1
|
Li Y, Li XM, Yang KD, Tong WH. Advancements in ovarian cancer immunodiagnostics and therapeutics via phage display technology. Front Immunol 2024; 15:1402862. [PMID: 38863706 PMCID: PMC11165035 DOI: 10.3389/fimmu.2024.1402862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024] Open
Abstract
Ovarian cancer, ranking as the seventh most prevalent malignancy among women globally, faces significant challenges in diagnosis and therapeutic intervention. The difficulties in early detection are amplified by the limitations and inefficacies inherent in current screening methodologies, highlighting a pressing need for more efficacious diagnostic and treatment strategies. Phage display technology emerges as a pivotal innovation in this context, utilizing extensive phage-peptide libraries to identify ligands with specificity for cancer cell markers, thus enabling precision-targeted therapeutic strategies. This technology promises a paradigm shift in ovarian cancer management, concentrating on targeted drug delivery systems to improve treatment accuracy and efficacy while minimizing adverse effects. Through a meticulous review, this paper evaluates the revolutionary potential of phage display in enhancing ovarian cancer therapy, representing a significant advancement in combating this challenging disease. Phage display technology is heralded as an essential instrument for developing effective immunodiagnostic and therapeutic approaches in ovarian cancer, facilitating early detection, precision-targeted medication, and the implementation of customized treatment plans.
Collapse
Affiliation(s)
- Yang Li
- Obstetrics and Gynecology Center, First Hospital of Jilin University, Changchun, Jilin, China
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Xiao-meng Li
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Kai-di Yang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Wei-hua Tong
- Obstetrics and Gynecology Center, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
2
|
Pung HS, Tye GJ, Leow CH, Ng WK, Lai NS. Generation of peptides using phage display technology for cancer diagnosis and molecular imaging. Mol Biol Rep 2023; 50:4653-4664. [PMID: 37014570 PMCID: PMC10072011 DOI: 10.1007/s11033-023-08380-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/08/2023] [Indexed: 04/05/2023]
Abstract
Cancer is one of the leading causes of mortality worldwide; nearly 10 million people died from it in 2020. The high mortality rate results from the lack of effective screening approaches where early detection cannot be achieved, reducing the chance of early intervention to prevent cancer development. Non-invasive and deep-tissue imaging is useful in cancer diagnosis, contributing to a visual presentation of anatomy and physiology in a rapid and safe manner. Its sensitivity and specificity can be enhanced with the application of targeting ligands with the conjugation of imaging probes. Phage display is a powerful technology to identify antibody- or peptide-based ligands with effective binding specificity against their target receptor. Tumour-targeting peptides exhibit promising results in molecular imaging, but the application is limited to animals only. Modern nanotechnology facilitates the combination of peptides with various nanoparticles due to their superior characteristics, rendering novel strategies in designing more potent imaging probes for cancer diagnosis and targeting therapy. In the end, a myriad of peptide candidates that aimed for different cancers diagnosis and imaging in various forms of research were reviewed.
Collapse
Affiliation(s)
- Hai Shin Pung
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Chiuan Herng Leow
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Woei Kean Ng
- Faculty of Medicine, AIMST University, Bedong, Kedah, 08100, Malaysia
| | - Ngit Shin Lai
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia.
| |
Collapse
|
3
|
Abstract
As a natural function, antibodies defend the host from infected cells and pathogens by recognizing their pathogenic determinants. Antibodies (Abs) gained wide acceptance with an enormous impact on human health and have predominantly captured the arena of bio-therapeutics and bio-diagnostics. The scope of Ab-based biologics is vast, and it is likely to solve many unmet clinical needs in future. The majority of attention is now devoted to developing innovative technologies for manufacturing and engineering Abs, better suited to satisfy human needs. The advent of Ab engineering technologies (AET) led to phenomenal developments leading to the generation of Abs-/Ab-derived molecules with desirable functional properties proportional to their expanding requirements. Evolution brought by AET, from the naturally occurring Ab forms to several advanced Ab formats and derivatives, was much needed as it is of great interest to the pharmaceutical industry. Thus, numerous advancements in AET have propelled success in therapeutic Ab development, along with the potential for ever-increasing improvements. Unique characteristics of Abs, such as its diversity, specificity, structural integrity and an array of possible applications, together inspire continuous innovation in the field. Overall, the AET could assist in conquer of several limitations of Abs in terms of their applicability in the field of therapeutics, diagnostics and research; AET has so far led to the production of next-generation Abs, which have revolutionized these arenas. Here in this review, we discuss the various distinguished engineering platforms for Ab development and the progress in modern therapeutics by the so-called "next-generation Abs."
Collapse
Affiliation(s)
- Divya Kandari
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Rakesh Bhatnagar
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.,Banaras Hindu University, Varanasi, India.,Amity University Rajasthan, Jaipur, India
| |
Collapse
|
4
|
Manivannan AC, Dhandapani R, Velmurugan P, Thangavelu S, Paramasivam R, Ragunathan L, Saravanan M. Phage in cancer treatment - Biology of therapeutic phage and screening of tumor targeting peptide. Expert Opin Drug Deliv 2022; 19:873-882. [PMID: 35748094 DOI: 10.1080/17425247.2022.2094363] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION There is a constant drive to improve disease treatments. Much effort has been directed at identifying less immunogenic anti-cancer agents that produce fewer and less severe side effects. For more than a decade, bacteriophages have been discussed as an effective treatment for cancer with an exact mode of delivery. AREAS COVERED We review how bacteriophages are used in cancer treatment, the underlying therapeutic mechanisms, and the tumour attacking peptide screening process. The filamentous bacteriophages are an effective vehicle for delivering displayed peptides toward the tumour target. The peptide must be expressed at the appropriate coat protein, and the peptide must be effective enough to disrupt the complex cancer matrix. The present review also sheds light on the dynamic use of phage in cancer treatment, from detection and diagnostics to treatment. EXPERT OPINION Phage has a versatile role as a diagnostic and therapeutic tool. By acting as an appropriate recombinant drug, this phage has every potential to replace existing laborious, high capital investing therapies that may at many times result in failure or drastic side effects. One of the most significant challenges would be identifying tumour homing peptides. Although a few have been discovered, the most effective ones are yet to be determined. This therapeutic method plays a significant role in tumour therapy with high accuracy and efficiency, irrespective of the target location.
Collapse
Affiliation(s)
- Arun Chandra Manivannan
- Department of Microbiology, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Ranjithkumar Dhandapani
- Department of Microbiology, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India.,Chimertech Private Limited, Chennai- 600082, India
| | - Palanivel Velmurugan
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research (BIHER), Chennai 600073, Tamil Nadu, India
| | - Sathiamoorthi Thangavelu
- Department of Microbiology, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Ragul Paramasivam
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research (BIHER), Chennai 600073, Tamil Nadu, India
| | - Latha Ragunathan
- Department of Microbiology, Aarupadi Veedu Medical College, Puducherry 607402, India
| | - Muthupandian Saravanan
- AMR and Nanotherapeutics Laboratory, Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600077, Tamilnadu, India
| |
Collapse
|
5
|
Sato T, Hamai A, Kadonosono T, Kizaka-Kondoh S, Omata T. Droplet-based valveless microfluidic system for phage-display screening against spheroids. BIOMICROFLUIDICS 2022; 16:024107. [PMID: 35464138 PMCID: PMC9010049 DOI: 10.1063/5.0085459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
In this study, we proposed a droplet-based valveless microfluidic system that has the necessary functions to perform the binding, washing, eluting, and collecting processes of phage-display screening against spheroids, which can be expected to present a similar repertoire and number of membrane proteins as in vivo. Although spheroids have much larger sizes than single cells, spheroids are difficult to manipulate through manual operation. The proposed microfluidic system actively controls the position and velocity of droplets using a camera, three air pumps, and three liquid pumps to perform the processes for phage-display screening. The cross section of the microchannel is large in width and height for the passage of spheroids. Valves that can close such a large cross-sectional microchannel are not readily available. Thus, we proposed valveless flow control using liquid pumps. In addition, the proposed microfluidic system involves complex flow channels with airflow subchannels to perform phage-display screening. For washing, nonspecific-binding phages remaining in the flow channels must be minimized. The proposed microfluidic system can perform selective blocking and flush washing. Selective blocking can prevent the airflow channels from becoming hydrophilic with blocking liquid, and flush washing can flush phages remaining in the flow channel. We experimentally verified the functions of the developed microfluidic device based on the proposed system.
Collapse
Affiliation(s)
- Tsuyohi Sato
- Department of Mechanical Engineering, Tokyo Institute of Technology, 226-8503 Kanagawa, Japan
| | - Akira Hamai
- Department of Mechanical Engineering, Tokyo Institute of Technology, 226-8503 Kanagawa, Japan
| | - Tetsuya Kadonosono
- Department of Life Science and Technology, Tokyo Institute of Technology, 226-8503 Kanagawa, Japan
| | - Shinae Kizaka-Kondoh
- Department of Life Science and Technology, Tokyo Institute of Technology, 226-8503 Kanagawa, Japan
| | - Toru Omata
- Department of Mechanical Engineering, Tokyo Institute of Technology, 226-8503 Kanagawa, Japan
| |
Collapse
|
6
|
Dias JNR, Almeida A, André AS, Aguiar SI, Bule P, Nogueira S, Oliveira SS, Carrapiço B, Gil S, Tavares L, Aires-da-Silva F. Characterization of the canine CD20 as a therapeutic target for comparative passive immunotherapy. Sci Rep 2022; 12:2678. [PMID: 35177658 PMCID: PMC8854400 DOI: 10.1038/s41598-022-06549-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 01/20/2022] [Indexed: 12/02/2022] Open
Abstract
Anti-CD20 therapies have revolutionized the treatment of B-cell malignancies. Despite these advances, relapsed and refractory disease remains a major treatment challenge. The optimization of CD20-targeted immunotherapies is considered a promising strategy to improve current therapies. However, research has been limited by the scarcity of preclinical models that recapitulate the complex interaction between the immune system and cancers. The addition of the canine lymphoma (cNHL) model in the development of anti-CD20 therapies may provide a clinically relevant approach for the translation of improved immunotherapies. Still, an anti-CD20 therapy for cNHL has not been established stressing the need of a comprehensive target characterization. Herein, we performed an in-depth characterization on canine CD20 mRNA transcript and protein expression in a cNHL biobank and demonstrated a canine CD20 overexpression in B-cell lymphoma samples. Moreover, CD20 gene sequencing analysis identified six amino acid differences in patient samples (C77Y, L147F, I159M, L198V, A201T and G273E). Finally, we reported the use of a novel strategy for the generation of anti-CD20 mAbs, with human and canine cross-reactivity, by exploring our rabbit derived single-domain antibody platform. Overall, these results support the rationale of using CD20 as a target for veterinary settings and the development of novel therapeutics and immunodiagnostics.
Collapse
Affiliation(s)
- Joana N R Dias
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477, Lisbon, Portugal
| | - André Almeida
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477, Lisbon, Portugal
| | - Ana S André
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477, Lisbon, Portugal
| | - Sandra I Aguiar
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477, Lisbon, Portugal
| | - Pedro Bule
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477, Lisbon, Portugal
| | - Sara Nogueira
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477, Lisbon, Portugal
| | - Soraia S Oliveira
- Technophage SA, Avenida Prof. Egas Moniz, Edifício Egas Moniz, 1649-028, Lisbon, Portugal
| | - Belmira Carrapiço
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477, Lisbon, Portugal
| | - Solange Gil
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477, Lisbon, Portugal
| | - Luís Tavares
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477, Lisbon, Portugal
| | - Frederico Aires-da-Silva
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477, Lisbon, Portugal.
| |
Collapse
|
7
|
Silva IBB, da Silva AS, Cunha MS, Cabral AD, de Oliveira KCA, Gaspari ED, Prudencio CR. Zika virus serological diagnosis: commercial tests and monoclonal antibodies as tools. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20200019. [PMID: 33281886 PMCID: PMC7685096 DOI: 10.1590/1678-9199-jvatitd-2020-0019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Zika virus (ZIKV), an emerging arthropod-borne virus (arbovirus) of the Flaviviridae family, is a current issue worldwide, particularly because of the congenital and neurological syndromes associated with infection by this virus. As the initial clinical symptoms of all diseases caused by this group are very similar, clinical diagnosis is difficult. Furthermore, laboratory diagnostic efforts have failed to identify specific and accurate tests for each virus of the Flaviviridae family due to the cross-reactivity of these viruses in serum samples. This situation has resulted in underreporting of the diseases caused by flaviviruses. However, many companies developed commercial diagnostic tests after the recent ZIKV outbreak. Moreover, health regulatory agencies have approved different commercial tests to extend the monitoring of ZIKV infections. Considering that a specific and sensitive diagnostic method for estimating risk and evaluating ZIKV propagation is still needed, this review aims to provide an update of the main commercially approved serological diagnostics test by the US Food and Drug Administration (FDA) and Brazilian National Health Surveillance Agency (ANVISA). Additionally, we present the technologies used for monoclonal antibody production as a tool for the development of diagnostic tests and applications of these antibodies in detecting ZIKV infections worldwide.
Collapse
Affiliation(s)
- Isaura Beatriz Borges Silva
- Center of Immunology, Adolfo Lutz Institute, São Paulo, SP, Brazil.,Interunits Graduate Program in Biotechnology, University of São Paulo (USP), São Paulo, SP, Brazil
| | | | | | | | | | - Elizabeth De Gaspari
- Center of Immunology, Adolfo Lutz Institute, São Paulo, SP, Brazil.,Interunits Graduate Program in Biotechnology, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Carlos Roberto Prudencio
- Center of Immunology, Adolfo Lutz Institute, São Paulo, SP, Brazil.,Interunits Graduate Program in Biotechnology, University of São Paulo (USP), São Paulo, SP, Brazil
| |
Collapse
|
8
|
Rauf F, Anderson KS, LaBaer J. Autoantibodies in Early Detection of Breast Cancer. Cancer Epidemiol Biomarkers Prev 2020; 29:2475-2485. [PMID: 32994341 PMCID: PMC7710604 DOI: 10.1158/1055-9965.epi-20-0331] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/14/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
In spite of the progress made in treatment and early diagnosis, breast cancer remains a major public health issue worldwide. Although modern image-based screening modalities have significantly improved early diagnosis, around 15% to 20% of breast cancers still go undetected. In underdeveloped countries, lack of resources and cost concerns prevent implementing mammography for routine screening. Noninvasive, low-cost, blood-based markers for early breast cancer diagnosis would be an invaluable alternative that would complement mammography screening. Tumor-specific autoantibodies are excellent biosensors that could be exploited to monitor disease-specific changes years before disease onset. Although clinically informative autoantibody markers for early breast cancer screening have yet to emerge, progress has been made in the development of tools to discover and validate promising autoantibody signatures. This review focuses on the current progress toward the development of autoantibody-based early screening markers for breast cancer.See all articles in this CEBP Focus section, "NCI Early Detection Research Network: Making Cancer Detection Possible."
Collapse
Affiliation(s)
- Femina Rauf
- Virginia G. Piper Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Karen S Anderson
- Virginia G. Piper Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Joshua LaBaer
- Virginia G. Piper Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona.
| |
Collapse
|
9
|
Alfaleh MA, Alsaab HO, Mahmoud AB, Alkayyal AA, Jones ML, Mahler SM, Hashem AM. Phage Display Derived Monoclonal Antibodies: From Bench to Bedside. Front Immunol 2020; 11:1986. [PMID: 32983137 PMCID: PMC7485114 DOI: 10.3389/fimmu.2020.01986] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
Monoclonal antibodies (mAbs) have become one of the most important classes of biopharmaceutical products, and they continue to dominate the universe of biopharmaceutical markets in terms of approval and sales. They are the most profitable single product class, where they represent six of the top ten selling drugs. At the beginning of the 1990s, an in vitro antibody selection technology known as antibody phage display was developed by John McCafferty and Sir. Gregory Winter that enabled the discovery of human antibodies for diverse applications, particularly antibody-based drugs. They created combinatorial antibody libraries on filamentous phage to be utilized for generating antigen specific antibodies in a matter of weeks. Since then, more than 70 phage–derived antibodies entered clinical studies and 14 of them have been approved. These antibodies are indicated for cancer, and non-cancer medical conditions, such as inflammatory, optical, infectious, or immunological diseases. This review will illustrate the utility of phage display as a powerful platform for therapeutic antibodies discovery and describe in detail all the approved mAbs derived from phage display.
Collapse
Affiliation(s)
- Mohamed A Alfaleh
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Ahmad Bakur Mahmoud
- College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Almohanad A Alkayyal
- Department of Medical Laboratory Technology, University of Tabuk, Tabuk, Saudi Arabia
| | - Martina L Jones
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.,Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Stephen M Mahler
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.,Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Anwar M Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
10
|
Nicolini F, Bocchini M, Angeli D, Bronte G, Delmonte A, Crinò L, Mazza M. Fully Human Antibodies for Malignant Pleural Mesothelioma Targeting. Cancers (Basel) 2020; 12:E915. [PMID: 32276524 PMCID: PMC7226231 DOI: 10.3390/cancers12040915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/04/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
Immunotherapy is the most promising therapeutic approach against malignant pleural mesothelioma (MPM). Despite technological progress, the number of targetable antigens or specific antibodies is limited, thus hindering the full potential of recent therapeutic interventions. All possibilities of finding new targeting molecules must be exploited. The specificity of targeting is guaranteed by the use of monoclonal antibodies, while fully human antibodies are preferred, as they are functional and generate no neutralizing antibodies. The aim of this review is to appraise the latest advances in screening methods dedicated to the identification and harnessing of fully human antibodies. The scope of identifying useful molecules proceeds along two avenues, i.e., through the antigen-first or binding-first approaches. The first relies on screening human antibody libraries or plasma from immunized transgenic mice or humans to isolate binders to specific antigens. The latter takes advantage of specific binding to tumor cells of antibodies present in phage display libraries or in responders' plasma samples without prior knowledge of the antigens. Additionally, next-generation sequencing analysis of B-cell receptor repertoire pre- and post-therapy in memory B-cells from responders allows for the identification of clones expanded and matured upon treatment. Human antibodies identified can be subsequently reformatted to generate a plethora of therapeutics like antibody-drug conjugates, immunotoxins, and advanced cell-therapeutics such as chimeric antigen receptor-transduced T-cells.
Collapse
Affiliation(s)
- Fabio Nicolini
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (F.N.); (M.B.)
| | - Martine Bocchini
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (F.N.); (M.B.)
| | - Davide Angeli
- Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy;
| | - Giuseppe Bronte
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (G.B.); (A.D.); (L.C.)
| | - Angelo Delmonte
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (G.B.); (A.D.); (L.C.)
| | - Lucio Crinò
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (G.B.); (A.D.); (L.C.)
| | - Massimiliano Mazza
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (F.N.); (M.B.)
| |
Collapse
|
11
|
Leyton-Castro NF, Brigido MM, Maranhão AQ. Selection of Antibody Fragments for CAR-T Cell Therapy from Phage Display Libraries. Methods Mol Biol 2020; 2086:13-26. [PMID: 31707665 DOI: 10.1007/978-1-0716-0146-4_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
CAR-T cell therapy emerged in the last years as a great promise to cancer treatment. Nowadays, there is a run to improve the breadth of its use, and thus, new chimeric antigen receptors (CAR) are being proposed. The antigen-binding counterpart of CAR is an antibody fragment, scFv (single chain variable fragment), that recognizes a membrane protein associated to a cancer cell. In this chapter, the use of human scFv phage display libraries as a source of new mAbs against surface antigen is discussed. Protocols focusing in the use of extracellular domains of surface protein in biotinylated format are proposed as selection antigen. Elution with unlabeled peptide and selection in solution is described. The analysis of enriched scFvs throughout the selection using NGS is also outlined. Taken together these protocols allow for the isolation of new scFvs able to be useful in the construction of new chimeric antigen receptors for application in cancer therapy.
Collapse
Affiliation(s)
- Nestor F Leyton-Castro
- Molecular Pathology Graduation Programme, School of Medicine, University of Brasilia, Brasilia, Brazil
| | - Marcelo M Brigido
- Molecular Pathology Graduation Programme, School of Medicine, University of Brasilia, Brasilia, Brazil
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Andrea Q Maranhão
- Molecular Pathology Graduation Programme, School of Medicine, University of Brasilia, Brasilia, Brazil.
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil.
| |
Collapse
|
12
|
Alfaleh MA, Alsaab HO, Mahmoud AB, Alkayyal AA, Jones ML, Mahler SM, Hashem AM. Phage Display Derived Monoclonal Antibodies: From Bench to Bedside. Front Immunol 2020. [PMID: 32983137 DOI: 10.3389/fimmu.2020.01986/bibtex] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Monoclonal antibodies (mAbs) have become one of the most important classes of biopharmaceutical products, and they continue to dominate the universe of biopharmaceutical markets in terms of approval and sales. They are the most profitable single product class, where they represent six of the top ten selling drugs. At the beginning of the 1990s, an in vitro antibody selection technology known as antibody phage display was developed by John McCafferty and Sir. Gregory Winter that enabled the discovery of human antibodies for diverse applications, particularly antibody-based drugs. They created combinatorial antibody libraries on filamentous phage to be utilized for generating antigen specific antibodies in a matter of weeks. Since then, more than 70 phage-derived antibodies entered clinical studies and 14 of them have been approved. These antibodies are indicated for cancer, and non-cancer medical conditions, such as inflammatory, optical, infectious, or immunological diseases. This review will illustrate the utility of phage display as a powerful platform for therapeutic antibodies discovery and describe in detail all the approved mAbs derived from phage display.
Collapse
Affiliation(s)
- Mohamed A Alfaleh
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Ahmad Bakur Mahmoud
- College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Almohanad A Alkayyal
- Department of Medical Laboratory Technology, University of Tabuk, Tabuk, Saudi Arabia
| | - Martina L Jones
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Stephen M Mahler
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Anwar M Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
13
|
Lim CC, Choong YS, Lim TS. Cognizance of Molecular Methods for the Generation of Mutagenic Phage Display Antibody Libraries for Affinity Maturation. Int J Mol Sci 2019; 20:E1861. [PMID: 30991723 PMCID: PMC6515083 DOI: 10.3390/ijms20081861] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 12/25/2022] Open
Abstract
Antibodies leverage on their unique architecture to bind with an array of antigens. The strength of interaction has a direct relation to the affinity of the antibodies towards the antigen. In vivo affinity maturation is performed through multiple rounds of somatic hypermutation and selection in the germinal centre. This unique process involves intricate sequence rearrangements at the gene level via molecular mechanisms. The emergence of in vitro display technologies, mainly phage display and recombinant DNA technology, has helped revolutionize the way antibody improvements are being carried out in the laboratory. The adaptation of molecular approaches in vitro to replicate the in vivo processes has allowed for improvements in the way recombinant antibodies are designed and tuned. Combinatorial libraries, consisting of a myriad of possible antibodies, are capable of replicating the diversity of the natural human antibody repertoire. The isolation of target-specific antibodies with specific affinity characteristics can also be accomplished through modification of stringent protocols. Despite the ability to screen and select for high-affinity binders, some 'fine tuning' may be required to enhance antibody binding in terms of its affinity. This review will provide a brief account of phage display technology used for antibody generation followed by a summary of different combinatorial library characteristics. The review will focus on available strategies, which include molecular approaches, next generation sequencing, and in silico approaches used for antibody affinity maturation in both therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Chia Chiu Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia.
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Penang 11800, Malaysia.
| |
Collapse
|
14
|
Jamal M, Bukhari SMAUS, Andleeb S, Ali M, Raza S, Nawaz MA, Hussain T, Rahman SU, Shah SSA. Bacteriophages: an overview of the control strategies against multiple bacterial infections in different fields. J Basic Microbiol 2018; 59:123-133. [PMID: 30485461 DOI: 10.1002/jobm.201800412] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 10/24/2018] [Accepted: 10/31/2018] [Indexed: 12/20/2022]
Abstract
Bacteriophages (phages/viruses) need host bacteria to replicate and propagate. Primarily, a bacteriophage contains a head/capsid to encapsidate the genetic material. Some phages contain tails. Phages encode endolysins to hydrolyze bacterial cell wall. The two main classes of phages are lytic or virulent and lysogenic or temperate. In comparison with antibiotics, to deal with bacterial infections, phage therapy is thought to be more effective. In 1921, the use of phages against bacterial infections was first demonstrated. Later on, in humans, phage therapy was used to treat skin infections caused by Pseudomonas species. Furthermore, phages were successfully employed against infections in animals - calves, lambs, and pigs infected with Escherichia coli. In agriculture, for instance, phages have successfully been used e.g., Apple blossom infection, caused by Erwinia amylovora, was effectively catered with the use of bacteriophages. Bacteriophages were also used to control E. coli, Salmonella, Listeria, and Campylobacter contamination in food. Comparatively, phage display is a recently discovered technology, whereby, bacteriophages play a significant role. This review is an effort to collect almost recent and relevant information regarding applications and complications associated with the use of bacteriophages.
Collapse
Affiliation(s)
- Muhsin Jamal
- Department of Microbiology, Abdul Wali Khan University, Garden Campus, Mardan, Pakistan
| | - Sayed M A U S Bukhari
- Department of Microbiology, Abdul Wali Khan University, Garden Campus, Mardan, Pakistan
| | - Saadia Andleeb
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Muhammad Ali
- Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, Pakistan
| | - Sana Raza
- Institute of Health Sciences, Mardan, Pakistan
| | - Muhammad A Nawaz
- Department of Biotechnology, Shaheed Benazir Bhutto University, Sheringal, Dir (Upper), Pakistan
| | - Tahir Hussain
- Department of Microbiology, Abdul Wali Khan University, Garden Campus, Mardan, Pakistan
| | - Sadeeq U Rahman
- College of Veterinary Sciences and Animal Husbandry, Abdul Wali Khan University, Garden Campus, Mardan, Pakistan
| | - Syed S A Shah
- Department of Zoology, Abdul Wali Khan University, Garden Campus, Mardan, Pakistan
| |
Collapse
|
15
|
Schumacher D, Helma J, Schneider AFL, Leonhardt H, Hackenberger CPR. Nanobodies: Chemical Functionalization Strategies and Intracellular Applications. Angew Chem Int Ed Engl 2018; 57:2314-2333. [PMID: 28913971 PMCID: PMC5838514 DOI: 10.1002/anie.201708459] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Indexed: 01/12/2023]
Abstract
Nanobodies can be seen as next-generation tools for the recognition and modulation of antigens that are inaccessible to conventional antibodies. Due to their compact structure and high stability, nanobodies see frequent usage in basic research, and their chemical functionalization opens the way towards promising diagnostic and therapeutic applications. In this Review, central aspects of nanobody functionalization are presented, together with selected applications. While early conjugation strategies relied on the random modification of natural amino acids, more recent studies have focused on the site-specific attachment of functional moieties. Such techniques include chemoenzymatic approaches, expressed protein ligation, and amber suppression in combination with bioorthogonal modification strategies. Recent applications range from sophisticated imaging and mass spectrometry to the delivery of nanobodies into living cells for the visualization and manipulation of intracellular antigens.
Collapse
Affiliation(s)
- Dominik Schumacher
- Chemical Biology, Leibniz-Forschungsinstitut für Molekulare, Pharmakologie and Department of ChemistryHumboldt-Universität zu BerlinBerlinGermany
- Department of Biology IILudwig Maximilians Universität München und Center for Integrated Protein Science MunichMartinsriedGermany
| | - Jonas Helma
- Department of Biology IILudwig Maximilians Universität München und Center for Integrated Protein Science MunichMartinsriedGermany
| | - Anselm F. L. Schneider
- Chemical Biology, Leibniz-Forschungsinstitut für Molekulare, Pharmakologie and Department of ChemistryHumboldt-Universität zu BerlinBerlinGermany
| | - Heinrich Leonhardt
- Department of Biology IILudwig Maximilians Universität München und Center for Integrated Protein Science MunichMartinsriedGermany
| | | |
Collapse
|
16
|
Schumacher D, Helma J, Schneider AFL, Leonhardt H, Hackenberger CPR. Nanobodys: Strategien zur chemischen Funktionalisierung und intrazelluläre Anwendungen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201708459] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dominik Schumacher
- Chemische Biologie, Leibniz-Forschungsinstitut für Molekulare Pharmakologie; Institut für Chemie; Humboldt-Universität zu Berlin; Berlin Deutschland
- Department Biologie II; Ludwig Maximilians Universität München und Center for Integrated Protein Science Munich; Martinsried Deutschland
| | - Jonas Helma
- Department Biologie II; Ludwig Maximilians Universität München und Center for Integrated Protein Science Munich; Martinsried Deutschland
| | - Anselm F. L. Schneider
- Chemische Biologie, Leibniz-Forschungsinstitut für Molekulare Pharmakologie; Institut für Chemie; Humboldt-Universität zu Berlin; Berlin Deutschland
| | - Heinrich Leonhardt
- Department Biologie II; Ludwig Maximilians Universität München und Center for Integrated Protein Science Munich; Martinsried Deutschland
| | - Christian P. R. Hackenberger
- Chemische Biologie, Leibniz-Forschungsinstitut für Molekulare Pharmakologie; Institut für Chemie; Humboldt-Universität zu Berlin; Berlin Deutschland
| |
Collapse
|
17
|
Complement and Immunoglobulin Biology Leading to Clinical Translation. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00024-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
18
|
Alfaleh MA, Jones ML, Howard CB, Mahler SM. Strategies for Selecting Membrane Protein-Specific Antibodies using Phage Display with Cell-Based Panning. Antibodies (Basel) 2017; 6:E10. [PMID: 31548525 PMCID: PMC6698842 DOI: 10.3390/antib6030010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/05/2017] [Accepted: 07/07/2017] [Indexed: 12/14/2022] Open
Abstract
Membrane proteins are attractive targets for monoclonal antibody (mAb) discovery and development. Although several approved mAbs against membrane proteins have been isolated from phage antibody libraries, the process is challenging, as it requires the presentation of a correctly folded protein to screen the antibody library. Cell-based panning could represent the optimal method for antibody discovery against membrane proteins, since it allows for presentation in their natural conformation along with the appropriate post-translational modifications. Nevertheless, screening antibodies against a desired antigen, within a selected cell line, may be difficult due to the abundance of irrelevant organic molecules, which can potentially obscure the antigen of interest. This review will provide a comprehensive overview of the different cell-based phage panning strategies, with an emphasis placed on the optimisation of four critical panning conditions: cell surface antigen presentation, non-specific binding events, incubation time, and temperature and recovery of phage binders.
Collapse
Affiliation(s)
- Mohamed A Alfaleh
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia.
- Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Martina L Jones
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia.
- Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Christopher B Howard
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia.
- Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia.
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Stephen M Mahler
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia.
- Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
19
|
Saeed AFUH, Wang R, Ling S, Wang S. Antibody Engineering for Pursuing a Healthier Future. Front Microbiol 2017; 8:495. [PMID: 28400756 PMCID: PMC5368232 DOI: 10.3389/fmicb.2017.00495] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/09/2017] [Indexed: 12/21/2022] Open
Abstract
Since the development of antibody-production techniques, a number of immunoglobulins have been developed on a large scale using conventional methods. Hybridoma technology opened a new horizon in the production of antibodies against target antigens of infectious pathogens, malignant diseases including autoimmune disorders, and numerous potent toxins. However, these clinical humanized or chimeric murine antibodies have several limitations and complexities. Therefore, to overcome these difficulties, recent advances in genetic engineering techniques and phage display technique have allowed the production of highly specific recombinant antibodies. These engineered antibodies have been constructed in the hunt for novel therapeutic drugs equipped with enhanced immunoprotective abilities, such as engaging immune effector functions, effective development of fusion proteins, efficient tumor and tissue penetration, and high-affinity antibodies directed against conserved targets. Advanced antibody engineering techniques have extensive applications in the fields of immunology, biotechnology, diagnostics, and therapeutic medicines. However, there is limited knowledge regarding dynamic antibody development approaches. Therefore, this review extends beyond our understanding of conventional polyclonal and monoclonal antibodies. Furthermore, recent advances in antibody engineering techniques together with antibody fragments, display technologies, immunomodulation, and broad applications of antibodies are discussed to enhance innovative antibody production in pursuit of a healthier future for humans.
Collapse
Affiliation(s)
- Abdullah F U H Saeed
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Rongzhi Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Sumei Ling
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| |
Collapse
|
20
|
Yang W, Yoon A, Lee S, Kim S, Han J, Chung J. Next-generation sequencing enables the discovery of more diverse positive clones from a phage-displayed antibody library. Exp Mol Med 2017; 49:e308. [PMID: 28336957 PMCID: PMC5382563 DOI: 10.1038/emm.2017.22] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 12/22/2016] [Indexed: 12/19/2022] Open
Abstract
Phage display technology provides a powerful tool to screen a library for a binding molecule via an enrichment process. It has been adopted as a critical technology in the development of therapeutic antibodies. However, a major drawback of phage display technology is that because the degree of the enrichment cannot be controlled during the bio-panning process, it frequently results in a limited number of clones. In this study, we applied next-generation sequencing (NGS) to screen clones from a library and determine whether a greater number of clones can be identified using NGS than using conventional methods. Three chicken immune single-chain variable fragment (scFv) libraries were subjected to bio-panning on prostate-specific antigen (PSA). Phagemid DNA prepared from the original libraries as well as from the Escherichia coli pool after each round of bio-panning was analyzed using NGS, and the heavy chain complementarity-determining region 3 (HCDR3) sequences of the scFv clones were determined. Subsequently, through two-step linker PCR and cloning, the entire scFv gene was retrieved and analyzed for its reactivity to PSA in a phage enzyme immunoassay. After four rounds of bio-panning, the conventional colony screening method was performed for comparison. The scFv clones retrieved from NGS analysis included all clones identified by the conventional colony screening method as well as many additional clones. The enrichment of the HCDR3 sequence throughout the bio-panning process was a positive predictive factor for the selection of PSA-reactive scFv clones.
Collapse
Affiliation(s)
- Wonjun Yang
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea.,Department of Cancer Biology, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Aerin Yoon
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Sanghoon Lee
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Soohyun Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea.,Department of Cancer Biology, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jungwon Han
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Junho Chung
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea.,Department of Cancer Biology, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
21
|
Gray A, Sidhu S, Chandrasekera P, Hendriksen C, Borrebaeck C. Animal-Friendly Affinity Reagents: Replacing the Needless in the Haystack. Trends Biotechnol 2016; 34:960-969. [DOI: 10.1016/j.tibtech.2016.05.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/26/2016] [Accepted: 05/31/2016] [Indexed: 10/21/2022]
|
22
|
Rahbarnia L, Farajnia S, Babaei H, Majidi J, Veisi K, Ahmadzadeh V, Akbari B. Evolution of phage display technology: from discovery to application. J Drug Target 2016; 25:216-224. [DOI: 10.1080/1061186x.2016.1258570] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Leila Rahbarnia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safar Farajnia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Babaei
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Majidi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kamal Veisi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tabriz, Iran
| | - Vahideh Ahmadzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Akbari
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, University Of Medical Sciences Tabriz, Tabriz, Iran
| |
Collapse
|
23
|
Liu GW, Livesay BR, Kacherovsky NA, Cieslewicz M, Lutz E, Waalkes A, Jensen MC, Salipante SJ, Pun SH. Efficient Identification of Murine M2 Macrophage Peptide Targeting Ligands by Phage Display and Next-Generation Sequencing. Bioconjug Chem 2015; 26:1811-7. [PMID: 26161996 DOI: 10.1021/acs.bioconjchem.5b00344] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peptide ligands are used to increase the specificity of drug carriers to their target cells and to facilitate intracellular delivery. One method to identify such peptide ligands, phage display, enables high-throughput screening of peptide libraries for ligands binding to therapeutic targets of interest. However, conventional methods for identifying target binders in a library by Sanger sequencing are low-throughput, labor-intensive, and provide a limited perspective (<0.01%) of the complete sequence space. Moreover, the small sample space can be dominated by nonspecific, preferentially amplifying "parasitic sequences" and plastic-binding sequences, which may lead to the identification of false positives or exclude the identification of target-binding sequences. To overcome these challenges, we employed next-generation Illumina sequencing to couple high-throughput screening and high-throughput sequencing, enabling more comprehensive access to the phage display library sequence space. In this work, we define the hallmarks of binding sequences in next-generation sequencing data, and develop a method that identifies several target-binding phage clones for murine, alternatively activated M2 macrophages with a high (100%) success rate: sequences and binding motifs were reproducibly present across biological replicates; binding motifs were identified across multiple unique sequences; and an unselected, amplified library accurately filtered out parasitic sequences. In addition, we validate the Multiple Em for Motif Elicitation tool as an efficient and principled means of discovering binding sequences.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Michael C Jensen
- §Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington 98145, United States
| | | | | |
Collapse
|
24
|
Keller T, Kalt R, Raab I, Schachner H, Mayrhofer C, Kerjaschki D, Hantusch B. Selection of scFv Antibody Fragments Binding to Human Blood versus Lymphatic Endothelial Surface Antigens by Direct Cell Phage Display. PLoS One 2015; 10:e0127169. [PMID: 25993332 PMCID: PMC4439027 DOI: 10.1371/journal.pone.0127169] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/13/2015] [Indexed: 12/04/2022] Open
Abstract
The identification of marker molecules specific for blood and lymphatic endothelium may provide new diagnostic tools and identify new targets for therapy of immune, microvascular and cancerous diseases. Here, we used a phage display library expressing human randomized single-chain Fv (scFv) antibodies for direct panning against live cultures of blood (BECs) and lymphatic (LECs) endothelial cells in solution. After six panning rounds, out of 944 sequenced antibody clones, we retrieved 166 unique/diverse scFv fragments, as indicated by the V-region sequences. Specificities of these phage clone antibodies for respective compartments were individually tested by direct cell ELISA, indicating that mainly pan-endothelial cell (EC) binders had been selected, but also revealing a subset of BEC-specific scFv antibodies. The specific staining pattern was recapitulated by twelve phage-independently expressed scFv antibodies. Binding capacity to BECs and LECs and differential staining of BEC versus LEC by a subset of eight scFv antibodies was confirmed by immunofluorescence staining. As one antigen, CD146 was identified by immunoprecipitation with phage-independent scFv fragment. This antibody, B6-11, specifically bound to recombinant CD146, and to native CD146 expressed by BECs, melanoma cells and blood vessels. Further, binding capacity of B6-11 to CD146 was fully retained after fusion to a mouse Fc portion, which enabled eukaryotic cell expression. Beyond visualization and diagnosis, this antibody might be used as a functional tool. Overall, our approach provided a method to select antibodies specific for endothelial surface determinants in their native configuration. We successfully selected antibodies that bind to antigens expressed on the human endothelial cell surfaces in situ, showing that BECs and LECs share a majority of surface antigens, which is complemented by cell-type specific, unique markers.
Collapse
Affiliation(s)
- Thomas Keller
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Romana Kalt
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Ingrid Raab
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Helga Schachner
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Corina Mayrhofer
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria
| | - Dontscho Kerjaschki
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Brigitte Hantusch
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
25
|
Abstract
INTRODUCTION Over the past decade, several library-based methods have been developed to discover ligands with strong binding affinities for their targets. These methods mimic the natural evolution for screening and identifying ligand-target interactions with specific functional properties. Phage display technology is a well-established method that has been applied to many technological challenges including novel drug discovery. AREAS COVERED This review describes the recent advances in the use of phage display technology for discovering novel bioactive compounds. Furthermore, it discusses the application of this technology to produce proteins and peptides as well as minimize the use of antibodies, such as antigen-binding fragment, single-chain fragment variable or single-domain antibody fragments like VHHs. EXPERT OPINION Advances in screening, manufacturing and humanization technologies demonstrate that phage display derived products can play a significant role in the diagnosis and treatment of disease. The effects of this technology are inevitable in the development pipeline for bringing therapeutics into the market, and this number is expected to rise significantly in the future as new advances continue to take place in display methods. Furthermore, a widespread application of this methodology is predicted in different medical technological areas, including biosensing, monitoring, molecular imaging, gene therapy, vaccine development and nanotechnology.
Collapse
Affiliation(s)
- Kobra Omidfar
- Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Biosensor Research Center , Tehran , Iran
| | | |
Collapse
|
26
|
Nixon AE, Sexton DJ, Ladner RC. Drugs derived from phage display: from candidate identification to clinical practice. MAbs 2014; 6:73-85. [PMID: 24262785 DOI: 10.4161/mabs.27240] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Phage display, one of today’s fundamental drug discovery technologies, allows identification of a broad range of biological drugs, including peptides, antibodies and other proteins, with the ability to tailor critical characteristics such as potency, specificity and cross-species binding. Further, unlike in vivo technologies, generating phage display-derived antibodies is not restricted by immunological tolerance. Although more than 20 phage display-derived antibody and peptides are currently in late-stage clinical trials or approved, there is little literature addressing the specific challenges and successes in the clinical development of phage-derived drugs. This review uses case studies, from candidate identification through clinical development, to illustrate the utility of phage display as a drug discovery tool, and offers a perspective for future developments of phage display technology.
Collapse
|
27
|
Chan CEZ, Lim APC, MacAry PA, Hanson BJ. The role of phage display in therapeutic antibody discovery. Int Immunol 2014; 26:649-57. [PMID: 25135889 PMCID: PMC7185696 DOI: 10.1093/intimm/dxu082] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Phage display involves the expression of selected proteins on the surface of filamentous phage through fusion with phage coat protein, with the genetic sequence packaged within, linking phenotype to genotype selection. When combined with antibody libraries, phage display allows for rapid in vitro selection of antigen-specific antibodies and recovery of their corresponding coding sequence. Large non-immune and synthetic human libraries have been constructed as well as smaller immune libraries based on capturing a single individual’s immune repertoire. This completely in vitro process allows for isolation of antibodies against poorly immunogenic targets as well as those that cannot be obtained by animal immunization, thus further expanding the utility of the approach. Phage antibody display represents the first developed methodology for high throughput screening for human therapeutic antibody candidates. Recently, other methods have been developed for generation of fully human therapeutic antibodies, such as single B-cell screening, next-generation genome sequencing and transgenic mice with human germline B-cell genes. While each of these have their particular advantages, phage display has remained a key methodology for human antibody discovery due its in vitro process. Here, we review the continuing role of this technique alongside other developing technologies for therapeutic antibody discovery.
Collapse
Affiliation(s)
- Conrad E Z Chan
- Biological Defence Program, Defense Medical and Environmental Research Institute, DSO National Laboratories, 27 Medical Drive, Singapore 117510, Singapore
| | - Angeline P C Lim
- Biological Defence Program, Defense Medical and Environmental Research Institute, DSO National Laboratories, 27 Medical Drive, Singapore 117510, Singapore
| | - Paul A MacAry
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore Immunology Program, Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Brendon J Hanson
- Biological Defence Program, Defense Medical and Environmental Research Institute, DSO National Laboratories, 27 Medical Drive, Singapore 117510, Singapore Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore
| |
Collapse
|
28
|
Triple blockade of HER2 by a cocktail of anti-HER2 scFv antibodies induces high antiproliferative effects in breast cancer cells. Tumour Biol 2014; 35:7887-95. [DOI: 10.1007/s13277-014-1854-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 03/17/2014] [Indexed: 01/21/2023] Open
|
29
|
Justo GZ, Suarez ER, Melo C, Lima MA, Nader HB, Pinhal MAS. From Combinatorial Display Techniques to Microarray Technology: New Approaches to the Development and Toxicological Profiling of Targeted Nanomedicines. Nanotoxicology 2014. [DOI: 10.1007/978-1-4614-8993-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Aprile G, Bonotto M, Ongaro E, Pozzo C, Giuliani F. Critical appraisal of ramucirumab (IMC-1121B) for cancer treatment: from benchside to clinical use. Drugs 2013; 73:2003-15. [PMID: 24277700 DOI: 10.1007/s40265-013-0154-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Although antiangiogenic treatments have produced milestone advances in the treatment of several diseases, and have significantly extended the median survival of cancer patients, these agents share some weaknesses, including a limited impact on the overall cure rate, a fleeting effect because of redundant pathways or early appearance of resistance mechanisms, and the lack of predictive factors for treatment selection. Recent data suggest that antibodies targeting the vascular endothelial growth factor axis exert their activity through the inhibition of vascular endothelial growth factor receptor-2 phosphorylation, which has a pivotal role in the neoangiogenic process. Ramucirumab, a fully humanized monoclonal antibody specifically directed against the extracellular domain of the receptor, administered intravenously every 2 or 3 weeks, is emerging as a novel antiangiogenic opportunity. Starting with preclinical data and early clinical results, this concise review focuses on the development of the novel compound across multiple cancers (including gastrointestinal malignancies, breast cancer, lung carcinoma, and genitourinary tumors), and presents available data from randomized phase II and phase III trials. REGARD was the first phase III study to report on the efficacy of single-agent ramucirumab in patients with advanced cancer. Many other ongoing phase III trials are testing the efficacy of this interesting antiangiogenic compound as a single agent or in combination with chemotherapy in different cancer types.
Collapse
Affiliation(s)
- Giuseppe Aprile
- Department of Medical Oncology, University and General Hospital, Piazzale S Maria della Misericordia, 33100, Udine, Italy,
| | | | | | | | | |
Collapse
|
31
|
Lu ZJ, Deng SJ, Huang DG, He Y, Lei M, Zhou L, Jin P. Frontier of therapeutic antibody discovery: The challenges and how to face them. World J Biol Chem 2012; 3:187-96. [PMID: 23275803 PMCID: PMC3531614 DOI: 10.4331/wjbc.v3.i12.187] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 12/19/2012] [Accepted: 12/22/2012] [Indexed: 02/05/2023] Open
Abstract
Therapeutic monoclonal antibodies have become an important class of modern medicines. The established technologies for therapeutic antibody discovery such as humanization of mouse antibodies, phage display of human antibody libraries and transgenic animals harboring human IgG genes have been practiced successfully so far, and many incremental improvements are being made constantly. These methodologies are responsible for currently marketed therapeutic antibodies and for the biopharma industry pipeline which are concentrated on only a few dozen targets. A key challenge for wider application of biotherapeutic approaches is the paucity of truly validated targets for biotherapeutic intervention. The efforts to expand the target space include taking the pathway approach to study the disease correlation. Since many new targets are multi-spanning and multimeric membrane proteins there is a need to develop more effective methods to generate antibodies against these difficult targets. The pharmaceutical properties of therapeutic antibodies are an active area for study concentrating on biophysical characteristics such as thermal stability and aggregation propensity. The immunogenicity of biotherapeutics in humans is a very complex issue and there are no truly predictive animal models to rely on. The in silico and T-cell response approaches identify the potential for immunogenicity; however, one needs contingency plans for emergence of anti-product antibody response for clinical trials.
Collapse
|
32
|
Firer MA, Gellerman G. Targeted drug delivery for cancer therapy: the other side of antibodies. J Hematol Oncol 2012; 5:70. [PMID: 23140144 PMCID: PMC3508879 DOI: 10.1186/1756-8722-5-70] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 10/18/2012] [Indexed: 12/21/2022] Open
Abstract
Therapeutic monoclonal antibody (TMA) based therapies for cancer have advanced significantly over the past two decades both in their molecular sophistication and clinical efficacy. Initial development efforts focused mainly on humanizing the antibody protein to overcome problems of immunogenicity and on expanding of the target antigen repertoire. In parallel to naked TMAs, antibody-drug conjugates (ADCs) have been developed for targeted delivery of potent anti-cancer drugs with the aim of bypassing the morbidity common to conventional chemotherapy. This paper first presents a review of TMAs and ADCs approved for clinical use by the FDA and those in development, focusing on hematological malignancies. Despite advances in these areas, both TMAs and ADCs still carry limitations and we highlight the more important ones including cancer cell specificity, conjugation chemistry, tumor penetration, product heterogeneity and manufacturing issues. In view of the recognized importance of targeted drug delivery strategies for cancer therapy, we discuss the advantages of alternative drug carriers and where these should be applied, focusing on peptide-drug conjugates (PDCs), particularly those discovered through combinatorial peptide libraries. By defining the advantages and disadvantages of naked TMAs, ADCs and PDCs it should be possible to develop a more rational approach to the application of targeted drug delivery strategies in different situations and ultimately, to a broader basket of more effective therapies for cancer patients.
Collapse
Affiliation(s)
- Michael A Firer
- Department of Chemical Engineering and Biotechnology, Ariel University Center, Ariel, Israel.
| | | |
Collapse
|