1
|
Ju S, Tan Y, Wang Q, Zhou L, Wang K, Wen C, Wang M. Antioxidant and anti‑inflammatory effects of esculin and esculetin (Review). Exp Ther Med 2024; 27:248. [PMID: 38682114 PMCID: PMC11046185 DOI: 10.3892/etm.2024.12536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/19/2024] [Indexed: 05/01/2024] Open
Abstract
Fraxinus chinensis Roxb is a deciduous tree, which is distributed worldwide and has important medicinal value. In Asia, the bark of Fraxinus chinensis Roxb is a commonly used traditional Chinese medicine called Qinpi. Esculetin is a coumarin compound derived from the bark of Fraxinus chinensis Roxb and its glycoside form is called esculin. The aim of the present study was to systematically review relevant literature on the antioxidant and anti-inflammatory effects of esculetin and esculin. Esculetin and esculin can promote the expression of various endogenous antioxidant proteins, such as superoxide dismutase, glutathione peroxidase and glutathione reductase. This is associated with the activation of the nuclear factor erythroid-derived factor 2-related factor 2 signaling pathway. The anti-inflammatory effects of esculetin and esculin are associated with the inhibition of the nuclear factor κ-B and mitogen-activated protein kinase inflammatory signaling pathways. In various inflammatory models, esculetin and esculin can reduce the expression levels of various proinflammatory factors such as tumor necrosis factor-α, interleukin (IL)-1β and IL-6, thereby inhibiting the development of inflammation. In summary, esculetin and esculin may be promising candidates for the treatment of numerous diseases associated with inflammation and oxidative stress, such as ulcerative colitis, acute lung and kidney injury, lung cancer, acute kidney injury.
Collapse
Affiliation(s)
- Shaohua Ju
- Department of Pharmacy, Affiliated Sport Hospital, Chengdu Sport University, Chengdu, Sichuan 610041, P.R. China
| | - Youli Tan
- Department of Pharmacy, Affiliated Sport Hospital, Chengdu Sport University, Chengdu, Sichuan 610041, P.R. China
| | - Qiang Wang
- Department of Pharmacy, Affiliated Sport Hospital, Chengdu Sport University, Chengdu, Sichuan 610041, P.R. China
| | - Ling Zhou
- Department of Pharmacy, Affiliated Sport Hospital, Chengdu Sport University, Chengdu, Sichuan 610041, P.R. China
| | - Kun Wang
- Department of Pharmacy, Affiliated Sport Hospital, Chengdu Sport University, Chengdu, Sichuan 610041, P.R. China
| | - Chenghong Wen
- Department of Pharmacy, Affiliated Sport Hospital, Chengdu Sport University, Chengdu, Sichuan 610041, P.R. China
| | - Mingjian Wang
- Department of Pharmacy, Affiliated Sport Hospital, Chengdu Sport University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
2
|
Páscoa RNMJ, Pinto C, Rego L, Silva JRE, Tiritan ME, Cidade H, Almeida IF. Application of NIR Spectroscopy for the Valorisation of Cork By-Products: A Feasibility Study over the Screening and Discrimination of Chemical Compounds of Interest. Pharmaceuticals (Basel) 2024; 17:180. [PMID: 38399396 PMCID: PMC10892220 DOI: 10.3390/ph17020180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/25/2024] Open
Abstract
Quercus suber is considered a sustainable tree mainly due to its outer layer (cork) capacity to regenerate after each harvesting cycle. Cork bark is explored for several application; however, its industrial transformation generates a significant amount of waste. Recently, cork by-products have been studied as a supplier of bioactive ingredients. This work aimed to explore whether near infrared spectroscopy (NIRS), a non-destructive analysis, can be employed as a screening device for selecting cork by-products with higher potential for bioactives extraction. A total of 29 samples of cork extracts were analysed regarding their qualitative composition. Partial least squares (PLS) models were developed for quantification purposes, and R2P and RER values of 0.65 and above 4, respectively, were obtained. Discrimination models, performed through PLS-DA, yielded around 80% correct predictions, revealing that four out of five of samples were correctly discriminated, thus revealing that NIR can be successfully applied for screening purposes.
Collapse
Affiliation(s)
- Ricardo N. M. J. Páscoa
- Associated Laboratory for Green Chemistry/Network of Chemistry and Technology, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Cláudia Pinto
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Liliana Rego
- Applied Molecular Biosciences Unit, MedTech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Joana Rocha e. Silva
- Dimas & Silva, Lda. Industry, Rua Central de Goda 345, 4535-167 Mozelos, Portugal
| | - Maria E. Tiritan
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
- Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal
| | - Honorina Cidade
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Isabel F. Almeida
- Applied Molecular Biosciences Unit, MedTech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
3
|
Leal LE, Moreira ES, Correia BL, Bueno PSA, Comar JF, de Sá-Nakanishi AB, Cuman RKN, Bracht A, Bersani-Amado CA, Bracht L. Comparative study of the antioxidant and anti-inflammatory effects of the natural coumarins 1,2-benzopyrone, umbelliferone and esculetin: in silico, in vitro and in vivo analyses. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:173-187. [PMID: 37395795 DOI: 10.1007/s00210-023-02606-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/25/2023] [Indexed: 07/04/2023]
Abstract
The aim of this work was to compare the anti-inflammatory and antioxidant effects of three natural coumarins: 1,2-benzopyrone, umbelliferone and esculetin. The antioxidant capacity of coumarins was evaluated using both chemical and biological in vitro assays. Chemical assays included DPPH and ABTS∙+ radical scavenging as well as ferric ion reducing ability power (FRAP) assay. Inhibition of mitochondrial ROS generation and lipid peroxidation in brain homogenates were used as biological in vitro assays. The experimental method of carrageenan-induced pleurisy in rats was used for the in vivo investigation of the anti-inflammatory activity. In silico molecular docking analysis was undertaken to predict the affinity of COX-2 to the coumarins. Considering the antioxidant capacity, esculetin was the most efficient one as revealed by all employed assays. Particularly, the mitochondrial ROS generation was totally abolished by the compound at low concentrations (IC50 = 0.57 μM). As for the anti-inflammatory effects, the COX-2 enzyme presented good affinities to the three coumarins, as revealed by the molecular docking analyses. However, considering the in vivo anti-inflammatory effects, 1,2-benzopyrone was the most efficient one in counteracting pleural inflammation and it potentiated the anti-inflammatory actions of dexamethasone. Umbelliferone and esculetin treatments failed to reduce the volume of pleural exudate. Overall, therefore, our results support the notion that this class of plant secondary metabolites displays promising effects in the prevention and/or treatment of inflammation and other diseases associated with oxidative stress, although the singularities regarding the type of the inflammatory process and pharmacokinetics must be taken into account.
Collapse
Affiliation(s)
- Luana Eloísa Leal
- Department of Biochemistry, State University of Maringá, Paraná, Brazil
| | | | | | | | | | | | | | - Adelar Bracht
- Department of Biochemistry, State University of Maringá, Paraná, Brazil
| | | | - Lívia Bracht
- Department of Biochemistry, State University of Maringá, Paraná, Brazil.
| |
Collapse
|
4
|
Güvenç M, Yüksel M, Kutlu T, Etyemez M, Gökçek İ, Cellat M. Protective effects of esculetin against ovary ischemia-reperfusion injury model in rats. J Biochem Mol Toxicol 2024; 38:e23528. [PMID: 37661762 DOI: 10.1002/jbt.23528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/15/2023] [Accepted: 08/25/2023] [Indexed: 09/05/2023]
Abstract
AIMS Ovarian ischemia-reperfusion (I/R) injury is a phenomenon that necessitates urgent intervention, which occurs as a result of ovarian torsion, and it is frequently seen in young women. A large amount of free radical and oxidative damage as a result of I/R plays a role in the cause of the incident. Antioxidant agents are thought to be beneficial in preventing this damage, and the potential protective effects of esculetin, which had not been tested previously, were investigated in this study. STUDY DESIGN The rats in the study were divided into five groups at random: control, sham, esculetin, I/R, and treatment. Oxidative stress parameters, proinflammatory cytokines, nuclear factor erythroid 2-related factor 2 (Nrf-2)/nuclear factor-kβ (NF-κβ) pathway, and histopathological analyses were evaluated at the end of the study. KEY FINDINGS After I/R, malondialdehyde levels, proinflammatory cytokines, tumor necrosis factor-α and interleukin-1β levels and NF-κβ expressions were increased, Nrf-2 expression and glutathione level decreased and the histopathologic picture deteriorated. However, as a result of the esculetin treatment, ameliorative effects in the aforementioned parameters were determined, and it was ensured that they returned to normal levels. CONCLUSION According to these findings, esculetin has protective effects on I/R damage by lowering lipid peroxidation and having antioxidant and anti-inflammatory properties. SIGNIFICANCE Our results proved the protective effect of esculetin against ovarian IR injury in rats and this may be attributed to Nrf-2/NF-κβ axis which showed antioxidant and anti-inflammatory effects. Therefore, esculetin can be used in the future for preventive effects to ovarian IR injury.
Collapse
Affiliation(s)
- Mehmet Güvenç
- Department of Physiology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Antakya, Hatay, Turkey
| | - Murat Yüksel
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Antakya, Hatay, Turkey
| | - Tuncer Kutlu
- Department of Pathology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Antakya, Hatay, Turkey
| | - Muhammed Etyemez
- Department of Physiology, Faculty of Veterinary Medicine, University of Kastamonu, Kastamonu, Turkey
| | - İshak Gökçek
- Department of Physiology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Antakya, Hatay, Turkey
| | - Mustafa Cellat
- Department of Physiology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Antakya, Hatay, Turkey
| |
Collapse
|
5
|
Duan SF, Song L, Guo HY, Deng H, Huang X, Shen QK, Quan ZS, Yin XM. Research status of indole-modified natural products. RSC Med Chem 2023; 14:2535-2563. [PMID: 38107170 PMCID: PMC10718587 DOI: 10.1039/d3md00560g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 12/19/2023] Open
Abstract
Indole is a heterocyclic compound formed by the fusion of a benzene ring and pyrrole ring, which has rich biological activity. Many indole-containing compounds have been sold on the market due to their excellent pharmacological activity. For example, vincristine and reserpine have been widely used in clinical practice. The diverse structures and biological activities of natural products provide abundant resources for the development of new drugs. Therefore, this review classifies natural products by structure, and summarizes the research progress of indole-containing natural product derivatives, their biological activities, structure-activity relationship and research mechanism which has been studied in the past 13 years, so as to provide a basis for the development of new drug development.
Collapse
Affiliation(s)
- Song-Fang Duan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University Yanji 133002 China +86 0433 243 6020 +86 0433 243 6019
| | - Lei Song
- Yanbian University Hospital, Yanbian University Yanji 133002 People's Republic of China
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University Yanji 133002 China +86 0433 243 6020 +86 0433 243 6019
| | - Hao Deng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University Yanji 133002 China +86 0433 243 6020 +86 0433 243 6019
| | - Xing Huang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University Yanji 133002 China +86 0433 243 6020 +86 0433 243 6019
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University Yanji 133002 China +86 0433 243 6020 +86 0433 243 6019
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University Yanji 133002 China +86 0433 243 6020 +86 0433 243 6019
| | - Xiu-Mei Yin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University Yanji 133002 China +86 0433 243 6020 +86 0433 243 6019
| |
Collapse
|
6
|
Zancan TD, Monserrat JM, Marreiro Gomes RM, Martins VG, Wasielesky W, Tesser MB. Effects of including of Japanese Pumpkin Seeds and Pomace in the Diets of Pacific White Shrimp ( Penaeus vannamei). Animals (Basel) 2023; 13:3480. [PMID: 38003098 PMCID: PMC10668790 DOI: 10.3390/ani13223480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
A 60-day feeding trial was conducted to evaluate the effects of including pumpkin seeds and pomace in the diets of Pacific white shrimp Penaeus vannamei, and the effects of these supplements on growth performance, body composition, and total polyphenol, flavonoid and carotenoid contents, as well as on total antioxidant activity, and body color parameters. Five diets were evaluated: pumpkin seeds (PS) at 50 and 100 g·kg-1, pumpkin pomace (PP) at 50 and 100 g·kg-1, and a control treatment. Pacific white shrimp (P. vannamei) juveniles (0.60 ± 0.01 g) were stocked in 15 tanks (310 L), containing 30 shrimps per tank, and the treatments were randomly distributed in triplicate. At the end of the experiment, shrimps were euthanized, weighed, and dissected for further analyses. The inclusion of PS in the diets impaired growth performance, reduced the total flavonoid content and had a pro-oxidative effect on muscle. The inclusion of PP in the diets did not affect growth performance, improved the feed conversion ratio, increased the total flavonoid content in the diets and hepatopancreas, and improved the antioxidant activity of the feeds and shrimp muscle. The total carotenoid content of the feeds increased with the inclusion of PS or PP in the diets; however, the total carotenoid content of shrimp increased only in those fed PP diets. Shrimp fed with PS diets showed a yellowish color and higher saturation when fresh and a reddish color and yellow hue angle after cooking. Shrimp fed PP diets turned reddish and yellowish, both when fresh and after cooking. The inclusion of PS in P. vannamei diets is not recommended; however, PP can be included at 100 g·kg-1 without affecting the growth parameters. Further studies evaluating the inclusion of higher PP levels in shrimp diets are recommended.
Collapse
Affiliation(s)
- Thaise Dalferth Zancan
- Institute of Oceanography, Federal University of Rio Grande, Av. Itália, km 8, Rio Grande 96203-900, Brazil; (T.D.Z.); (R.M.M.G.); (W.W.J.)
- Laboratory of Aquatic Organisms Nutrition (LANOA), Rio Grande 96210-030, Brazil
| | - José María Monserrat
- Institute of Biological Sciences, Federal University of Rio Grande, Av. Itália, km 8, Rio Grande 96203-900, Brazil;
- Laboratory of Functional Biochemistry of Aquatic Organisms (BIFOA), Rio Grande 96210-030, Brazil
| | - Robson Matheus Marreiro Gomes
- Institute of Oceanography, Federal University of Rio Grande, Av. Itália, km 8, Rio Grande 96203-900, Brazil; (T.D.Z.); (R.M.M.G.); (W.W.J.)
- Laboratory of Functional Biochemistry of Aquatic Organisms (BIFOA), Rio Grande 96210-030, Brazil
| | - Vilásia Guimarães Martins
- School of Chemistry and Food, Federal University of Rio Grande, Av. Itália, km 8, Rio Grande 96203-900, Brazil;
- Laboratory of Food Technology (LTA), Rio Grande 96203-900, Brazil
| | - Wilson Wasielesky
- Institute of Oceanography, Federal University of Rio Grande, Av. Itália, km 8, Rio Grande 96203-900, Brazil; (T.D.Z.); (R.M.M.G.); (W.W.J.)
- Marine Shrimp Laboratory, Rio Grande 96210-030, Brazil
| | - Marcelo Borges Tesser
- Institute of Oceanography, Federal University of Rio Grande, Av. Itália, km 8, Rio Grande 96203-900, Brazil; (T.D.Z.); (R.M.M.G.); (W.W.J.)
- Laboratory of Aquatic Organisms Nutrition (LANOA), Rio Grande 96210-030, Brazil
| |
Collapse
|
7
|
Cai T, Cai B. Network pharmacology and molecular docking reveal potential mechanism of esculetin in the treatment of ulcerative colitis. Medicine (Baltimore) 2023; 102:e35852. [PMID: 37960728 PMCID: PMC10637478 DOI: 10.1097/md.0000000000035852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/09/2023] [Indexed: 11/15/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease of the colonic mucosa. Esculetin is a type of natural coumarin that has many pharmacological activities such as antioxidant, anticancer, anti-inflammatory, etc. A previous study showed that esculetin improved intestinal inflammation and reduced serum proinflammatory cytokines in UC. The present study aimed to utilize network pharmacology and molecular docking to explore the potential mechanism of esculetin against UC. The potential gene targets of esculetin were predicted through SwissTargetPrediction and Super-PRED web servers. UC-related genes were obtained from DisGeNet, OMIM, and GeneCards databases. The overlap between gene targets of esculetin and UC-related genes were identified as the potential targets of esculetin against UC. The interaction between these overlapping genes was analyzed by the STRING database and the core genes were identified by Cytoscape platform. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of the core genes were then performed. And the results of these analyses were further confirmed through molecular docking. A total of 50 overlapping genes were identified as the potential action targets of esculetin against UC. Among them, 10 genes (AKT1, STAT1, CCND1, SRC, PTGS2, EGFR, NFKB1, ESR1, MMP9, SERPINE1) were finally identified as the core genes. The Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis results showed that the top signaling pathway associated with the core genes of esculetin against UC was the prolactin (PRL) signaling pathway. Molecular docking results showed that esculetin has a strong binding affinity to the core genes, as well as PRL and prolactin receptor. This study suggests that esculetin may have a crucial impact on UC through the PRL signaling pathway and provides insights into the potential mechanism of esculetin in the treatment of UC, which may shed light on the mechanism and treatment of UC.
Collapse
Affiliation(s)
- Ting Cai
- Department of Nephrology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Wuxi, China
| | - Bin Cai
- Department of Anorectal Surgery, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| |
Collapse
|
8
|
Cai T, Cai B. Pharmacological activities of esculin and esculetin: A review. Medicine (Baltimore) 2023; 102:e35306. [PMID: 37800835 PMCID: PMC10553009 DOI: 10.1097/md.0000000000035306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/30/2023] [Indexed: 10/07/2023] Open
Abstract
Esculin and esculetin are 2 widely studied coumarin components of Cortex Fraxini, which is a well-known herbal medicine with a 2000-year history. In vivo and in vitro studies have demonstrated that both have a variety of pharmacological activities, including antioxidant, anti-tumor, anti-inflammatory, antibacterial, antidiabetic, immunomodulatory, anti-atherosclerotic, and so on. Their underlying mechanisms of action and biological activities include scavenging free radicals, modulating the nuclear factor erythroid 2-related factor 2 pathway, regulating the cell cycle, inhibiting tumor cell proliferation and migration, promoting mitochondrial pathway apoptosis, inhibiting the NF-κB and MAPK signaling pathways, regulating CD4+ T cells differentiation and associated cytokine release, inhibiting vascular smooth muscle cells, etc. This review aims to provide comprehensive information on pharmacological studies of esculin and esculetin, which is of noteworthy importance in exploring the therapeutic potential of both coumarin compounds.
Collapse
Affiliation(s)
- Ting Cai
- Department of Nephrology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Wuxi, China
| | - Bin Cai
- Department of Anorectal Surgery, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| |
Collapse
|
9
|
Augsten LV, Göethel G, Gauer B, Feiffer Charão M, von Poser G, Canto RFS, Arbo MD, Eifler-Lima VL, Garcia SC. Antiproliferative activity and toxicity evaluation of 1,2,3-triazole and 4-methyl coumarin hybrids in the MCF7 breast cancer cell line. RSC Med Chem 2023; 14:869-879. [PMID: 37252094 PMCID: PMC10211326 DOI: 10.1039/d3md00031a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/28/2023] [Indexed: 12/31/2023] Open
Abstract
Four coumarin-triazole hybrids were selected from our in house library and screened for cytotoxic activity on A549 (lung cancer), HepG2 (liver cancer), J774A1 (mouse sarcoma macrophage), MCF7 (breast cancer), OVACAR (ovarian cancer), RAW (murine leukaemia macrophage), and SiHa (uterus carcinoma) and their in vitro toxicity was assessed on 3T3 (healthy fibroblasts) cell lines. SwissADME pharmacokinetic prediction was performed. Effects on ROS production, mitochondrial membrane potential, apoptosis/necrosis and DNA damage were evaluated. All of the hybrids have good pharmacokinetic predictions. Each of them showed cytotoxic activity against the MCF7 breast cancer cell line, with IC50 between 2.66 and 10.08 μM, lower than cisplatin (45.33 μM) for the same test. One can observe an order of reactivity from the most potent: LaSOM 186 > LaSOM 190 > LaSOM 185 > LaSOM 180, with a better selectivity index than the reference drug cisplatin and the precursor hymecromone, and caused cell death by apoptosis induction. Two compounds showed antioxidant activity in vitro and three disrupted the mitochondrial membrane potential. None of the hybrids caused genotoxic damage to healthy 3T3 cells. All hybrids showed potential for further optimization, mechanism elucidation, in vivo activity and toxicity tests.
Collapse
Affiliation(s)
- Lucas Volnei Augsten
- Laboratório de Síntese Orgânica Medicinal/LaSOM, Programa de Pós-Graduação em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul Av. Ipiranga 2752 Laboratório 705 Porto Alegre RS Brazil
| | - Gabriela Göethel
- Laboratório de Síntese Orgânica Medicinal/LaSOM, Programa de Pós-Graduação em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul Av. Ipiranga 2752 Laboratório 705 Porto Alegre RS Brazil
- Laboratório de Toxicologia (LATOX), Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre RS Brazil
| | - Bruna Gauer
- Laboratório de Síntese Orgânica Medicinal/LaSOM, Programa de Pós-Graduação em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul Av. Ipiranga 2752 Laboratório 705 Porto Alegre RS Brazil
| | - Mariele Feiffer Charão
- Laboratório de Toxicologia (LATOX), Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre RS Brazil
| | - Gilsane von Poser
- Laboratório de Farmacognosia, Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul Avenida Ipiranga 2752 - Santa Cecília CEP 90610-000 Porto Alegre RS Brazil
| | - Romulo F S Canto
- Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA) Rua Sarmento Leite, 245 Porto Alegre RS Brazil
| | - Marcelo Dutra Arbo
- Laboratório de Toxicologia (LATOX), Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre RS Brazil
| | - Vera Lucia Eifler-Lima
- Laboratório de Síntese Orgânica Medicinal/LaSOM, Programa de Pós-Graduação em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul Av. Ipiranga 2752 Laboratório 705 Porto Alegre RS Brazil
| | - Solange Cristina Garcia
- Laboratório de Toxicologia (LATOX), Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre RS Brazil
| |
Collapse
|
10
|
Goeva LV, Zhuchkova AF, Malinina EA, Korolenko SE, Avdeeva VV, Kuznetsov NT. Radiation-Chemical Transformations of 7-NH3-4-CH3-Coumarin Decahydro-closo-Decaborate as a Potential Inhibitor of Free Radicals. RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s0036023622080149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Xu H, Sun J, Zhao Z, Ma X, Li C, Liu L, Zhang G. Lactobacillus plantarum
ZLC‐18 fermentation improve tyrosinase inhibition activity and antioxidant capacity in soybean hulls. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hanxue Xu
- Key Laboratory of Dairy Sciences Ministry of Education College of Food Sciences Northeast Agricultural University Harbin China
| | - Jinwei Sun
- Key Laboratory of Dairy Sciences Ministry of Education College of Food Sciences Northeast Agricultural University Harbin China
- Product Research and Development Center Newhopedairy Co., Ltd Chengdu China
| | - Zifu Zhao
- Key Laboratory of Dairy Sciences Ministry of Education College of Food Sciences Northeast Agricultural University Harbin China
- Inner Mongolia Yili Group Co Ltd, Hohhot China
| | - Xinkai Ma
- Key Laboratory of Dairy Sciences Ministry of Education College of Food Sciences Northeast Agricultural University Harbin China
| | - Chun Li
- Key Laboratory of Dairy Sciences Ministry of Education College of Food Sciences Northeast Agricultural University Harbin China
- Heilongjiang Green Food Research Institute Harbin China
| | - Libo Liu
- Key Laboratory of Dairy Sciences Ministry of Education College of Food Sciences Northeast Agricultural University Harbin China
| | - Guofang Zhang
- Key Laboratory of Dairy Sciences Ministry of Education College of Food Sciences Northeast Agricultural University Harbin China
| |
Collapse
|
12
|
Zhang L, Xie Q, Li X. Esculetin: A review of its pharmacology and pharmacokinetics. Phytother Res 2021; 36:279-298. [PMID: 34808701 DOI: 10.1002/ptr.7311] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/12/2021] [Accepted: 09/30/2021] [Indexed: 12/30/2022]
Abstract
Esculetin is a natural dihydroxy coumarin; it is mainly extracted from twig skin and the trunk bark of the Chinese herbal medicine Fraxinus rhynchophylla Hance. Emerging evidence suggests that esculetin has a wide range of pharmacological activities. Based on its fundamental properties, including antioxidant, antiinflammatory, antiapoptotic, anticancer, antidiabetic, neuroprotective, and cardiovascular protective activities, as well as antibacterial activity, among others, esculetin is expected to be a therapeutic drug for specific disease indications, such as cancer, diabetes, atherosclerosis, Alzheimer's disease (AD), Parkinson's disease (PD), nonalcoholic fatty liver disease (NAFLD), and other diseases. The oral bioavailability of esculetin was shown by studies to be low. The extensive glucuronidation was described to be the main metabolic pathway of esculetin and C-7 phenolic hydroxyl to be its major metabolic site. With the development of scientific research technology, the pharmacological effects of esculetin are identified and its potential for the treatment of diseases is demonstrated. The underlining mechanisms of action and biological activities as well as the pharmacokinetic data of the analyzed compound reported so far are highlighted in this review with the aim of becoming a proven, and applicable insight and reference for further studies on the utilization of esculetin.
Collapse
Affiliation(s)
- Linlin Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qingxuan Xie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
13
|
Moradi Z, Madadkar Haghjou M, Zarei M, Colville L, Raza A. Synergy of production of value-added bioplastic, astaxanthin and phycobilin co-products and Direct Green 6 textile dye remediation in Spirulina platensis. CHEMOSPHERE 2021; 280:130920. [PMID: 34162106 DOI: 10.1016/j.chemosphere.2021.130920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/04/2021] [Accepted: 05/14/2021] [Indexed: 06/13/2023]
Abstract
Phyco-remediation of dyestuffs in textile wastewaters is of economic, industrial, and environmental importance. We evaluated the remediation of the textile dye, Direct Green 6 (DG6), by Spirulina platensis, and investigated the novel possibility that DG6 treatment enhances production of the biopolymer, polyhydroxybutyrate (PHB). We showed that both live and dead cells of Spirulina were capable of DG6 remediation, but live cells could be re-used with no loss of remediation efficiency. Furthermore, DG6 remediation by live cells resulted in increased algal biomass and trichome lengths, and stimulated production of valuable metabolites, including PHB, antioxidants, carbohydrates and pigments (phycobilins and astaxanthin). We determined the optimal conditions for DG6 remediation and an artificial neural network (ANN) accurately modeled the experimental data and predicted the concentration of dye as the most and algal turbidity as the least important parameters for DG6 removal efficiency. A DG6 concentration of 60 mg L-1 resulted in the highest simultaneous co-production of PHB (12.7 ± 1.7% DW) and increase of astaxanthin (194%), carotenoids (50%), phenol (51%), carbohydrates (27%) total phycobilin (43%), together with the enhancement of biomass and trichome lengths (95%). Oxidative stress indices and enzyme activities such as peroxidases and laccase (involved in dye removal/antioxidant functions) were also increased by dye dosage. On the basis of our results, we propose that S. platensis may use DG6 dye as a nitrogen/carbon source for co-accumulation of valuable bioplastic and metabolites.
Collapse
Affiliation(s)
- Zahra Moradi
- Department of Biology, Plant Physiology, Faculty of Science, Lorestan University, Khoramabad-Tehran Road (5th K), Iran.
| | - Maryam Madadkar Haghjou
- Department of Biology, Plant Physiology, Faculty of Science, Lorestan University, Khoramabad-Tehran Road (5th K), Iran.
| | - Mahmoud Zarei
- Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Iran.
| | - Louise Colville
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Wellcome Trust Millennium Building, Wakehurst Place, Ardingly, West Sussex, RH17 6TN, UK.
| | - Ali Raza
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan, 430062, China.
| |
Collapse
|
14
|
4-(Trifluoromethyl) coumarin-fused pyridines: Regioselective synthesis and photophysics, electrochemical, and antioxidative activity. J Fluor Chem 2021. [DOI: 10.1016/j.jfluchem.2021.109822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Volcão LM, Halicki PB, Bilibio D, Ramos DF, Bernardi E, Da Silva Júnior FMR. Biological activity of aqueous extracts of Southern Brazilian mushrooms. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2021; 31:148-159. [PMID: 31257910 DOI: 10.1080/09603123.2019.1634798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 06/13/2019] [Indexed: 06/09/2023]
Abstract
This study aims to perform a bioactive analysis of five mushrooms collected in south of Brazil. The total phenol content of the extracts was equivalent to the antioxidant activity by ACAP assay. All extracts were able to inhibit the growth of Acinetobacter baumanni, and Auricularia auricula and Lactarius deliciosus extract showed the best antibacterial activity. In addition, no extract showed cytotoxic activity against VERO cells at the highest concentration evaluated (2500 µg/mL). Our results showed better antioxidant activity through the inhibition of the oxidation via peroxyl radical. It can be observed that all extracts were active against A. baumanni, and even moderately, all extracts could be inhibited of at least one of the bacteria used in the study. Added for these, the aqueous extracts showed no toxicity in VERO cells, highlighting the importance of research about the active compounds of mushrooms of the region.
Collapse
Affiliation(s)
- Lisiane Martins Volcão
- Insituto de Ciências Biológicas, Universidade Federal do Rio Grande , Rio Grande, Brasil
| | - Priscila Bartolomeu Halicki
- Núcleo de Pesquisa em Desenvolvimento de Novos Fármacos, Faculdade de Medicina, Universidade Federal do Rio Grande , Rio Grande, Brasil
| | - Denise Bilibio
- Núcleo de Experimentação e Estudos Analíticos, Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul , Sertã, Brasil
| | - Daniela Fernandes Ramos
- Núcleo de Pesquisa em Desenvolvimento de Novos Fármacos, Faculdade de Medicina, Universidade Federal do Rio Grande , Rio Grande, Brasil
| | - Eduardo Bernardi
- Departamento de Microbiologia e Parasitologia, Universidade Federal de Pelotas , Pelotas, Brasil
| | | |
Collapse
|
16
|
Palmeira-Mello MV, Caballero AB, Ribeiro JM, de Souza-Fagundes EM, Gamez P, Lanznaster M. Evaluation of cobalt(III) complexes as potential hypoxia-responsive carriers of esculetin. J Inorg Biochem 2020; 211:111211. [PMID: 32805459 DOI: 10.1016/j.jinorgbio.2020.111211] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 02/02/2023]
Abstract
Differentiation between hypoxic and normoxic tissues have been exploited for the development of selective chemotherapeutic agents. In this context, cobalt(III)-based coordination compounds have been designed and investigated as prospective hypoxia-responsive drug delivery systems. Three cobalt(III) complexes, namely [CoIII(esc)(py2en)]ClO4·(CH3OH)2 (1) [CoIII(esc)(TPA)]ClO4·3H2O (2) and [CoIII(bipy)2(esc)]ClO4·2.5H2O (3) (py2en = N,N'-bis(pyridin-2-ylmethyl)ethylenediamine, TPA = tris(2-pyridylmethyl)amine, bipy = 2,2'-bipyridine and esc = 6,7-dihydroxycoumarin or esculetin), were prepared and investigated as potential carriers of esculetin. The spectroscopic and electrochemical properties of 1-3 were investigated and compared. Reactions of the complexes with biologically relevant reducing agents, viz. ascorbic acid, cysteine and glutathione, were monitored spectroscopically for 24 h, in pH 6.2 and 7.4 PBS phosphate buffer saline (PBS) solutions at 37 °C, under air, argon and dioxygen atmospheres. Dissociation of esculetin was observed upon Co3+/Co2+ reduction preferably under hypoxic conditions, with more effective conversion rates for 3 > 2 > 1. These results illustrate the importance to modulate the Co3+/Co2+ redox potential through the donor-acceptor properties of the ancillary ligands. Complex 3 is cytotoxic against HCT-116 but not against HT-29 and HEK-293 cells. In addition, DNA-binding studies indicate that interactions of 1 and 3 with the biomolecule are electrostatic.
Collapse
Affiliation(s)
- Marcos V Palmeira-Mello
- Instituto de Química, Universidade Federal Fluminense, Outeiro S. João Batista S/N, 24020-141 Niterói, RJ, Brazil; nanoBIC, Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Ana B Caballero
- nanoBIC, Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Juliana Martins Ribeiro
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, 30123-970 Belo Horizonte, MG, Brazil
| | - Elaine Maria de Souza-Fagundes
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, 30123-970 Belo Horizonte, MG, Brazil
| | - Patrick Gamez
- nanoBIC, Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Mauricio Lanznaster
- Instituto de Química, Universidade Federal Fluminense, Outeiro S. João Batista S/N, 24020-141 Niterói, RJ, Brazil.
| |
Collapse
|
17
|
Pham HT, Yoo J, VandenBerg M, Muyskens MA. Fluorescence of Scopoletin Including its Photoacidity and Large Stokes Shift. J Fluoresc 2019; 30:71-80. [DOI: 10.1007/s10895-019-02471-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/12/2019] [Indexed: 01/16/2023]
|
18
|
Soares FGN, Göethel G, Kagami LP, das Neves GM, Sauer E, Birriel E, Varela J, Gonçalves IL, Von Poser G, González M, Kawano DF, Paula FR, de Melo EB, Garcia SC, Cerecetto H, Eifler-Lima VL. Novel coumarins active against Trypanosoma cruzi and toxicity assessment using the animal model Caenorhabditis elegans. BMC Pharmacol Toxicol 2019; 20:76. [PMID: 31852548 PMCID: PMC6921407 DOI: 10.1186/s40360-019-0357-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Chagas disease (CD) is a tropical parasitic disease. Although the number of people infected is very high, the only drugs available to treat CD, nifurtimox (Nfx) and benznidazole, are highly toxic, particularly in the chronic stage of the disease. Coumarins are a large class of compounds that display a wide range of interesting biological properties, such as antiparasitic. Hence, the aim of this work is to find a good antitrypanosomal drug with less toxicity. The use of simple organism models has become increasingly attractive for planning and simplifying efficient drug discovery. Within these models, Caenorhabditis elegans has emerged as a convenient and versatile tool with significant advantages for the toxicological potential identification for new compounds. METHODS Trypanocidal activity: Forty-two 4-methylamino-coumarins were assayed against the epimastigote form of Trypanosoma cruzi (Tulahuen 2 strain) by inhibitory concentration 50% (IC50). Toxicity assays: Lethal dose 50% (LD50) and Body Area were determined by Caenorhabditis elegans N2 strain (wild type) after acute exposure. Structure-activity relationship: A classificatory model was built using 3D descriptors. RESULTS Two of these coumarins demonstrated near equipotency to Nifurtimox (IC50 = 5.0 ± 1 μM), with values of: 11 h (LaSOM 266), (IC50 = 6.4 ± 1 μM) and 11 g (LaSOM 231), (IC50 = 8.2 ± 2.3 μM). In C. elegans it was possible to observe that Nfx showed greater toxicity in both the LD50 assay and the evaluation of the development of worms. It is possible to observe that the efficacy between Nfx and the synthesized compounds (11 h and 11 g) are similar. On the other hand, the toxicity of Nfx is approximately three times higher than that of the compounds. Results from the QSAR-3D study indicate that the volume and hydrophobicity of the substituents have a significant impact on the trypanocidal activities for derivatives that cause more than 50% of inhibition. These results show that the C. elegans model is efficient for screening potentially toxic compounds. CONCLUSION Two coumarins (11 h and 11 g) showed activity against T. cruzi epimastigote similar to Nifurtimox, however with lower toxicity in both LD50 and development of C. elegans assays. These two compounds may be a feasible starting point for the development of new trypanocidal drugs.
Collapse
Affiliation(s)
- Fabiana Gomes Nascimento Soares
- Laboratório de Síntese Orgânica Medicinal/LaSOM, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gabriela Göethel
- Laboratório Toxicologia/LATOX, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Luciano Porto Kagami
- Laboratório de Síntese Orgânica Medicinal/LaSOM, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gustavo Machado das Neves
- Laboratório de Síntese Orgânica Medicinal/LaSOM, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Elisa Sauer
- Laboratório de Síntese Orgânica Medicinal/LaSOM, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Estefania Birriel
- Facultad de Ciencias-Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Javier Varela
- Facultad de Ciencias-Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Itamar Luís Gonçalves
- Laboratório de Síntese Orgânica Medicinal/LaSOM, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gilsane Von Poser
- Laboratório de Síntese Orgânica Medicinal/LaSOM, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mercedes González
- Facultad de Ciencias-Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Daniel Fábio Kawano
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, SP, Brazil
- Departamento de Química Orgânica, Instituto de Química, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Fávero Reisdorfer Paula
- Universidade Estadual do Oeste do Paraná, Centro de Ciências Médicas e Farmacêuticas, Cascavel, PR, Brazil
| | - Eduardo Borges de Melo
- Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Cascavel, PR, Brazil
| | - Solange Cristina Garcia
- Laboratório Toxicologia/LATOX, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Hugo Cerecetto
- Facultad de Ciencias-Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Vera Lucia Eifler-Lima
- Laboratório de Síntese Orgânica Medicinal/LaSOM, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
19
|
Seasonal Changes in the Metabolic Profiles and Biological Activity in Leaves of Diospyros digyna and D. rekoi "Zapote" Trees. PLANTS 2019; 8:plants8110449. [PMID: 31731430 PMCID: PMC6918230 DOI: 10.3390/plants8110449] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/14/2019] [Accepted: 10/19/2019] [Indexed: 01/15/2023]
Abstract
Leaves of semi-domesticated Diospyros digyna and wild D. rekoi trees, sampled seasonally in Mexico in 2014, were analyzed. Metabolic fingerprints revealed higher metabolite diversity in D. rekoi leaves. The TLC bands characteristic of glycosylated flavonoids, predominant in this species, matched the detection of quercetin and quercetin 3-O-glucuronides by liquid chromatography (UPLC-MS) of spring leaf extracts (LEs). Further gas chromatography (GC-MS) analysis revealed abundant fatty acids, organic acids, and secondary metabolites including trigonelline, p-coumaric, and ferulic and nicotinic acids. Phenolic-like compounds prevailed in D. digyna LEs, while unidentified triterpenoids and dihydroxylated coumarins were detected by UPLC-MS and GC-MS. A paucity of leaf metabolites in leaves of this species, compared to D. rekoi, was evident. Higher antioxidant capacity (AOC) was detected in D. digyna LEs. The AOC was season-independent in D. digyna but not in D. rekoi. The AOC in both species was concentrated in distinct TLC single bands, although seasonal variation in band intensity was observed among trees sampled. The AOC in D. digyna LEs could be ascribed to the coumarin esculetin. The LEs moderately inhibited phytopathogenic bacteria but not fungi. Leaf chemistry differences in these Mesoamerican Diospyros species substantiated previous variability reported in tree physiology and fruit physical chemistry, postulated to result from domestication and seasonality.
Collapse
|
20
|
Zhang Y, Dong Y, Li X, Wang F. Proanthocyanidin Encapsulated in Ferritin Enhances Its Cellular Absorption and Antioxidant Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11498-11507. [PMID: 31544455 DOI: 10.1021/acs.jafc.9b03903] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Proanthocyanidins (PAs) possess superior antioxidant properties and nutritious value, however, low bioavailability and stability limit their applications. Here, we developed a novel method to encapsulate PA dimers successfully into horse spleen apoferritin (apoHSF) using a disassembly/reassembly method based on pH change. The PA-HSF nanoparticles were characterized using fluorescence spectroscopy, transmission electron microscopy, circular dichroism, and high-performance liquid chromatography. One apoferritin cage could approximately encapsulate 25.6 molecules of the PA dimer. The results showed that the encapsulation of the PA dimers protected it from the damage of oxidants and temperature below room temperature would be an appropriate condition for HSF-578 solution storage. Moreover, HepG2 cell monolayer absorption and adhesion analyses indicated that the PA dimers encapsulated within apoHSF cages were more efficient in transport. In addition, it was indicated that the PA-HSF nanoparticles had higher cellular antioxidant activity. The novel strategy provided in this study indicates that the protein cage structures like ferritin have potential to be applied in the field of food nutrition.
Collapse
|
21
|
da Silva AFM, de Mello MVP, Gómez JG, Ferreira GB, Lanznaster M. Investigation of Cobalt(III)-Tetrachlorocatechol Complexes as Models for Catechol-Based Anticancer Prodrugs. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801550] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | | | - Javier G. Gómez
- Instituto de Química; Universidade Federal Fluminense; Outeiro S J Batista SN 24020-141 Niteroi RJ Brazil
| | - Glaucio Braga Ferreira
- Instituto de Química; Universidade Federal Fluminense; Outeiro S J Batista SN 24020-141 Niteroi RJ Brazil
| | - Mauricio Lanznaster
- Instituto de Química; Universidade Federal Fluminense; Outeiro S J Batista SN 24020-141 Niteroi RJ Brazil
| |
Collapse
|
22
|
Mangasuli SN, Hosamani KM, Managutti PB. Microwave assisted synthesis of coumarin-purine derivatives: An approach to in vitro anti-oxidant, DNA cleavage, crystal structure, DFT studies and Hirshfeld surface analysis. Heliyon 2019; 5:e01131. [PMID: 30723822 PMCID: PMC6350215 DOI: 10.1016/j.heliyon.2019.e01131] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/21/2018] [Accepted: 01/08/2019] [Indexed: 12/20/2022] Open
Abstract
An easy and efficient microwave-assisted protocol has been developed for the synthesis of coumarin-purine hybrids (3a-3j). The newly constructed 1,3-dimethyl-7-((substituted)-2-oxo-2H-chromen-4-yl)methyl)-1H-purine-2,6(3H,7H)-dione derivatives were evaluated for their in vitro antioxidant activity by DPPH free radical-scavenging ability assay and DNA cleavage by using calf thymus. The compound 3i, shows the most excellent DPPH scavenging activity with a –OH substitution at C7 of coumarin ring. In addition, the structure of compound 3f, has been elucidated using single crystal X-ray diffraction technique. Theoretical calculations (DFT) were carried out using Gaussian09 program package and B3LYP correlation function. Full geometry optimization were carried out using 6-311G++(d, p) basis set and the frontier orbital energy were presented. Hirshfeld surface analysis was used for the intermolecular interactions in the crystal structure. The experimental result of the compound 3f has been compared with the theoretical results and it was found that the experimental data are in a good agreement with the calculated values.
Collapse
Affiliation(s)
| | - Kallappa M. Hosamani
- Department of Studies in Chemistry, Karnatak University, Dharwad, 580003, India
- Corresponding author.
| | - Praveen B. Managutti
- Department of Studies in Solid State and Structural Chemistry Unit, IISC, Bengaluru, 560012, India
| |
Collapse
|
23
|
Li Y, Song W, Ou X, Luo G, Xie Y, Sun R, Wang Y, Qi X, Hu M, Liu Z, Zhu L. Breast Cancer Resistance Protein and Multidrug Resistance Protein 2 Determine the Disposition of Esculetin-7-O-Glucuronide and 4-Methylesculetin-7-O-Glucuronide. Drug Metab Dispos 2019; 47:203-214. [PMID: 30602435 DOI: 10.1124/dmd.118.083493] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 12/27/2018] [Indexed: 01/02/2023] Open
Abstract
Esculetin (ET)-7-O-glucuronide (ET-G) and 4-methylesculetin (4-ME)-7-O-glucuronide (4-ME-G) are the main glucuronide of ET and 4-ME, respectively. The disposition mediated by efflux transporters for glucuronide has significant influence on the pharmacokinetic profile and efficacy of bioactive compounds. In the current study, transporter gene knockout mice and Caco-2 cells were used to explore the effects of breast cancer resistance protein (BCRP) and multidrug resistance-associated protein 2 (MRP2) on the disposition of ET-G and 4-ME-G. After oral or i.v. administration of ET and 4-ME, the area under the plasma concentration-time curve from time 0 to the last data point or infinity values of ET, 4-ME, and their glucuronides (ET-G and 4-ME-G) were remarkably and significantly increased in most Bcrp1-/- and Mrp2-/- mice compared with those in wild-type FVB mice (P < 0.05). These results were accompanied with a significant increase of maximum plasma concentration values (P < 0.05). In Caco-2 monolayers, the efflux and clearance rates of ET-G and 4-ME-G were markedly reduced by the BCRP inhibitor Ko143 and MRP2 inhibitor MK571 on the apical side (P < 0.05). In an intestinal perfusion study, the excretion of ET-G was significantly decreased in perfusate and increased in plasma in Bcrp1-/- mice compared with those in wild-type FVB mice (P < 0.05). The 4-ME-G concentration was also decreased in the bile in transporter gene knockout mice. ET and 4-ME showed good permeability in both Caco-2 monolayers [apparent permeability (Papp ) ≥ 0.59 × 10-5 cm/s] and duodenum (Papp ≥ 1.81). In conclusion, BCRP and MRP2 are involved in excreting ET-G and 4-ME-G. ET and 4-ME are most likely absorbed via passive diffusion in the intestines.
Collapse
Affiliation(s)
- Yuhuan Li
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China (Y.L., W.S., X.O., G.L., Y.X., R.S., Y.W., X.Q., M.H., Z.L., L.Z.); State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (Special Administration Region), People's Republic of China (Z.L.); and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (M.H.)
| | - Wenjie Song
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China (Y.L., W.S., X.O., G.L., Y.X., R.S., Y.W., X.Q., M.H., Z.L., L.Z.); State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (Special Administration Region), People's Republic of China (Z.L.); and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (M.H.)
| | - Xiaojun Ou
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China (Y.L., W.S., X.O., G.L., Y.X., R.S., Y.W., X.Q., M.H., Z.L., L.Z.); State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (Special Administration Region), People's Republic of China (Z.L.); and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (M.H.)
| | - Guangkuo Luo
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China (Y.L., W.S., X.O., G.L., Y.X., R.S., Y.W., X.Q., M.H., Z.L., L.Z.); State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (Special Administration Region), People's Republic of China (Z.L.); and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (M.H.)
| | - Yushan Xie
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China (Y.L., W.S., X.O., G.L., Y.X., R.S., Y.W., X.Q., M.H., Z.L., L.Z.); State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (Special Administration Region), People's Republic of China (Z.L.); and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (M.H.)
| | - Rongjin Sun
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China (Y.L., W.S., X.O., G.L., Y.X., R.S., Y.W., X.Q., M.H., Z.L., L.Z.); State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (Special Administration Region), People's Republic of China (Z.L.); and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (M.H.)
| | - Ying Wang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China (Y.L., W.S., X.O., G.L., Y.X., R.S., Y.W., X.Q., M.H., Z.L., L.Z.); State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (Special Administration Region), People's Republic of China (Z.L.); and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (M.H.)
| | - Xiaoxiao Qi
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China (Y.L., W.S., X.O., G.L., Y.X., R.S., Y.W., X.Q., M.H., Z.L., L.Z.); State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (Special Administration Region), People's Republic of China (Z.L.); and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (M.H.)
| | - Ming Hu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China (Y.L., W.S., X.O., G.L., Y.X., R.S., Y.W., X.Q., M.H., Z.L., L.Z.); State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (Special Administration Region), People's Republic of China (Z.L.); and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (M.H.)
| | - Zhongqiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China (Y.L., W.S., X.O., G.L., Y.X., R.S., Y.W., X.Q., M.H., Z.L., L.Z.); State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (Special Administration Region), People's Republic of China (Z.L.); and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (M.H.)
| | - Lijun Zhu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China (Y.L., W.S., X.O., G.L., Y.X., R.S., Y.W., X.Q., M.H., Z.L., L.Z.); State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (Special Administration Region), People's Republic of China (Z.L.); and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (M.H.)
| |
Collapse
|
24
|
New hits as phase II enzymes inducers from a focused library with heteroatom-heteroatom and Michael-acceptor motives. Future Sci OA 2016; 1:FSO20. [PMID: 28031894 PMCID: PMC5137958 DOI: 10.4155/fso.15.18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The increased activity of phase-II-detoxification enzymes, such as quinone reductase (QR) and glutation S-transferase (GST), correlates with protection against chemically induced carcinogenesis. Herein we studied 11 different chemotypes, pyrazole, 1,2,4-oxadiazole, 1,2,5-oxadiazole, 1,2,3-thiadiazole, 1,2,4-thiazole, 1,3,4-oxathiazole, thienyl hydrazone, α,β-unsaturated-oxime, α,β-unsaturated-N-oxide, coumarin and α,β-unsaturated-carbonyl, as phase-II enzymes inducers in order to identify new pharmacophores with chemopreventive activity. Fifty-four compounds were analyzed on wild-type mouse-hepatoma Hepa-1c1c7 and on the aryl-hydrocarbon-nuclear-translocator (Arnt)-defective mutant BpRc1 cells. New monofunctional inducers of QR and GST were identified, the 1,2,5-oxadiazol-2-oxide (3), the 1,2,4-triazine-4-oxides (23) and (32) and the tetrahydropyrimidinones (28) and (49). It was confirmed that Nrf2 nuclear translocation is the operative molecular mechanism that allows compound (3) to exert protective effects via expression of downstream phase-II enzymes. Cancer chemoprevention is the prevention, delay or reversal of the carcinogenesis by administration of drugs. A group of chemopreventative agents includes quinone reductase and glutation S-transferase. Herein we have studied 11 chemotypes, trying to identify new pharmacophores for chemopreventives. We found new inducers of quinone reductase and glutation S-transferase, with excellent in vitro chemopreventive indexes, the 1,2,5-oxadiazol-2-oxide (3), the 1,2,4-triazine-4-oxides (23) and (32) and the tetrahydropyrimidinones (28) and (49), confirming that Nrf2 nuclear translocation is the operative molecular mechanism that allows compound (3) to exert protection. We have therefore highlighted good candidates for further in vivo studies of cancer chemopreventive activity.
Collapse
|
25
|
Lanez T, Henni M. Antioxidant activity and superoxide anion radical interaction with 2-(ferrocenylmethylamino) benzonitrile and 3-(ferrocenylmethylamino) benzonitrile. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2016. [DOI: 10.1007/s13738-016-0891-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Mitton FM, Ribas Ferreira JL, Gonzalez M, Miglioranza KSB, Monserrat JM. Antioxidant responses in soybean and alfalfa plants grown in DDTs contaminated soils: Useful variables for selecting plants for soil phytoremediation? PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2016; 130:17-21. [PMID: 27155479 DOI: 10.1016/j.pestbp.2015.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 11/16/2015] [Accepted: 12/15/2015] [Indexed: 06/05/2023]
Abstract
Phytoremediation is a low-cost alternative technology based on the use of plants to remove pollutants from the environment. Persistent organic pollutants such as DDTs with a long half-life in soils are attractive candidates for remediation. This study aimed to determine the potential of antioxidant response use in the evaluation of plants' tolerance for selecting species in phytoremediation purposes. Alfalfa and soybean plants were grown in DDT contaminated soils. After 60days, growth, protein content, antioxidant capacity, GST activity, concentration of proteic and non-proteic thiol groups, chlorophyll content and carotenoid content were measured in plant tissues. Results showed no effect on alfalfa or soybean photosynthetic pigments but different responses in the protein content, antioxidant capacity, GST activity and thiol groups on roots, stems and leaves, indicating that DDTs affected both species. Soybean showed higher susceptibility than alfalfa plants due to the lower antioxidant capacity and GST activity in leaves, in spite of having the lowest DDT accumulation. This study provides new insights into the role of oxidative stress as an important component of the plant's response to DDT exposure.
Collapse
Affiliation(s)
- Francesca M Mitton
- Laboratorio de Ecotoxicología y Contaminación Ambiental, Instituto de Investigaciones, Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP) - Consejo Nacional de Investigaciones, Científicas y Técnicas (CONICET), Dean Funes 3350, Mar del Plata 7600, Argentina.
| | - Josencler L Ribas Ferreira
- Universidade Federal de Rio Grande - FURG, Instituto de Ciências Biológicas (ICB), Rio Grande do Sul, Brazil
| | - Mariana Gonzalez
- Laboratorio de Ecotoxicología y Contaminación Ambiental, Instituto de Investigaciones, Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP) - Consejo Nacional de Investigaciones, Científicas y Técnicas (CONICET), Dean Funes 3350, Mar del Plata 7600, Argentina
| | - Karina S B Miglioranza
- Laboratorio de Ecotoxicología y Contaminación Ambiental, Instituto de Investigaciones, Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP) - Consejo Nacional de Investigaciones, Científicas y Técnicas (CONICET), Dean Funes 3350, Mar del Plata 7600, Argentina.
| | - José M Monserrat
- Universidade Federal de Rio Grande - FURG, Instituto de Ciências Biológicas (ICB), Rio Grande do Sul, Brazil
| |
Collapse
|
27
|
1-[2-(4-Methyl-7-coumarinyloxy)ethyl]-4-(5-{1-[2-(4-methyl-7-coumarinyloxy)ethyl]-1H-1,2,3-triazol-4-yl}pentyl)-1H-1,2,3-triazole. MOLBANK 2016. [DOI: 10.3390/m894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
28
|
Mazzone G, Galano A, Alvarez-Idaboy JR, Russo N. Coumarin-Chalcone Hybrids as Peroxyl Radical Scavengers: Kinetics and Mechanisms. J Chem Inf Model 2016; 56:662-70. [PMID: 26998844 DOI: 10.1021/acs.jcim.6b00006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The primary antioxidant activity of coumarin-chalcone hybrids has been investigated using the density functional and the conventional transition state theories. Their peroxyl radical scavenging ability was studied in solvents of different polarity and taking into account different reaction mechanisms. It was found that the activity of the hybrids increases with the polarity of the environment and the number of phenolic sites. In addition, their peroxyl radical scavenging activity is larger than those of the corresponding nonhybrid coumarin and chalcone molecules. This finding is in line with previous experimental evidence. All the investigated molecules were found to react faster than Trolox with (•)OOH, regardless of the polarity of the environment. The role of deprotonation on the overall activity of the studied compounds was assessed. The rate constants and branching ratios for the reactions of all the studied compounds with (•)OOH are reported for the first time.
Collapse
Affiliation(s)
- Gloria Mazzone
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria , I-87036 Arcavacata di Rende, Italy
| | - Annia Galano
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa , San Rafael Atlixco 186, Col. Vicentina. Iztapalapa, C. P. 09340 México, D. F. México
| | - Juan R Alvarez-Idaboy
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México , México DF 04510, México
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria , I-87036 Arcavacata di Rende, Italy
| |
Collapse
|
29
|
Marques EDS, Salles DB, Maistro EL. Assessment of the genotoxic/clastogenic potential of coumarin derivative 6,7-dihydroxycoumarin (aesculetin) in multiple mouse organs. Toxicol Rep 2015; 2:268-274. [PMID: 28962359 PMCID: PMC5598276 DOI: 10.1016/j.toxrep.2015.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 01/16/2015] [Accepted: 01/16/2015] [Indexed: 11/13/2022] Open
Abstract
6,7-Dihydroxycoumarin (6,7-HC) (aesculetin) is a natural and synthetic coumarin derivative of great interest for use by humans due to their potent antioxidant properties. Considering that there are no reports that assess the in vivo genetic toxicity of 6,7-HC, the aim of the present study was to investigate its genotoxic potential in terms of DNA damage in peripheral blood, liver, bone marrow and testicular cells of Swiss albino mice by the comet assay, and its clastogenic/aneugenic potential in bone marrow cells using the micronucleus test. In addition, the ability of 6,7-HC to modulate the genotoxic effects induced by doxorubicin (DXR) was also preliminarily evaluated. Cytotoxicity was assessed by scoring polychromatic (PCE) and normochromatic (NCE) erythrocytes’ ratio. The test compound was administered orally at doses of 25, 50 and 500 mg kg−1 isolated and also simultaneously to DXR (80 mg kg−1). The results showed that 6,7-HC did not induce significant DNA damage in any of the analyzed cells, and also did not show any significant increase in micronucleated PCE at the three tested doses. The PCE/NCE ratio indicated no cytotoxicity. Moreover, the extent of DNA damage induced by DXR decreased significantly only in peripheral blood and testicular cells, and only at the lowest dose of 6,7-HC.
Collapse
Affiliation(s)
- Eduardo de Souza Marques
- Programa de Pós-Graduação em Biologia Geral e Aplicada, Universidade Estadual Paulista (UNESP), Instituto de Biociências, Botucatu, SP, Brazil
| | - Daiane Bernardoni Salles
- Universidade Estadual Paulista - UNESP - Faculdade de Filosofia e Ciências, Departamento de Fonoaudiologia, Marília, SP 17525-900, Brazil
| | - Edson Luis Maistro
- Programa de Pós-Graduação em Biologia Geral e Aplicada, Universidade Estadual Paulista (UNESP), Instituto de Biociências, Botucatu, SP, Brazil.,Universidade Estadual Paulista - UNESP - Faculdade de Filosofia e Ciências, Departamento de Fonoaudiologia, Marília, SP 17525-900, Brazil
| |
Collapse
|
30
|
Maistro EL, de Souza Marques E, Fedato RP, Tolentino F, da Silva CDAC, Tsuboy MSF, Resende FA, Varanda EA. In vitro assessment of mutagenic and genotoxic effects of coumarin derivatives 6,7-dihydroxycoumarin and 4-methylesculetin. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:109-118. [PMID: 25424619 DOI: 10.1080/15287394.2014.943865] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Coumarins are naturally occurring compounds, widely distributed throughout the plant kingdom (Plantae), and possess important pharmacological properties, including inhibition of oxidative stress. In this context, newly synthesized coumarin compounds are being produced due to their potent antioxidant activities. Therefore, the aim of the present study was to determine the in vitro cytotoxic, mutagenic, and genotoxic effects of 6,7-dihydroxycoumarin (6,7-HC) and 4-methylesculetin (4-ME) using the Salmonella/microsome test and in cultured human lymphocytes the comet assay and micronucleus test. The three coumarin derivatives concentrations evaluated in comet and MN assays were 2, 8, and 32 μg/mL, selected through a preliminary trypan blue-staining assay. In the Ames test, the 5 concentrations tested were 62.5, 125, 250, 500, and 750 μg/plate. Positive (methyl methane-sulfonate, MMS) and negative (dimethyl sulfoxide, DMSO) control groups were also included in the analysis. Our results showed that 4-ME induced greater cytotoxicity at high concentrations than 6,7-HC. In addition, both compounds were not mutagenic in the Ames test and not genotoxic or clastogenic/aneugenic in cultured human lymphocytes.
Collapse
Affiliation(s)
- Edson Luis Maistro
- a Programa de Pós-Graduação em Biologia Geral e Aplicada , Universidade Estadual Paulista (UNESP), Instituto de Biociências , Botucatu , São Paulo , Brazil
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Budzynska B, Boguszewska-Czubara A, Kruk-Slomka M, Skalicka-Wozniak K, Michalak A, Musik I, Biala G. Effects of imperatorin on scopolamine-induced cognitive impairment and oxidative stress in mice. Psychopharmacology (Berl) 2015; 232:931-42. [PMID: 25189792 PMCID: PMC4325182 DOI: 10.1007/s00213-014-3728-6] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 08/20/2014] [Indexed: 12/21/2022]
Abstract
RATIONALE Imperatorin, a naturally occurring furanocoumarin, inactivates gamma-aminobutyric acid transaminase and inhibits acetylcholinesterase activity. OBJECTIVES The purpose of our experiment was to examine the influence of imperatorin on cognitive impairment and oxidative stress in the brain induced by scopolamine in male Swiss mice. METHODS In the present studies, we used scopolamine-invoke memory deficit measured in passive avoidance (PA) paradigm as an animal model of Alzheimer disease (AD). RESULTS Our finding revealed that imperatorin administered acutely at the doses of 5 and 10 mg/kg prior to the injection of scopolamine (1 mg/kg) improved memory acquisition and consolidation impaired by scopolamine. Furthermore, repeatable (7 days, twice daily) administration of the highest dose of imperatorin (10 mg/kg) significantly attenuated the effects of scopolamine on memory acquisition, whereas the doses of 5 and 10 mg/kg of this furanocoumarin were effective when memory consolidation was measured. Imperatorin, administered with scopolamine, increased antioxidant enzymes activity and decreased concentration of malondiamide, an indicator of lipid peroxidation level. CONCLUSIONS These results demonstrate that imperatorin may offer protection against scopolamine-induced memory impairments and possesses antioxidant properties, thus after further preclinical and clinical studies this compound may provide an interesting approach in pharmacotherapy, as well as prophylactics of AD.
Collapse
Affiliation(s)
- Barbara Budzynska
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Lublin, Poland,
| | | | - Marta Kruk-Slomka
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Lublin, Poland
| | - Krystyna Skalicka-Wozniak
- Department of Pharmacognosy with Medicinal Plants Unit, Medical University of Lublin, Lublin, Poland
| | - Agnieszka Michalak
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Lublin, Poland
| | - Irena Musik
- Department of Medical Chemistry, Medical University of Lublin, Lublin, Poland
| | - Grazyna Biala
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
32
|
Budzynska B, Boguszewska-Czubara A, Kruk-Slomka M, Skalicka-Wozniak K, Michalak A, Musik I, Biala G, Glowniak K. Effects of imperatorin on nicotine-induced anxiety- and memory-related responses and oxidative stress in mice. Physiol Behav 2013; 122:46-55. [PMID: 23999469 DOI: 10.1016/j.physbeh.2013.08.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 08/25/2013] [Indexed: 01/02/2023]
Abstract
The purpose of the reported experiments was to examine the effects of imperatorin [9-[(3-methylbut-2-en-1-yl)oxy]-7H-furo[3,2-g]chromen-7-one] on anxiety and memory-related responses induced by nicotine in mice and their relation to the level of nicotine-induced oxidative stress in brain as well as in the hippocampus and the prefrontal cortex. Male Swiss mice were tested for anxiety in the elevated plus maze test (EPM), and for cognition using passive avoidance (PA) procedures. Imperatorin, purified by high-speed counter-current chromatography from methanol extract of fruits of Angelica officinalis, acutely administered at the doses of 10 and 20mg/kg impaired the anxiogenic effect of nicotine (0.1mg/kg, s.c.). Furthermore, acute injections of subthreshold dose of imperatorin (1mg/kg, i.p.) improved processes of memory acquisition when co-administered with nicotine used at non-active dose of 0.05 mg/kg, s.c. Additionally, repeated administration of imperatorin (1mg/kg, i.p., twice daily, for 6 days) improved different stages of memory processes (both acquisition and consolidation) when injected in combination with non-active dose of nicotine (0.05 mg/kg, s.c.) in the PA task. Oxidative stress was assessed by determination of antioxidant enzymes (glutathione peroxidases (GPx), superoxide dismutase (SOD), glutathione reductase (GR)) activities as well as of malondialdehyde (MDA) concentration in the whole brain, the hippocampus and the prefrontal cortex after repeated administration of imperatorin (1mg/kg, 6 days) and single nicotine injection (0.05 mg/kgs.c.) on the seventh day. The results of our research suggest strong behavioural interaction between imperatorin and nicotine at the level of anxiety- and cognitive-like processes. Furthermore, imperatorin inhibited nicotine-induced changes in examined indicators of oxidative stress, especially in the hippocampus and the cortex.
Collapse
Affiliation(s)
- Barbara Budzynska
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Poland.
| | | | | | | | | | | | | | | |
Collapse
|