Zhao P, Fu M, Dong J. Scutellarin prevents acute alcohol-induced liver injury via inhibiting oxidative stress by regulating the Nrf2/HO-1 pathway and inhibiting inflammation by regulating the AKT, p38 MAPK/NF-κB pathways. J Zhejiang Univ Sci B 2023; 24:617-631. [PMID: 37455138 PMCID: PMC10350365 DOI: 10.1631/jzus.b2200612] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/03/2023] [Indexed: 04/15/2023]
Abstract
Alcoholic liver disease (ALD) is the most frequent liver disease worldwide, resulting in severe harm to personal health and posing a serious burden to public health. Based on the reported antioxidant and anti-inflammatory capacities of scutellarin (SCU), this study investigated its protective role in male BALB/c mice with acute alcoholic liver injury after oral administration (10, 25, and 50 mg/kg). The results indicated that SCU could lessen serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels and improve the histopathological changes in acute alcoholic liver; it reduced alcohol-induced malondialdehyde (MDA) content and increased glutathione peroxidase (GSH-Px), catalase (CAT), and superoxide dismutase (SOD) activity. Furthermore, SCU decreased tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1β messenger RNA (mRNA) expression levels, weakened inducible nitric oxide synthase (iNOS) activity, and inhibited nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome activation. Mechanistically, SCU suppressed cytochrome P450 family 2 subfamily E member 1 (CYP2E1) upregulation triggered by alcohol, increased the expression of oxidative stress-related nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) pathways, and suppressed the inflammation-related degradation of inhibitor of nuclear factor-κB (NF-κB)-α (IκBα) as well as activation of NF-κB by mediating the protein kinase B (AKT) and p38 mitogen-activated protein kinase (MAPK) pathways. These findings demonstrate that SCU protects against acute alcoholic liver injury via inhibiting oxidative stress by regulating the Nrf2/HO-1 pathway and suppressing inflammation by regulating the AKT, p38 MAPK/NF-κB pathways.
Collapse
Affiliation(s)
- Xiao Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment / Co-Innovation Center of Jiangsu Marine Bio-Industry Technology / Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhicheng Dong
- Department of Oncology, the Second People's Hospital of Lianyungang, Lianyungang 222000, China
| | - Hui Fan
- Jiangsu Key Laboratory of Marine Bioresources and Environment / Co-Innovation Center of Jiangsu Marine Bio-Industry Technology / Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Qiankun Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment / Co-Innovation Center of Jiangsu Marine Bio-Industry Technology / Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Guili Yu
- Jiangsu Key Laboratory of Marine Bioresources and Environment / Co-Innovation Center of Jiangsu Marine Bio-Industry Technology / Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Enzhuang Pan
- Jiangsu Key Laboratory of Marine Bioresources and Environment / Co-Innovation Center of Jiangsu Marine Bio-Industry Technology / Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Nana He
- Jiangsu Key Laboratory of Marine Bioresources and Environment / Co-Innovation Center of Jiangsu Marine Bio-Industry Technology / Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xueqing Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment / Co-Innovation Center of Jiangsu Marine Bio-Industry Technology / Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Panpan Zhao
- Jiangsu Key Laboratory of Marine Bioresources and Environment / Co-Innovation Center of Jiangsu Marine Bio-Industry Technology / Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mian Fu
- Jiangsu Key Laboratory of Marine Bioresources and Environment / Co-Innovation Center of Jiangsu Marine Bio-Industry Technology / Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment / Co-Innovation Center of Jiangsu Marine Bio-Industry Technology / Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
4
|
Zhang Y, Zhang Z, Wang J, Zhang X, Zhao J, Bai N, Vijayalakshmi A, Huo Q. Scutellarin alleviates cerebral ischemia/reperfusion by suppressing oxidative stress and inflammatory responses via MAPK/NF-κB pathways in rats. ENVIRONMENTAL TOXICOLOGY 2022; 37:2889-2896. [PMID: 36036213 DOI: 10.1002/tox.23645] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Neuroinflammation contributes to the progression of cerebral ischemia/reperfusion (I/R) damage. Scutellarin (SL) is a glucuronide flavonoid that has apoptotic, anti-inflammatory, and anti-tumor properties. It is anti-oxidant and anti-inflammatory mechanism as a neuroprotective against ischemic brain injury is unknown. The purpose of the study was to examine the role and mechanism of SL in preventing I/R damage in a rat model. SL (40 and 80 mg/kg) was given to the rats for 14 days before the ischemic stroke. SL administration prevented I/R mediated brain injury, and neuronal apoptosis. Malondialdehyde, superoxide dismutase, glutathione, IL-6, and IL-1β and nitric oxide were modulated by SL. SL suppressed the p65 and p38 expressions in particular. The findings show that SL protects rats from cerebral damage caused by I/R through the nuclear factor kappa-B p65 and p38 mitogen-activated protein kinase signaling pathway. Thus, SL protected the brain of rats from ischemic injury by inhibiting the inflammatory process.
Collapse
Affiliation(s)
- Yuming Zhang
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Zhen Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Jun Wang
- Department of Anesthesiology, Shaanxi Provincial Cancer Hospital, Xi'an, China
| | - Xiajing Zhang
- Institute of Medical Research, Nothwestern Polytechnical University, Xi'an, China
| | - Jing Zhao
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Ning Bai
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, China
| | | | - Qifan Huo
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
5
|
Breviscapine Participates in the Progression of Prostate Cancer by Inhibiting ZFP91 Expression through Upregulation of MicroRNA-129-5p. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:1511607. [PMID: 34925523 PMCID: PMC8674053 DOI: 10.1155/2021/1511607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/22/2021] [Indexed: 11/23/2022]
Abstract
Objective To investigate the effect of breviscapine (BVP) on the development of prostate cancer and its molecular mechanism. Materials and Methods After treatment with breviscapine and microRNA-129-5p, MTT (3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide) and cell counting kit-8 (CCK-8) tests were performed to examine the proliferation rate of cells, while Transwell was used to analyze cell migration ability; at the same time, quantitative real-time polymerase chain reaction (qRT-PCR) was applied to detect the expression of microRNA-129-5p and ZFP91 in prostate cancer cells. In addition, the binding of microRNA-129-5p and ZFP91 was confirmed by dual-luciferase reporting assay; meanwhile, cell reverse experiment verified that breviscapine can regulate ZFP91 via upregulating microRNA-129-5p. Results The results of MTT, CCK-8, and Transwell experiments demonstrated that breviscapine inhibited the proliferation as well as the migration capacities of PC cells; meanwhile, it upregulated the level of microRNA-129-5p in PC cells while downregulated that of ZFP91. Furthermore, dual-luciferase reporter gene assay verified that ZFP91 was a potential target of microRNA-129-5p. Finally, cell reverse experiment confirmed that breviscapine downregulated ZFP91 expression by upregulating microRNA-129-5p, while downregulation of microRNA-129-5p partially reversed the inhibitory effect of breviscapine on cell proliferation ability. Conclusions Breviscapine may inhibit the expression of ZFP91 through upregulating microRNA-129-5p and thus participating in the progression of PC.
Collapse
|
6
|
Liu D, Zhang C, Hu M, Su K. Scutellarein relieves the death and inflammation of tubular epithelial cells in ischemic kidney injury by degradation of COX-2 protein. Int Immunopharmacol 2021; 101:108193. [PMID: 34619498 DOI: 10.1016/j.intimp.2021.108193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/07/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES Acute kidney injury (AKI) is a clinical syndrome that usually caused by ischemia/reperfusion (I/R). Previous studies have revealed the protection of scutellarein against ischemia in nervous system. This study aimed to demonstrate the potential of scutellarein in ischemic AKI. METHODS Animal model of ischemic AKI was established by clamping bilateral kidney pedicles in Sprague-Dawley rats. HK-2 cells were exposed to oxygen glucose deprivation/reoxygenation (OGD/R) to induce a cell model of AKI. The effects of scutellarein pre-treatment were detected by H&E staining, TUNEL, ELISA, CCK-8, LDH activity assay, ROS generation, flow cytometry, qRT-PCR and western blotting. Bioinformatic analysis was performed to probe the targets of scutellarein. RESULTS The blood urea nitrogen (BUN) and serum creatinine (SCr) levels in rats treated with scutellarein were lower than that in model groups. Scutellarein suppressed the pathological injury of kidney, and dose-dependently inhibited the apoptosis and pro-inflammatory cytokines release (IL-1β, IL-6 and IL-18). Scutellarein prevented OGD/R-induced HK-2 cell loss and cytotoxicity. ROS generation, apoptosis, and inflammation induced by OGD/R were all inhibited by scutellarein. By searching on the TCMSP and Symmap databases, COX-2 was screened out as a target of scutellarein. Scutellarein has no significant impacts on COX-2 mRNA expression, but could inhibit its protein level. Scutellarein promoted COX-2 protein degradation via enhancing autophagy. Furthermore, overexpression of COX-2 partly eliminated the renal protection of scutellarein in HK-2 cells. CONCLUSIONS Scutellarein was suggested as a renal protective agent against ischemia-induced damage in AKI. The protective properties of scutellarein may be through inhibition of COX-2.
Collapse
Affiliation(s)
- Dong Liu
- Department of Nephrology, The first affiliated hospital of Zhengzhou university, Zhengzhou, Henan, 450052, PR China.
| | - Cuijie Zhang
- Department of Nephrology, The first affiliated hospital of Zhengzhou university, Zhengzhou, Henan, 450052, PR China
| | - Min Hu
- Department of Nephrology, The first affiliated hospital of Zhengzhou university, Zhengzhou, Henan, 450052, PR China
| | - Kangle Su
- Department of Nephrology, The first affiliated hospital of Zhengzhou university, Zhengzhou, Henan, 450052, PR China
| |
Collapse
|
7
|
Ethnomedical uses, chemical constituents, and evidence-based pharmacological properties of Chenopodium ambrosioides L.: extensive overview. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00306-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The Chenopodium genus is a plant family widely spread worldwide that includes various plant species reputed to possess several medicinal virtues in folk medicines. Chenopodium ambrosioides L. is among the most used plants in traditional medicines worldwide. This review aimed to highlight ethnomedicinal uses, phytochemical status, and pharmacological properties of C. ambrosioides L.
Main body of the abstract
The analysis of relevant data highlights various ethnomedicinal uses against human and veterinary diseases in forty countries. Most indications consisted of gastrointestinal tract dysfunctioning troubles and worms parasitemia. Around 330 chemical compounds have been identified in different plant parts, especially in its essential oil fractions (59.84%). However, only a few compounds—mainly monoterpenes and glycosides—have been isolated and characterized. Experimental pharmacological studies validated a large scale of significant health benefits. It appeared that many monoterpenes are antioxidant, insecticidal, trypanocidal, analgesic, antifungal, anti-inflammatory, anti-arthritic, acaricidal, amoebicidal, anthelmintic, anticancer, antibacterial, antidiabetic, antidiarrheal, antifertility, antifungal, anti-leishmanial, antimalarial, antipyretic, antisickling, antischistosomal, antiulcer, anxiolytic, immunomodulatory, molluscicidal, and vasorelaxant agents.
Short conclusion
Thus, the Chenopodium ambrosioides species necessitates further chemical studies to isolate and characterize new bioactive secondary metabolites and pharmacological investigations to precise the mechanisms of action before clinical trials.
Collapse
|
8
|
Li Y, Li S, Li D. Breviscapine Alleviates Cognitive Impairments Induced by Transient Cerebral Ischemia/Reperfusion through Its Anti-Inflammatory and Anti-Oxidant Properties in a Rat Model. ACS Chem Neurosci 2020; 11:4489-4498. [PMID: 33270442 DOI: 10.1021/acschemneuro.0c00697] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cerebral ischemia/reperfusion (I/R)-induced injury is a common phenomenon of stroke, and the effective treatment for I/R-induced brain tissue damage is limited. Breviscapine has been widely used in China as herbal medicine to treat cardiovascular diseases for hundreds of years and has been demonstrated to possess potent cardiovascular pharmacological effects. This study aims to investigate the neuroprotective effect of breviscapine on cerebral I/R-induced injury. The rat model of middle cerebral artery occlusion (MCAO) was applied in our study. The cerebral I/R rats received multiple injections of breviscapine. All rats were subject to neurological behavior tests by open field test and Morris water maze test. The pro-inflammatory cytokines and oxidative stress marker levels were determined by ELISA and colorimetric analysis, respectively. We demonstrated that administration of breviscapine dose-dependently ameliorated cerebral I/R-induced injury and improved the neurological performance of cerebral I/R rats. Further studies illustrated that breviscapine treatment effectively attenuated inflammatory cytokine expression, reduced oxidative stress, and pro-apoptosis protein expression and inhibited the activation of NF-κB signaling and microglia in the I/R injury tissues. Breviscapine may serve as a single drug or a promising adjuvant that can be used in conjunction with other medicine for the treatment of cerebral I/R-induced injury.
Collapse
Affiliation(s)
- Yinghua Li
- Hangzhou Women’s Hospital, No. 369 Kunpeng Road, Hangzhou 310008, Zhejiang, China
| | - Songyi Li
- Hangzhou Women’s Hospital, No. 369 Kunpeng Road, Hangzhou 310008, Zhejiang, China
| | - Dingheng Li
- Hangzhou Women’s Hospital, No. 369 Kunpeng Road, Hangzhou 310008, Zhejiang, China
| |
Collapse
|
9
|
Profile of phenolic compounds and carotenoids of Arrabidaea chica leaves and the in vitro singlet oxygen quenching capacity of their hydrophilic extract. Food Res Int 2019; 126:108597. [DOI: 10.1016/j.foodres.2019.108597] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/11/2019] [Accepted: 07/28/2019] [Indexed: 12/16/2022]
|
10
|
Zhang W, Yi D, Gao K, Liu M, Yang J, Liao X, Yang B. hydrolysis of Scutellarin and Related Glycosides to Scutellarein and the Corresponding Aglycones. JOURNAL OF CHEMICAL RESEARCH 2019. [DOI: 10.3184/174751914x14017253941699] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Wei Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P.R. China
| | - Dong Yi
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P.R. China
| | - Kai Gao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P.R. China
| | - Manshuo Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P.R. China
| | - Jian Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P.R. China
| | - Xiali Liao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P.R. China
| | - Bo Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P.R. China
| |
Collapse
|
11
|
Wang L, Sun R, Zhang Q, Luo Q, Zeng S, Li X, Gong X, Li Y, Lu L, Hu M, Liu Z. An update on polyphenol disposition via coupled metabolic pathways. Expert Opin Drug Metab Toxicol 2018; 15:151-165. [PMID: 30583703 DOI: 10.1080/17425255.2019.1559815] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Polyphenols, which are widely distributed in plants and the human diets, are known to have numerous biological activities. However, the low bioavailability of polyphenols is mediated by coupled metabolic pathways. Areas covered: The key role of the interplay between drug metabolic enzymes (DMEs) and efflux transporters (ETs), nuclear receptors (NRs), and intestinal microflora in the disposition of polyphenols is summarized. Expert opinion: ETs are shown to act as a 'revolving door', facilitating and/or controlling cellular polyphenol glucuronide/sulfate excretion. Elucidating the mechanisms underlying the glucuronidation/sulfation-transport interplay and structure-activity relationships (SAR) of glucuronide/sulfate efflux by an ET is important. Some new physiologically based pharmacokinetic (PBPK) models could be developed to predict the interplay between glucuronides/sulfates and ETs. Additionally, the combined actions of uridine-5'-diphosphate glucuronosyltransferases, ETs, and intestinal microflora/enterocyte-derived β-glucuronidase enable triple recycling (local, enteric, and enterohepatic recycling), thereby increasing the residence time of polyphenols and their glucuronides in the local intestine and liver. Further studies are necessary to explore these recycling mechanisms and interactions between polyphenols and the intestinal microbiota. Since NRs govern the inducible expression of target genes that encode DMEs and ETs. Determination of the regulation mechanism mediated by NRs using transgenic and knockout animals is still needed.
Collapse
Affiliation(s)
- Liping Wang
- a Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou, Guangdong , China
| | - Rongjin Sun
- a Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou, Guangdong , China
| | - Qisong Zhang
- a Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou, Guangdong , China
| | - Qing Luo
- a Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou, Guangdong , China
| | - Sijing Zeng
- a Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou, Guangdong , China
| | - Xiaoyan Li
- a Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou, Guangdong , China
| | - Xia Gong
- a Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou, Guangdong , China
| | - Yuhuan Li
- a Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou, Guangdong , China
| | - Linlin Lu
- a Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou, Guangdong , China
| | - Ming Hu
- a Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou, Guangdong , China.,c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA
| | - Zhongqiu Liu
- a Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou, Guangdong , China.,b State Key Laboratory of Quality Research in Chinese Medicine , Macau University of Science and Technology , Macau , SAR , China
| |
Collapse
|
12
|
Li HM, Gu T, Wu WY, Yu SP, Fan TY, Zhong Y, Li NG. Synthesis and Biological Evaluation of Scutellarein Alkyl Derivatives as Preventing Neurodegenerative Agents with Improved Lipid Soluble Properties. Med Chem 2018; 15:771-780. [PMID: 30324887 DOI: 10.2174/1573406414666181015143551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/06/2018] [Accepted: 10/01/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Exogenous antioxidants are considered as a promising therapeutic approach to treat neurodegenerative diseases since they could prevent and/or minimize the neuronal damage by oxidation. OBJECTIVE Three series of lipophilic compounds structurally based on scutellarein (2), which is one metabolite of scutellarin (1) in vivo, have been designed and synthesized. METHODS Their antioxidant activity was evaluated by detecting the 2-thiobarbituric acid reactive substance (TBARS) produced in the ferrous salt/ascorbate-induced autoxidation of lipids, which were present in microsomal membranes of rat hepatocytes. The lipophilicity of these compounds indicated as partition coefficient between n-octanol and buffer was investigated by ultraviolet (UV) spectrophotometer. RESULTS This study indicated that compound 5e which had a benzyl group substituted at the C4'- OH position showed a potent antioxidant activity and good lipophilicity. CONCLUSION 5e could be an effective candidate for preventing or reducing the oxidative status associated with the neurodegenerative processes.
Collapse
Affiliation(s)
- He-Min Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Ting Gu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Wen-Yu Wu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Shao-Peng Yu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Tian-Yuan Fan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Yue Zhong
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Nian-Guang Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| |
Collapse
|
13
|
Mehta P, Bothiraja C, Mahadik K, Kadam S, Pawar A. Phytoconstituent based dry powder inhalers as biomedicine for the management of pulmonary diseases. Biomed Pharmacother 2018; 108:828-837. [PMID: 30372894 DOI: 10.1016/j.biopha.2018.09.094] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/15/2018] [Accepted: 09/16/2018] [Indexed: 12/14/2022] Open
Abstract
Pulmonary disease represents a major global health issue. They are commonly treated by various synthetic molecules. But, frequent high-dose of oral and injectable drugs may lead to severe side effects and this juncture demands inhaled formulations that facilitate effective drug delivery to the lower airways with negligible side effects. Natural phytoconstituents or phytoalexin (i.e. plant antibiotics) have showed an unique treatment array with minimum side effects and great capability to treat intrapulmonary and extrapulmonary diseases compared to synthetic drugs. Moreover, the progress of disciplines such as nanotechnology, material science and particle engineering allows further improvement of the treatment capability and efficiency. This article review and analyze literatures on inhaled phytoconstituents which were published in the last 10 years. Additionally, it will also offer the researcher with some basic background information for phytoconstituents profile, formulation requirements and drug delivery systems.
Collapse
Affiliation(s)
- Piyush Mehta
- Department of Quality Assurance, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune 38, Maharashtra, India
| | - C Bothiraja
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune 38, Maharashtra, India
| | - Kakasaheb Mahadik
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune 411038, Maharashtra, India
| | - Shivajirao Kadam
- Bharati Vidyapeeth Bhavan, Bharati Vidyapeeth (Deemed to be University), LBS Road, Pune 30, Maharashtra, India
| | - Atmaram Pawar
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune 38, Maharashtra, India.
| |
Collapse
|
14
|
Alzoman NZ, Maher HM, Al-Showiman H, Fawzy GA, Al-Taweel AM, Perveen S, Tareen RB, Al-Sabbagh RM. CE-DAD Determination of Scutellarein and Caffeic Acid in Abelia triflora Crude Extract. J Chromatogr Sci 2018; 56:746-752. [PMID: 29750262 DOI: 10.1093/chromsci/bmy042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Indexed: 12/20/2022]
Abstract
A precise, accurate, selective and sensitive capillary electrophoresis method using a diode array detector was developed for the first time for the determination of both scutellarein (SLN) and caffeic acid (CAA) in prepared Abelia triflora extract. Electrophoretic analysis was performed using a background electrolyte solution consisting of borax buffer (40 mM, pH 9.2) and a 200-nm detection wavelength. This method was fully validated according to The International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) guidelines. The method was linear in the concentration range 2.5-100 μg/mL and it allowed the determination of both compounds with high degree of recovery (%Er < 2%) and intra-day and inter-day precision (relative standard deviation values <2%) and method robustness was also assessed by the low values of %RSD < 2% obtained after small deliberate changes in the method parameters. The contents of SLN and CAA were calculated using both the external standard and standard addition methods. Analysis of the ethyl acetate fraction of A. triflora revealed that SLN and CAA were found in concentrations of 0.46 mg/g and 2.10 mg/g, respectively, in the ethyl acetate fraction and 0.29 and 1.32 mg%, respectively, in the dry plant leaves.
Collapse
Affiliation(s)
- Nourah Zoman Alzoman
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hadir Mohamed Maher
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Alexandria University, El-Messalah, Alexandria, Egypt
| | - Hessa Al-Showiman
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ghada Ahmed Fawzy
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Riyadh, Saudi Arabia.,Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Areej Mohammad Al-Taweel
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Riyadh, Saudi Arabia
| | - Shagufta Perveen
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Riyadh, Saudi Arabia
| | - Rasool Bakhsh Tareen
- Department of Botany, Faculty of Life Sciences, University of Balochistan, Quetta, Pakistan
| | - Ruba Mahmoud Al-Sabbagh
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Riyadh, Saudi Arabia
| |
Collapse
|
15
|
Liu Y, Wen PH, Zhang XX, Dai Y, He Q. Breviscapine ameliorates CCl4‑induced liver injury in mice through inhibiting inflammatory apoptotic response and ROS generation. Int J Mol Med 2018; 42:755-768. [PMID: 29717768 PMCID: PMC6034936 DOI: 10.3892/ijmm.2018.3651] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 04/05/2018] [Indexed: 01/06/2023] Open
Abstract
Acute liver injury is characterized by fibrosis, inflammation and apoptosis, leading to liver failure, cirrhosis or cancer and affecting the clinical outcome in the long term. However, no effective therapeutic strategy is currently available. Breviscapine, a mixture of flavonoid glycosides, has been reported to have multiple biological functions. The present study aimed to investigate the effects of breviscapine on acute liver injury induced by CCl4 in mice. C57BL/6 mice were subjected to intraperitoneal injection with CCl4 for 8 weeks with or without breviscapine (15 or 30 mg/kg). Mice treated with CCl4 developed acute liver injury, as evidenced by histological analysis, Masson trichrome and Sirius Red staining, accompanied with elevated levels of alanine aminotransferase and aspartate aminotransferase. Furthermore, increases in pro‑inflammatory cytokines, chemokines and apoptotic factors, including caspase‑3 and poly(ADP ribose) polymerase‑2 (PARP‑2), were observed. Breviscapine treatment significantly and dose‑dependently reduced collagen deposition and the fibrotic area. Inflammatory cytokines were downregulated by breviscapine through inactivating Toll‑like receptor 4/nuclear factor-κB signaling pathways. In addition, co‑administration of breviscapine with CCl4 decreased the apoptotic response by enhancing B‑cell lymphoma-2 (Bcl‑2) levels, while reducing Bcl‑2‑associated X protein, apoptotic protease activating factor 1, caspase‑3 and PARP activity. Furthermore, CCl4‑induced oxidative stress was blocked by breviscapine through improving anti‑oxidants and impeding mitogen‑activated protein kinase pathways. The present study highlighted that breviscapine exhibited liver‑protective effects against acute hepatic injury induced by CCl4 via suppressing inflammation and apoptosis.
Collapse
Affiliation(s)
- Yu Liu
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital University of Medical Science, Beijing 100000, P.R. China
| | - Pei-Hao Wen
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital University of Medical Science, Beijing 100000, P.R. China
| | - Xin-Xue Zhang
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital University of Medical Science, Beijing 100000, P.R. China
| | - Yang Dai
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital University of Medical Science, Beijing 100000, P.R. China
| | - Qiang He
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital University of Medical Science, Beijing 100000, P.R. China
| |
Collapse
|
16
|
Chen R, Chen X, Zhu T, Liu J, Xiang X, Yu J, Tan H, Gao S, Li Q, Fang Y, Chen W, Zhang L, Huang B. Integrated Transcript and Metabolite Profiles Reveal That EbCHI Plays an Important Role in Scutellarin Accumulation in Erigeron breviscapus Hairy Roots. FRONTIERS IN PLANT SCIENCE 2018; 9:789. [PMID: 30013578 PMCID: PMC6036287 DOI: 10.3389/fpls.2018.00789] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 05/24/2018] [Indexed: 05/27/2023]
Abstract
Scutellarin, a flavonoid 7-O-glucuronide, is an essential bioactive compound of Erigeron breviscapus (Vaniot) Hand.-Mazz. used for the treatment of cerebrovascular diseases. However, due to overexploitation and overuse, E. breviscapus is facing the problems of extinction and habitat degradation. In this study, a correlation analysis between the transcript and metabolite profiles of methyl jasmonate (MeJA)-treated E. breviscapus at different time points indicated that chalcone isomerase (EbCHI) was the primary contributor to scutellarin accumulation during flavonoid biosynthesis. EbCHI was then further characterized as a chalcone isomerase that efficiently converted chalcone to naringenin in vitro. Optimal parameters derived by comparing different culture conditions were successfully used to establish hairy root cultures of E. breviscapus with a maximum transformation rate of 60% in B5 medium. Furthermore, overexpression of EbCHI significantly enhanced scutellarin accumulation in E. breviscapus hairy roots with a maximum content of 2.21 mg g-1 (dw), 10-fold higher than that of natural roots (0.21 mg g-1 dw). This study sheds new light on a method of effective gene-based metabolic engineering by accurate and appropriate strategies and provides a protocol for hairy root cultures that accumulate high levels of scutellarin, providing a promising prospect for relieving the overexploitation and unavailability of E. breviscapus in the future.
Collapse
Affiliation(s)
- Ruibing Chen
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai, China
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Xianghui Chen
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Tingting Zhu
- Development and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jianghua Liu
- School of Forestry, Southwest Forestry University, Kunming, China
| | - Xing Xiang
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Jian Yu
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hexin Tan
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Shouhong Gao
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Qing Li
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yichao Fang
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Wansheng Chen
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Lei Zhang
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Baokang Huang
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
17
|
Therapeutic effect of vascular interventional therapy and aspirin combined with defibrase on cerebral ischemia in rats. Exp Ther Med 2018; 16:891-895. [PMID: 30116342 PMCID: PMC6090272 DOI: 10.3892/etm.2018.6271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/30/2018] [Indexed: 12/31/2022] Open
Abstract
Therapeutic effect of vascular interventional therapy and aspirin combined with defibrase in the treatment of cerebral ischemia in rat model were investigated. Ninety rats were selected to establish cerebral ischemia model. Animal models were randomly divided into observation group and control group, with 45 rats in each group. Rats in observation group were treated with vascular intervention, and control group was treated with aspirin combined with defibrase. Peak systolic velocity (Vs) and end-diastolic velocity (Vd) were compared between two groups before and after 12 months of treatment. Therapeutic effects were compared before and after 6 months, and before and after 12 months of treatment. Vs and Vd of vascular lesions in observation group at 12 months were reduced after treatment, and were significantly lower than those in control group (p<0.05). After treatment, Vs and Vd in observation group were significantly reduced (p<0.05). There was no significant difference in Vs and Vd values between the groups before treatment (p>0.05). NDS scores in observation group were significantly lower than those in control group at 6 months and 1 year after treatment (p<0.05). There were no significant changes in NDS score at 6 and 12 months after treatment in control group compared with pretreatment group (p>0.05). NDS in observation group was significantly reduced at 6 and 12 months after treatment compared with pretreatment level (p<0.05). One year after treatment, incidence of cerebral infarction and transient ischemic attack and mortality in observation group were significantly lower than those in the control group (p<0.05). Intracranial vascular interventional therapy can achieve satisfactory outcomes in the treatment of cerebral ischemia, and can effectively promote nerve function recovery, and reduce the incidence of cerebrovascular diseases and mortality.
Collapse
|
18
|
Liu C, Sheng X, Wang Y, Yin J, Huang W, Fan Y, Li Y, Zhang Y. A sensitive approach for simultaneous quantification of carbonyl and hydroxyl steroids using 96-well SPE plates based on stable isotope coded-derivatization-UPLC-MRM: method development and application. RSC Adv 2018; 8:19713-19723. [PMID: 35540992 PMCID: PMC9080693 DOI: 10.1039/c8ra01372a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/02/2018] [Indexed: 11/25/2022] Open
Abstract
Steroid hormones are crucial substances that mediate a wide range of vital physiological functions. Because of the important biological significance of steroids, this paper presents a new targeted metabolic method based on adding stable isotope tags to hydroxyl containing and carbonyl containing steroid hormones with two pairs of synthesized derivatization reagents: deuterium 4-(dimethylamino)-benzoic acid (D4-DMBA), and D5-Girard P (D5-GP) using of ultra performance liquid chromatography-multiple reaction monitoring (UPLC-MRM). Firstly, an Oasis PRiME hydrophilic-lipophilic balance (HLB) 96-well solid phase extraction plate was used to pretreat a number of biological samples simultaneously. Secondly, hydroxyl and carbonyl steroids were labeled using two pairs of synthetic reagents, namely DMBA and D4-DMBA, and GP and D5-GP, respectively. Thirdly, the mixed products were detected using UPLC-MRM and the mass spectroscopy conditions were optimized. Methodology development showed that the sensitivity was enhanced 1 to >500-fold. Finally, the new method was applied to analysis of urine samples of healthy males, females and rats. The results revealed that the method can be sensitive and reliable for simultaneous quantification of steroid hormones containing hydroxyl and carbonyl groups in 12 min in a single run. This method provided a powerful tool for studying the metabolic mechanism of steroids and contributed to the development of targeted metabolomics. Steroid hormones are crucial substances that mediate a wide range of vital physiological functions.![]()
Collapse
Affiliation(s)
- Chuanxin Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine
- School of Traditional Chinese Materia Medica
- Tianjin University of Traditional Chinese Medicine
- Tianjin 300193
- China
| | - Xue Sheng
- Tianjin State Key Laboratory of Modern Chinese Medicine
- School of Traditional Chinese Materia Medica
- Tianjin University of Traditional Chinese Medicine
- Tianjin 300193
- China
| | - Yuming Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine
- School of Traditional Chinese Materia Medica
- Tianjin University of Traditional Chinese Medicine
- Tianjin 300193
- China
| | - Jia Yin
- Tianjin State Key Laboratory of Modern Chinese Medicine
- School of Traditional Chinese Materia Medica
- Tianjin University of Traditional Chinese Medicine
- Tianjin 300193
- China
| | - Wei Huang
- Tianjin State Key Laboratory of Modern Chinese Medicine
- School of Traditional Chinese Materia Medica
- Tianjin University of Traditional Chinese Medicine
- Tianjin 300193
- China
| | - Yunshuang Fan
- State Key Laboratory of Separation Membranes and Membrane Processes
- Tianjin Polytechnic University
- Tianjin 300387
- China
- School of Environmental and Chemical Engineering
| | - Yubo Li
- Tianjin State Key Laboratory of Modern Chinese Medicine
- School of Traditional Chinese Materia Medica
- Tianjin University of Traditional Chinese Medicine
- Tianjin 300193
- China
| | - Yanjun Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine
- Tianjin University of Traditional Chinese Medicine
- Tianjin 300193
- China
| |
Collapse
|
19
|
Breviscapine (BVP) inhibits prostate cancer progression through damaging DNA by minichromosome maintenance protein-7 (MCM-7) modulation. Biomed Pharmacother 2017. [PMID: 28628830 DOI: 10.1016/j.biopha.2017.06.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Naturally occurring compounds are reported as effective candidates for prevention and treatment of various cancers. Breviscapine (BVP) is a mixture of flavonoid glycosides, derived from the Chinese herbs. Previous researches have indicated that BVP has comprehensive pharmacological functions. However, little is known about whether BVP has preventive effects on human prostate cancer. Here, we attempted to explore if BVP inhibits human prostate cancer in vitro and in vivo in a comprehensive manner. We found that BVP triggered cytotoxicity in prostate cancer cell lines dose-dependently. BVP-induced DNA damage caused the cell cycle arrest and apoptosis and further induced cell death. High expression of MCM-7 was reduced in BVP-treated cancer cells and tumor tissues, and also the DNA damage response marker of γH2AX is down-regulated by BVP, associated with MCM-7 expression through regulating retinoblastoma protein (Rb) and checkpoint control proteins expression. Additionally, BVP induced apoptotic response in prostate cancer cells and tumors via activating Caspase-3 and PARP. In vivo studies indicated that BVP impeded tumor growth in xenograft animal models. In conclusion, our data indicates that breviscapine (BVP) can be further explored for its potential, which might be used in human prostate cancer therapeutics.
Collapse
|
20
|
An efficient, scalable approach to hydrolyze flavonoid glucuronides via activation of glycoside bond. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.02.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Wang Q, Liao XL, Xiang C, Yang J. A Practical Synthesis of the Flavone, Scutellarein. JOURNAL OF CHEMICAL RESEARCH 2017. [DOI: 10.3184/174751917x14873588907765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A practical and economical five-step synthesis of the flavone scutellarein has been achieved in 60% overall yield using the available and cheap 2,6-dimethoxy-1,4-benzoquinone as starting material. The reaction sequence involved reduction to the corresponding quinol, Friedel-Crafts acetylation, Claisen-Schmidt condensation with p-methoxybenzaldehyde, cyclisation and demethylation. The procedure is operationally simple and amenable to scale-up synthesis.
Collapse
Affiliation(s)
- Qian Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 South Jingming Road, Chenggong District, Kunming, Yunnan Province 650500, P.R. China
| | - Xia-li Liao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 South Jingming Road, Chenggong District, Kunming, Yunnan Province 650500, P.R. China
| | - Cheng Xiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 South Jingming Road, Chenggong District, Kunming, Yunnan Province 650500, P.R. China
| | - Jian Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 South Jingming Road, Chenggong District, Kunming, Yunnan Province 650500, P.R. China
| |
Collapse
|
22
|
An Efficient Chemical Synthesis of Scutellarein: An in Vivo Metabolite of Scutellarin. Molecules 2016; 21:263. [PMID: 26927039 PMCID: PMC6272953 DOI: 10.3390/molecules21030263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 02/17/2016] [Accepted: 02/22/2016] [Indexed: 11/04/2022] Open
Abstract
Scutellarein (2), which is an important in vivo metabolite of scutellarin (1), was synthesized from 3,4,5-trimethoxyphenol (3) in high yield in four steps. This strategy relies on acetylation, aldolization, cyclization and hydrolysis reactions, respectively.
Collapse
|
23
|
Dong ZX, Shi ZH, Li NG, Zhang W, Gu T, Zhang PX, Wu WY, Tang YP, Fang F, Xue X, Li HM, Cheng HB, Yang JP, Duan JA. Design, Synthesis, and Biological Evaluation of Scutellarein Derivatives Based on Scutellarin Metabolic MechanismIn Vivo. Chem Biol Drug Des 2016; 87:946-57. [DOI: 10.1111/cbdd.12727] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 12/11/2015] [Accepted: 12/30/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Ze-Xi Dong
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae; Jiangsu Collaborative Innovation Center of Chinese Medicine Resources Industrialization; National and Local Collaborative Engineering Center of Chinese Medicine Resources; Nanjing University of Chinese Medicine; Nanjing 210023 China
| | - Zhi-Hao Shi
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae; Jiangsu Collaborative Innovation Center of Chinese Medicine Resources Industrialization; National and Local Collaborative Engineering Center of Chinese Medicine Resources; Nanjing University of Chinese Medicine; Nanjing 210023 China
- Department of Organic Chemistry; China Pharmaceutical University; Nanjing Jiangsu 211198 China
| | - Nian-Guang Li
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae; Jiangsu Collaborative Innovation Center of Chinese Medicine Resources Industrialization; National and Local Collaborative Engineering Center of Chinese Medicine Resources; Nanjing University of Chinese Medicine; Nanjing 210023 China
| | - Wei Zhang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae; Jiangsu Collaborative Innovation Center of Chinese Medicine Resources Industrialization; National and Local Collaborative Engineering Center of Chinese Medicine Resources; Nanjing University of Chinese Medicine; Nanjing 210023 China
| | - Ting Gu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae; Jiangsu Collaborative Innovation Center of Chinese Medicine Resources Industrialization; National and Local Collaborative Engineering Center of Chinese Medicine Resources; Nanjing University of Chinese Medicine; Nanjing 210023 China
| | - Peng-Xuan Zhang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae; Jiangsu Collaborative Innovation Center of Chinese Medicine Resources Industrialization; National and Local Collaborative Engineering Center of Chinese Medicine Resources; Nanjing University of Chinese Medicine; Nanjing 210023 China
| | - Wen-Yu Wu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae; Jiangsu Collaborative Innovation Center of Chinese Medicine Resources Industrialization; National and Local Collaborative Engineering Center of Chinese Medicine Resources; Nanjing University of Chinese Medicine; Nanjing 210023 China
| | - Yu-Ping Tang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae; Jiangsu Collaborative Innovation Center of Chinese Medicine Resources Industrialization; National and Local Collaborative Engineering Center of Chinese Medicine Resources; Nanjing University of Chinese Medicine; Nanjing 210023 China
| | - Fang Fang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae; Jiangsu Collaborative Innovation Center of Chinese Medicine Resources Industrialization; National and Local Collaborative Engineering Center of Chinese Medicine Resources; Nanjing University of Chinese Medicine; Nanjing 210023 China
| | - Xin Xue
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae; Jiangsu Collaborative Innovation Center of Chinese Medicine Resources Industrialization; National and Local Collaborative Engineering Center of Chinese Medicine Resources; Nanjing University of Chinese Medicine; Nanjing 210023 China
| | - He-Min Li
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae; Jiangsu Collaborative Innovation Center of Chinese Medicine Resources Industrialization; National and Local Collaborative Engineering Center of Chinese Medicine Resources; Nanjing University of Chinese Medicine; Nanjing 210023 China
| | - Hai-Bo Cheng
- Key Laboratory of SATCM for Empirical Formulae Evaluation and Achievements Transformation; Nanjing University of Chinese Medicine; Nanjing Jiangsu 210023 China
| | - Jian-Ping Yang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae; Jiangsu Collaborative Innovation Center of Chinese Medicine Resources Industrialization; National and Local Collaborative Engineering Center of Chinese Medicine Resources; Nanjing University of Chinese Medicine; Nanjing 210023 China
| | - Jin-Ao Duan
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae; Jiangsu Collaborative Innovation Center of Chinese Medicine Resources Industrialization; National and Local Collaborative Engineering Center of Chinese Medicine Resources; Nanjing University of Chinese Medicine; Nanjing 210023 China
| |
Collapse
|
24
|
Shi ZH, Li NG, Shi QP, Zhang W, Dong ZX, Tang YP, Zhang PX, Gu T, Wu WY, Fang F, Xin-Xue, Li HM, Yang JP, Duan JA. Synthesis of scutellarein derivatives to increase biological activity and water solubility. Bioorg Med Chem 2015; 23:6875-84. [DOI: 10.1016/j.bmc.2015.09.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/28/2015] [Accepted: 09/30/2015] [Indexed: 11/15/2022]
|
25
|
Synthesis and biological evaluation of methylated scutellarein analogs based on metabolic mechanism of scutellarin in vivo. Eur J Med Chem 2015; 106:95-105. [PMID: 26523667 DOI: 10.1016/j.ejmech.2015.10.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/10/2015] [Accepted: 10/22/2015] [Indexed: 11/22/2022]
Abstract
Scutellarin (1) could be hydrolyzed into scutellarein (2) in vivo and then converted into methylated, sulfated and glucuronidated forms. In order to investigate the biological activities of these methylated metabolites, eight methylated analogs of scutellarein (2) were synthesized via semi-synthetic methods. The antithrombotic activities of these compounds were evaluated through the analyzation of prothrombin time (PT), activated partial thromboplastin time (APTT), thrombin time (TT) and fibrinogen (FIB). Their antioxidant activities were assessed by measuring their scavenging capacities toward 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) and the ability to protect PC12 cells against H2O2-induced cytotoxicity. Furthermore, the physicochemical properties of these compounds including aqueous solubility and lipophilicity were also investigated. The results showed that 6-O-methylscutellarein (5) demonstrated potent antithrombotic activity, stronger antioxidant activity and balanced solubility and permeability compared with scutellarin (1), which warrants further development of 5 as a promising lead for the treatment of ischemic cerebrovascular disease.
Collapse
|
26
|
Scutellarin's Cardiovascular Endothelium Protective Mechanism: Important Role of PKG-Iα. PLoS One 2015; 10:e0139570. [PMID: 26440524 PMCID: PMC4594915 DOI: 10.1371/journal.pone.0139570] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 09/15/2015] [Indexed: 11/21/2022] Open
Abstract
Scutellarin (SCU), a flavonoid glycoside compound, has been successfully used in clinic for treatment of ischemic diseases in China. In this report, we checked the effects of SCU on endothelium dysfunction (ED) of coronary artery (CA) against myocardial ischemia reperfusion (MIR) injury in vivo. The involvement of PKG-Iα was further studied using cultured endothelial cells subjected to hypoxia reoxygenation (HR) injury in vitro. In rat MIR model, SCU (45 and 90 mg/kg, iv) significantly reduced ischemic size and restored the endothelium-dependent vasodilation of isolated CA rings. PKG inhibitor Rp-8-Br-cGMP (50 μg/kg, iv) could ameliorate the protective effects of SCU. Increase in phosphorylation of vasodilator-stimulated phosphoprotein (VASP), a main substrate of PKG, at Ser 239 was observed in both heart tissue and serum of SCU-treated animals. In cultured human cardiac microvascular endothelial cells (HCMECs), SCU (1 and 10 μM) dose-dependently protected cell viability and increased the mRNA and protein level of PKG-Iα against HR injury. The activity of PKG was also increased by SCU treatment. The activation of PKG–1α was then studied using targeted proteomic analysis (MRM-MS) checking the phosphorylation state of the autophosphorylation domain (aa42-94). Significant decrease in phosphorylation of PKG-Iα at Ser50, Ser72, Ser89 was induced by HR injury while SCU treatment significantly increased the phosphorylation of PKG-Iα, not only at Ser50, Ser72 and Ser89, but also at Ser44 and Thr58 (two novel phosphorylation domains). Our results demonstrate PKG-Iα might play an important role in the protective effects of SCU on ED against MIR injury.
Collapse
|
27
|
Sung NY, Kim MY, Cho JY. Scutellarein Reduces Inflammatory Responses by Inhibiting Src Kinase Activity. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2015; 19:441-9. [PMID: 26330757 PMCID: PMC4553404 DOI: 10.4196/kjpp.2015.19.5.441] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/23/2015] [Accepted: 07/24/2015] [Indexed: 11/15/2022]
Abstract
Flavonoids are plant pigments that have been demonstrated to exert various pharmacological effects including anti-cancer, anti-diabetic, anti-atherosclerotic, anti-bacterial, and anti-inflammatory activities. However, the molecular mechanisms in terms of exact target proteins of flavonoids are not fully elucidated yet. In this study, we aimed to evaluate the anti-inflammatory mechanism of scutellarein (SCT), a flavonoid isolated from Erigeron breviscapus, Clerodendrum phlomidis and Oroxylum indicum Vent that have been traditionally used to treat various inflammatory diseases in China and Brazil. For this purpose, a nitric oxide (NO) assay, polymerase chain reaction (PCR), nuclear fractionation, immunoblot analysis, a kinase assay, and an overexpression strategy were employed. Scutellarein significantly inhibited NO production in a dose-dependent manner and reduced the mRNA expression levels of inducible NO synthase (iNOS) and tumor necrosis factor (TNF)-α in lipopolysaccharide (LPS)-activated RAW264.7 cells. In addition, SCT also dampened nuclear factor (NF)-κB-driven expression of a luciferase reporter gene upon transfection of a TIR-domain-containing adapter-inducing interferon-β (TRIF) construct into Human embryonic kidney 293 (HEK 293) cells; similarly, NF-κ B nuclear translocation was inhibited by SCT. Moreover, the phosphorylation levels of various upstream signaling enzymes involved in NF-κB activation were decreased by SCT treatment in LPS-treated RAW264.7 cells. Finally, SCT strongly inhibited Src kinase activity and also inhibited the autophosphorylation of overexpressed Src. Therefore, our data suggest that SCT can block the inflammatory response by directly inhibiting Src kinase activity linked to NF-κB activation.
Collapse
Affiliation(s)
- Nak Yoon Sung
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Korea
| | - Mi-Yeon Kim
- School of Systems Biological Science, Soongsil University, Seoul 156-743, Korea
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Korea
| |
Collapse
|
28
|
He LW, Dai WC, Li NG. Development of Orally Active Thrombin Inhibitors for the Treatment of Thrombotic Disorder Diseases. Molecules 2015; 20:11046-62. [PMID: 26083038 PMCID: PMC6272601 DOI: 10.3390/molecules200611046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 06/10/2015] [Indexed: 12/16/2022] Open
Abstract
Thrombotic disorders represent the major share of the various cardiovascular diseases, and significant progress has been made in the development of synthetic thrombin inhibitors as new anticoagulants. In addition to the development of highly potent and selective inhibitors with improved safety and suitable half-life, several allosteric inhibitors have been designed and synthesized, that did not fully nullify the procoagulant signal and thus could result in reduced bleeding complications. Furthermore, natural products with thrombin inhibitory activity have been isolated, and some natural products have been modified in order to improve their inhibitory activity and metabolic stability. This review summarizes the development of orally active thrombin inhibitors for the treatment of thrombotic disorder diseases, which could serve as a reference for the interested researchers.
Collapse
Affiliation(s)
- Li-Wei He
- Department of Medicinal Chemistry, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Wei-Chen Dai
- Department of Medicinal Chemistry, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Nian-Guang Li
- Department of Medicinal Chemistry, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
29
|
Nandi S, Lyndem LM. Clerodendrum viscosum: traditional uses, pharmacological activities and phytochemical constituents. Nat Prod Res 2015; 30:497-506. [PMID: 25825067 DOI: 10.1080/14786419.2015.1025229] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Clerodendrum viscosum is widely distributed in tropical and subtropical regions of the world particularly in India. Extracts from different parts of the plant have been used elaborately in Ayurveda and Unani for treating different illness. Many phytochemicals were isolated from various parts of the plant, but their pharmacological potentials have not been largely explored. This review focuses on all these aspects of the plant keeping in view the cultural and traditional acceptability of its medicinal use. Its toxicological data are limited and require investigation to address for safety issues prior to recommendating for pharmaceutical use.
Collapse
Affiliation(s)
- Suranjana Nandi
- a Parasitology Research Laboratory, Department of Zoology , Visva Bharati , Santiniketan - 731235 , West Bengal , India
| | - Larisha Mawkhlieng Lyndem
- a Parasitology Research Laboratory, Department of Zoology , Visva Bharati , Santiniketan - 731235 , West Bengal , India
| |
Collapse
|
30
|
Studies on the Protective Effects of Scutellarein against Neuronal Injury by Ischemia through the Analysis of Endogenous Amino Acids and Ca 2+Concentration Together with Ca 2+-ATPase Activity. J CHEM-NY 2015. [DOI: 10.1155/2015/497842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Scutellarin, which is extracted from the dried plant ofErigeron breviscapus, has been reported to protect the neural injury against excitotoxicity induced by ischemia. However, there are a few studies on the protective effects of scutellarein, which is the main metabolite of scutellarin in vivo. Thus, this study investigated the neuroprotective effects of scutellarein on cerebral ischemia/reperfusion in rats by bilateral common carotid artery occlusion (BCCAO) model, through the analysis of endogenous amino acids using HILIC-MS/MS, and evaluation of Ca2+concentration together with Ca2+-ATPase activity. The results showed that scutellarein having good protective effects on cerebral ischemia/reperfusion might by decreasing the excitatory amino acids, increasing the inhibitory amino acids, lowing intracellular Ca2+level, and improving Ca2+-ATPase activity, which suggested that scutellarein might be a promising potent agent for the therapy of ischemic cerebrovascular disease.
Collapse
|
31
|
Shi X, Chen G, Liu X, Qiu Y, Yang S, Zhang Y, Fang X, Zhang C, Liu X. Scutellarein inhibits cancer cell metastasis in vitro and attenuates the development of fibrosarcoma in vivo. Int J Mol Med 2014; 35:31-8. [PMID: 25394920 PMCID: PMC4249742 DOI: 10.3892/ijmm.2014.1997] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 10/02/2014] [Indexed: 12/28/2022] Open
Abstract
Fibrosarcoma is an aggressive and highly metastatic cancer of the connective tissue, for which effective therapeutic methods are limited. Recently, there has been a renewed interest in small molecular compounds from natural products in the treatment of cancer. In the present study, we investigated the compound, scutellarein, extracted from the perennial herb Scutellaria lateriflora, and it was found to possess anticancer potential. Cell proliferation assay and cell cycle analysis revealed that the proliferation rate of HT1080 human fibrosarcoma cells was significantly suppressed by treatment with scutellarein through the induction of apoptosis. Moreover, an in vivo experiment using Balb/c nude mice revealed that the volume and weight of the tumors were markedly reduced following treatment with scutellarein. We also analyzed the effects of scutellarein on the markers of metastasis, using the HT1080 cells. The results indicated that scutellarein potently inhibited cell migration, invasion and the expression and activity of matrix metalloproteinase (MMP)-2, -9 and -14. Furthermore, MMP activation and cell survival were suppressed due to the scutellarein-mediated downregulation of nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) activation. In conclusion, our data suggest that scutellarein has the ability to attenuate the development of fibrosarcoma and inhibit cancer cell metastasis.
Collapse
Affiliation(s)
- Xiujuan Shi
- Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Guangfeng Chen
- Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Xiaoqiang Liu
- Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Yu Qiu
- Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Shuzhang Yang
- Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Yan Zhang
- Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Xuexun Fang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, Jilin 130023, P.R. China
| | - Chen Zhang
- Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Xiaoqing Liu
- Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| |
Collapse
|
32
|
Wang F, Yang B, Zhao Y, Liao X, Gao C, Jiang R, Han B, Yang J, Liu M, Zhou R. Host-guest inclusion system of scutellarein with 2-hydroxypropyl-beta-cyclodextrin: preparation, characterization, and anticancer activity. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2014; 25:594-607. [DOI: 10.1080/09205063.2014.884875] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Xin N, Yang FJ, Li Y, Li YJ, Dai RJ, Meng WW, Chen Y, Deng YL. Dragon's blood dropping pills have protective effects on focal cerebral ischemia rats model. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2013; 21:68-74. [PMID: 24051215 DOI: 10.1016/j.phymed.2013.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/28/2013] [Accepted: 08/08/2013] [Indexed: 06/02/2023]
Abstract
Dragon's blood is a bright red resin obtained from Dracaena cochinchinensis (Lour.) S.C.Chen (Yunnan, China). As a traditional Chinese medicinal herb, it has great traditional medicinal value and is used for wound healing and to stop bleeding. Its main biological activity comes from phenolic compounds. In this study, phenolic compounds were made into dropping pills and their protective effects were examined by establishing focal cerebral ischemia rats model used method of Middle Cerebral Artery Occlusion (MCAO), and by investigating indexes of neurological scores, infarct volume, cerebral index, cerebral water content and oxidation stress. Compared to model group, high, middle and low groups of Dragon's blood dropping pills could improve the neurological function significantly (p<0.01) and reduce cerebral infarct volume of focal cerebral ischemia rats remarkably (p<0.05-0.01). Meanwhile, each group could alleviate cerebral water content and cerebral index (p<0.05-0.01) and regulate oxidative stress of focal cerebral ischemia rats obviously (p<0.05-0.01). Activities of middle group corresponded with that treated with positive control drug. The results obtained here showed that Dragon's blood dropping pills had protective effects on focal cerebral ischemia rats.
Collapse
Affiliation(s)
- Nian Xin
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Li NG, Shen MZ, Wang ZJ, Tang YP, Shi ZH, Fu YF, Shi QP, Tang H, Duan JA. Design, synthesis and biological evaluation of glucose-containing scutellarein derivatives as neuroprotective agents based on metabolic mechanism of scutellarin in vivo. Bioorg Med Chem Lett 2013. [DOI: 10.1016/j.bmcl.2012.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Mannich bases of scutellarein as thrombin-inhibitors: design, synthesis, biological activity and solubility. Bioorg Med Chem 2012; 20:6919-23. [PMID: 23131413 DOI: 10.1016/j.bmc.2012.10.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 10/17/2012] [Accepted: 10/17/2012] [Indexed: 11/23/2022]
Abstract
Two series of 8-aminomethylated derivatives were prepared by Mannich reaction of scutellarein (2) with appropriate aliphatic amines, alicyclic amines and formaldehyde. All the compounds were tested for their thrombin inhibition activity through the analyzation of prothrombin time (PT), activated partial thromboplastin time (APTT), thrombin time (TT) and fibrinogen (FIB). The antioxidant activities of these target products were assessed by 1,1-diphenyl-2-picrylhydrazyl radical 2,2-diphenyl-1-(2,4,6-trinitrophenyl) hydrazyl (DPPH) assay using 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT) assay method and the solubility were assessed by ultraviolet (UV). The results showed that morpholinyl aminomethylene substituent derivative (3d) demonstrated stronger anticoagulant activity, better water solubility and good antioxidant activity compared with scutellarein (2), which warrants further development as a agent for ischemic cerebrovascular disease treatment.
Collapse
|
36
|
Synthesis and protective effect of scutellarein on focal cerebral ischemia/reperfusion in rats. Molecules 2012; 17:10667-74. [PMID: 22955455 PMCID: PMC6268490 DOI: 10.3390/molecules170910667] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 08/13/2012] [Accepted: 08/28/2012] [Indexed: 11/17/2022] Open
Abstract
Scutellarein, the main metabolite of scutellarin in vivo, has relatively better solubility, bioavailability and bio-activity than scutellarin. However, compared with scutellarin, it is very difficult to obtain scutellarein from Nature. Therefore, the present study focused on establishing an efficient route for the synthesis of scutellarein by hydrolyzing scutellarin. Neurological deficit score and cerebral infarction volume with the administration of scutellarein were then used to compare its neuroprotective effects on focal cerebral ischemia/reperfusion in rats induced by middle cerebral artery occlusion (MCAO) with those of scutellarin. The results showed that scutellarein had better protective effect on focal cerebral ischemia/reperfusion than scutellarin, which laid the foundation for further research and development of scutellarein as a promising candidate for ischemic cerebro-vascular disease.
Collapse
|