1
|
Liu Z, Fu Q, Shao Y, Duan X. The role of mitochondrial DNA copy number in autoimmune disease: a bidirectional two sample mendelian randomization study. Front Immunol 2024; 15:1409969. [PMID: 39464879 PMCID: PMC11502960 DOI: 10.3389/fimmu.2024.1409969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024] Open
Abstract
Background Mitochondrial DNA (mtDNA) plays an important role in autoimmune diseases (AD), yet the relationship between mitochondria and autoimmune disease is controversial. This study employed bidirectional Mendelian randomization (MR) to explore the causal relationship between mtDNA copy number and 13 ADs (including ankylosing spondylitis [AS], Crohn's disease [CD], juvenile rheumatoid arthritis [JRA], polymyalgia rheumatica [PMR], psoriasis [PSO], rheumatoid arthritis [RA], Sjogren's syndrome [SS], systemic lupus erythematosus [SLE], thyrotoxicosis, type 1 diabetes mellitus [T1DM], ulcerative colitis [UC], and vitiligo). Methods A two-sample MR analysis was performed to assess the causal relationship between mtDNA copy number and AD. Genome-wide association study (GWAS) for mtDNA copy number were obtained from the UK Biobank (UKBB), while those associated with AD were sourced from the FinnGen Biobank. Inverse variance weighting (IVW) was the primary analysis method, complemented by three sensitivity analyses (MR-Egger, weighted median, weighted mode) to validate the results. Results IVW MR analysis identified significant associations between mtDNA copy number and CD (OR=2.51, 95% CI 1.56-4.22, P<0.001), JRA (OR=1.87, 95% CI 1.17-7.65, P=0.022), RA (OR=1.71, 95%CI 1.18-2.47, P=0.004), thyrotoxicosis (OR=0.51, 95% CI0.27-0.96, P=0.038), and T1DM (OR=0.51, 95% CI 0.27-0.96, P=0.038). Sensitivity analyses indicated no horizontal pleiotropy. Conclusions Our study revealed a potential causal relationship between mtDNA copy number and ADs, indicating that these markers may be relevant in exploring new therapeutic approaches.
Collapse
Affiliation(s)
- Zhekang Liu
- Rheumatology and Immunology Department, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qingan Fu
- Cardiovascular Medicine Department, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yijia Shao
- Rheumatology and Immunology Department, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xinwang Duan
- Rheumatology and Immunology Department, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
De Benedittis G, Latini A, Morgante C, Perricone C, Ceccarelli F, Novelli G, Novelli L, Ciccacci C, Borgiani P. The dysregulation of mitochondrial homeostasis-related genes could be involved in the decrease of mtDNA copy number in systemic lupus erythematosus patients. Immunol Res 2024:10.1007/s12026-024-09535-z. [PMID: 39230799 DOI: 10.1007/s12026-024-09535-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/29/2024] [Indexed: 09/05/2024]
Abstract
Systemic lupus erythematosus (SLE) is a chronic multifactorial autoimmune disease. It is now widely demonstrated that oxidative stress (OS) plays an important role in the modulation of the pathogenesis of this disease. Mitochondrial DNA (mtDNA) is highly vulnerable to OS and it is known a decrease of mtDNA copy number in SLE patients. However, to date, it has not been investigated if this decrease is associated with a dysregulation of mitochondrial homeostasis genes. Our aim is to evaluate the amount of mtDNA copy number and the expression of the genes more involved in the mitochondrial homeostasis pathways, in peripheral blood mononuclear cells (PBMCs) of SLE patients and healthy controls. We analysed the amount of mtDNA in PBMCs of 72 SLE patients and 61 healthy controls by qPCR. Then, we investigated the expression variability of TFAM and SIRT1 (biogenesis), MFN1 and MFF (fusion/fission) and PRKN2 (mitophagy) genes in a subgroup of SLE patients and healthy controls. Interestingly, we have observed a highly significant decrease in mtDNA copies in SLE patients compared to healthy controls (P < 0.0001). In addition, we have shown that the expression levels of SIRT1, MFN1 and PRKN2 genes were significantly decreased in SLE patients with respect to healthy controls (P = 0.00001 for SIRT1, P = 0.0150 for MFN1 and P = 0.0009 for PRKN2). Lastly, we have reported a positive correlation between PRKN2 expression level and mtDNA copy number (P = 0.019, r = 0.475). In conclusion, our data confirm the impairment of mtDNA copy number in the disease and show for the first time a dysregulation of the mitochondrial homeostasis genes. These results could provide additional support to the important role of mitochondria in SLE development.
Collapse
Affiliation(s)
- Giada De Benedittis
- Department of Biomedicine and Prevention, Genetics Section, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Andrea Latini
- Department of Biomedicine and Prevention, Genetics Section, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Chiara Morgante
- Department of Biomedicine and Prevention, Genetics Section, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Carlo Perricone
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129, Perugia, Italy
| | - Fulvia Ceccarelli
- Lupus Clinic, Rheumatology, Department of Internal Medicine, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Genetics Section, University of Rome Tor Vergata, 00133, Rome, Italy
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, USA
| | - Lucia Novelli
- UniCamillus, Saint Camillus International University of Health Sciences, 00131, Rome, Italy
| | - Cinzia Ciccacci
- UniCamillus, Saint Camillus International University of Health Sciences, 00131, Rome, Italy
| | - Paola Borgiani
- Department of Biomedicine and Prevention, Genetics Section, University of Rome Tor Vergata, 00133, Rome, Italy
| |
Collapse
|
3
|
Halfon M, Tankeu AT, Ribi C. Mitochondrial Dysfunction in Systemic Lupus Erythematosus with a Focus on Lupus Nephritis. Int J Mol Sci 2024; 25:6162. [PMID: 38892349 PMCID: PMC11173067 DOI: 10.3390/ijms25116162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease affecting mostly women of child-bearing age. Immune dysfunction in SLE results from disrupted apoptosis which lead to an unregulated interferon (IFN) stimulation and the production of autoantibodies, leading to immune complex formation, complement activation, and organ damage. Lupus nephritis (LN) is a common and severe complication of SLE, impacting approximately 30% to 40% of SLE patients. Recent studies have demonstrated an alteration in mitochondrial homeostasis in SLE patients. Mitochondrial dysfunction contributes significantly to SLE pathogenesis by enhancing type 1 IFN production through various pathways involving neutrophils, platelets, and T cells. Defective mitophagy, the process of clearing damaged mitochondria, exacerbates this cycle, leading to increased immune dysregulation. In this review, we aim to detail the physiopathological link between mitochondrial dysfunction and disease activity in SLE. Additionally, we will explore the potential role of mitochondria as biomarkers and therapeutic targets in SLE, with a specific focus on LN. In LN, mitochondrial abnormalities are observed in renal cells, correlating with disease progression and renal fibrosis. Studies exploring cell-free mitochondrial DNA as a biomarker in SLE and LN have shown promising but preliminary results, necessitating further validation and standardization. Therapeutically targeting mitochondrial dysfunction in SLE, using drugs like metformin or mTOR inhibitors, shows potential in modulating immune responses and improving clinical outcomes. The interplay between mitochondria, immune dysregulation, and renal involvement in SLE and LN underscores the need for comprehensive research and innovative therapeutic strategies. Understanding mitochondrial dynamics and their impact on immune responses offers promising avenues for developing personalized treatments and non-invasive biomarkers, ultimately improving outcomes for LN patients.
Collapse
Affiliation(s)
- Matthieu Halfon
- Transplantation Center, Lausanne University Hospital, Rue du Bugnon 44, CH-1010 Lausanne, Switzerland;
| | - Aurel T. Tankeu
- Transplantation Center, Lausanne University Hospital, Rue du Bugnon 44, CH-1010 Lausanne, Switzerland;
| | - Camillo Ribi
- Division of Immunology and Allergy, Lausanne University Hospital, CH-1010 Lausanne, Switzerland;
| |
Collapse
|
4
|
Shehata WA, Hammam MA, Abdo A, Tayel N, Abdelsattar S. Mitochondrial DNA copy number as a diagnostic marker and indicator of degree of severity in alopecia areata. J Immunoassay Immunochem 2023; 44:256-268. [PMID: 36681933 DOI: 10.1080/15321819.2023.2168557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Alopecia areata (AA) is a disorder with several etiologies. The evidence suggests that the absolute copy number of mitochondrial deoxyribonucleic acid (mtDNA), as well as proportion of mutated mtDNA copies, determines disease onset. This study aims to quantify the relative index of the mtDNA copy number in patients with AA and healthy controls and correlate the results with the existing clinical information. This case-control study included 50 patients with AA and 50 age- and sex-coordinated healthy persons as controls. The severity of AA was weighed using the Severity of Alopecia Tool and Kavak's classification. The relative index of the mtDNA copy number was measured by real-time qPCR. Significant statistical difference was observed between cases and controls regarding mean mtDNA copy number, p < .001. There was significant positive correlation with SALT score (p = 0.001). A cutoff value of >1.619 N/µL could significantly diagnose AA cases (p < .001), and a cutoff value of > 1.36 N/µL could discriminate mild AA cases from those with moderate AA (p = 0.007). The relative index of mtDNA copy number is significantly elevated in AA cases and could be helpful in diagnosing and evaluating AA severity.
Collapse
Affiliation(s)
- Wafaa Ahmed Shehata
- Dermatology, Andrology & STDs Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Mostafa Ahmed Hammam
- Dermatology, Andrology & STDs Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Aya Abdo
- General Practitioner in Health Sector, Shebin El-Kom, Menoufia, Egypt
| | - Nermin Tayel
- Department of Molecular Diagnostics & Therapeutics, Genetic Engineering and Biotechnology Research Institute, Sadat City University, Sadat, Egypt
| | - Shimaa Abdelsattar
- Clinical Biochemistry and Molecular Diagnostics, National Liver Institute, Menoufia University, Menoufia, Egypt
| |
Collapse
|
5
|
Becker YLC, Duvvuri B, Fortin PR, Lood C, Boilard E. The role of mitochondria in rheumatic diseases. Nat Rev Rheumatol 2022; 18:621-640. [PMID: 36175664 DOI: 10.1038/s41584-022-00834-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2022] [Indexed: 11/09/2022]
Abstract
The mitochondrion is an intracellular organelle thought to originate from endosymbiosis between an ancestral eukaryotic cell and an α-proteobacterium. Mitochondria are the powerhouses of the cell, and can control several important processes within the cell, such as cell death. Conversely, dysregulation of mitochondria possibly contributes to the pathophysiology of several autoimmune diseases. Defects in mitochondria can be caused by mutations in the mitochondrial genome or by chronic exposure to pro-inflammatory cytokines, including type I interferons. Following the release of intact mitochondria or mitochondrial components into the cytosol or the extracellular space, the bacteria-like molecular motifs of mitochondria can elicit pro-inflammatory responses by the innate immune system. Moreover, antibodies can target mitochondria in autoimmune diseases, suggesting an interplay between the adaptive immune system and mitochondria. In this Review, we discuss the roles of mitochondria in rheumatic diseases such as systemic lupus erythematosus, antiphospholipid syndrome and rheumatoid arthritis. An understanding of the different contributions of mitochondria to distinct rheumatic diseases or manifestations could permit the development of novel therapeutic strategies and the use of mitochondria-derived biomarkers to inform pathogenesis.
Collapse
Affiliation(s)
- Yann L C Becker
- Centre de Recherche ARThrite-Arthrite, Recherche et Traitements, Université Laval, Québec, QC, Canada
- Centre de Recherche du CHU de Québec-Université Laval, Axe Maladies infectieuses et immunitaires, Québec, QC, Canada
- Département de microbiologie et immunologie, Université Laval, Québec, QC, Canada
| | - Bhargavi Duvvuri
- Division of Rheumatology, University of Washington, Seattle, WA, USA
| | - Paul R Fortin
- Centre de Recherche ARThrite-Arthrite, Recherche et Traitements, Université Laval, Québec, QC, Canada
- Centre de Recherche du CHU de Québec-Université Laval, Axe Maladies infectieuses et immunitaires, Québec, QC, Canada
- Division of Rheumatology, Department of Medicine, CHU de Québec-Université Laval, Québec, QC, Canada
| | - Christian Lood
- Division of Rheumatology, University of Washington, Seattle, WA, USA.
| | - Eric Boilard
- Centre de Recherche ARThrite-Arthrite, Recherche et Traitements, Université Laval, Québec, QC, Canada.
- Centre de Recherche du CHU de Québec-Université Laval, Axe Maladies infectieuses et immunitaires, Québec, QC, Canada.
- Département de microbiologie et immunologie, Université Laval, Québec, QC, Canada.
| |
Collapse
|
6
|
Beckley MA, Shrestha S, Singh KK, Portman MA. The role of mitochondria in the pathogenesis of Kawasaki disease. Front Immunol 2022; 13:1017401. [PMID: 36300112 PMCID: PMC9592088 DOI: 10.3389/fimmu.2022.1017401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/20/2022] [Indexed: 11/28/2022] Open
Abstract
Kawasaki disease is a systemic vasculitis, especially of the coronary arteries, affecting children. Despite extensive research, much is still unknown about the principal driver behind the amplified inflammatory response. We propose mitochondria may play a critical role. Mitochondria serve as a central hub, influencing energy generation, cell proliferation, and bioenergetics. Regulation of these biological processes, however, comes at a price. Release of mitochondrial DNA into the cytoplasm acts as damage-associated molecular patterns, initiating the development of inflammation. As a source of reactive oxygen species, they facilitate activation of the NLRP3 inflammasome. Kawasaki disease involves many of these inflammatory pathways. Progressive mitochondrial dysfunction alters the activity of immune cells and may play a role in the pathogenesis of Kawasaki disease. Because they contain their own genome, mitochondria are susceptible to mutation which can propagate their dysfunction and immunostimulatory potential. Population-specific variants in mitochondrial DNA have also been linked to racial disparities in disease risk and treatment response. Our objective is to critically examine the current literature of mitochondria’s role in coordinating proinflammatory signaling pathways, focusing on potential mitochondrial dysfunction in Kawasaki disease. No association between impaired mitochondrial function and Kawasaki disease exists, but we suggest a relationship between the two. We hypothesize a framework of mitochondrial determinants that may contribute to ethnic/racial disparities in the progression of Kawasaki disease.
Collapse
Affiliation(s)
- Mikayla A. Beckley
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, United States
- *Correspondence: Mikayla A. Beckley,
| | - Sadeep Shrestha
- Department of Epidemiology, School of Public Health University of Alabama at Birmingham, Birmingham, AL, United States
| | - Keshav K. Singh
- Department of Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Michael A. Portman
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Pediatrics, Division of Cardiology, University of Washington, Seattle, WA, United States
| |
Collapse
|
7
|
Li Z, Zong QQ, Zhai CX, Yu GH, Hu WQ, Wang YH, Wang LL, Yan ZY, Zhang TY, Teng Y, Liu S, Cai J, Li M, Chen YF, Ni J, Cai GQ, Cai PY, Pan HF, Zou YF. An association study on the risk, glucocorticoids effectiveness, and prognosis of systemic lupus erythematosus: insight from mitochondrial DNA copy number. Immunol Res 2022; 70:850-859. [DOI: 10.1007/s12026-022-09318-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/06/2022] [Indexed: 11/05/2022]
|
8
|
Quintero-González DC, Muñoz-Urbano M, Vásquez G. Mitochondria as a key player in systemic lupus erythematosus. Autoimmunity 2022; 55:497-505. [PMID: 35978536 DOI: 10.1080/08916934.2022.2112181] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Systemic lupus erythematosus (SLE) is a heterogeneous, multisystemic autoimmune disease with a broad clinical spectrum. Loss of self-tolerance and chronic inflammation are critical markers of SLE pathogenesis. Although alterations in adaptive immunity are widely recognized, increasing reports indicate the role of mitochondrial dysfunction in activating pathogenic pathways involving the innate immune system. Among these, disarrangements in mitochondrial DNA copy number and heteroplasmy percentage are related to SLE activity. Furthermore, increased oxidative stress contributes to post-translational changes in different molecules (proteins, nucleic acids, and lipids), release of oxidized mitochondrial DNA through a pore of voltage-dependent anion channel oligomers, and spontaneous mitochondrial antiviral signaling protein oligomerization. Finally, a reduction in mitophagy, apoptosis induction, and NETosis has been reported in SLE. Most of these pathways lead to persistent and inappropriate exposure to oxidized mitochondrial DNA, which can stimulate plasmacytoid dendritic cells, enhance autoreactive lymphocyte activation, and release increased amounts of interferons through stimulation of toll-like receptors and cytosolic DNA sensors. Likewise, abnormal T-cell receptor activation, decreased regulatory T cells, enhanced Th17 phenotypes, and increased monocyte maturation to dendritic cells have also been observed in SLE. Targeting the players involved in mitochondrial damage can ultimately help.
Collapse
Affiliation(s)
| | - Marcela Muñoz-Urbano
- Rheumatology Section, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - G Vásquez
- Rheumatology Section, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia.,Grupo de Inmunología Celular e Inmunogenética (GICIC), Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
9
|
Zhao L, Hu X, Xiao F, Zhang X, Zhao L, Wang M. Mitochondrial impairment and repair in the pathogenesis of systemic lupus erythematosus. Front Immunol 2022; 13:929520. [PMID: 35958572 PMCID: PMC9358979 DOI: 10.3389/fimmu.2022.929520] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/28/2022] [Indexed: 12/12/2022] Open
Abstract
Nucleic acid autoantibodies, increase type I interferon (IFN-α) levels, and immune cell hyperactivation are hallmarks of systemic lupus erythematosus (SLE). Notably, immune cell activation requires high level of cellular energy that is predominately generated by the mitochondria. Mitochondrial reactive oxygen species (mROS), the byproduct of mitochondrial energy generation, serves as an essential mediator to control the activation and differentiation of cells and regulate the antigenicity of oxidized nucleoids within the mitochondria. Recently, clinical trials on normalization of mitochondrial redox imbalance by mROS scavengers and those investigating the recovery of defective mitophagy have provided novel insights into SLE prophylaxis and therapy. However, the precise mechanism underlying the role of oxidative stress-related mitochondrial molecules in skewing the cell fate at the molecular level remains unclear. This review outlines distinctive mitochondrial functions and pathways that are involved in immune responses and systematically delineates how mitochondrial dysfunction contributes to SLE pathogenesis. In addition, we provide a comprehensive overview of damaged mitochondrial function and impaired metabolic pathways in adaptive and innate immune cells and lupus-induced organ tissues. Furthermore, we summarize the potential of current mitochondria-targeting drugs for SLE treatment. Developing novel therapeutic approaches to regulate mitochondrial oxidative stress is a promising endeavor in the search for effective treatments for systemic autoimmune diseases, particularly SLE.
Collapse
Affiliation(s)
- Like Zhao
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xianda Hu
- Beijing Tibetan Hospital, China Tibetology Research Center, Beijing, China
| | - Fei Xiao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lidan Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, Beijing, China
- *Correspondence: Min Wang, ; Lidan Zhao,
| | - Min Wang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Min Wang, ; Lidan Zhao,
| |
Collapse
|
10
|
Fazel-Najafabadi M, Rallabandi HR, Singh MK, Maiti GP, Morris J, Looger LL, Nath SK. Discovery and Functional Characterization of Two Regulatory Variants Underlying Lupus Susceptibility at 2p13.1. Genes (Basel) 2022; 13:genes13061016. [PMID: 35741778 PMCID: PMC9222795 DOI: 10.3390/genes13061016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 02/05/2023] Open
Abstract
Genome-wide association studies have identified 2p13.1 as a prominent susceptibility locus for systemic lupus erythematosus (SLE)—a complex, multisystem autoimmune disease. However, the identity of underlying causal variant (s) and molecular mechanisms for increasing disease susceptibility are poorly understood. Using meta-analysis (cases = 10,252, controls = 21,604) followed by conditional analysis, bioinformatic annotation, and eQTL and 3D-chromatin interaction analyses, we computationally prioritized potential functional variants and subsequently experimentally validated their effects. Ethnicity-specific meta-analysis revealed striking allele frequency differences between Asian and European ancestries, but with similar odds ratios. We identified 20 genome-wide significant (p < 5 × 10−8) variants, and conditional analysis pinpointed two potential functional variants, rs6705628 and rs2272165, likely to explain the association. The two SNPs are near DGUOK, mitochondrial deoxyguanosine kinase, and its associated antisense RNA DGUOK-AS1. Using luciferase reporter gene assays, we found significant cell type- and allele-specific promoter activity at rs6705628 and enhancer activity at rs2272165. This is supported by ChIP-qPCR showing allele-specific binding with three histone marks (H3K27ac, H3K4me3, and H3K4me1), RNA polymerase II (Pol II), transcriptional coactivator p300, CCCTC-binding factor (CTCF), and transcription factor ARID3A. Transcriptome data across 28 immune cell types from Asians showed both SNPs are cell-type-specific but only in B-cells. Splicing QTLs showed strong regulation of DGUOK-AS1. Genotype-specific DGOUK protein levels are supported by Western blots. Promoter capture Hi-C data revealed long-range chromatin interactions between rs2272165 and several nearby promoters, including DGUOK. Taken together, we provide mechanistic insights into how two noncoding variants underlie SLE risk at the 2p13.1 locus.
Collapse
Affiliation(s)
- Mehdi Fazel-Najafabadi
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (M.F.-N.); (H.-R.R.); (M.K.S.); (G.P.M.)
| | - Harikrishna-Reddy Rallabandi
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (M.F.-N.); (H.-R.R.); (M.K.S.); (G.P.M.)
| | - Manish K. Singh
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (M.F.-N.); (H.-R.R.); (M.K.S.); (G.P.M.)
| | - Guru P. Maiti
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (M.F.-N.); (H.-R.R.); (M.K.S.); (G.P.M.)
| | - Jacqueline Morris
- Department of Neurosciences, University of California, San Diego, CA 92121, USA;
| | - Loren L. Looger
- Department of Neurosciences, University of California, San Diego, CA 92121, USA;
- Howard Hughes Medical Institute, University of California, San Diego, CA 92121, USA
- Correspondence: (L.L.L.); (S.K.N.)
| | - Swapan K. Nath
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (M.F.-N.); (H.-R.R.); (M.K.S.); (G.P.M.)
- Correspondence: (L.L.L.); (S.K.N.)
| |
Collapse
|
11
|
Chen PM, Tsokos GC. Mitochondria in the Pathogenesis of Systemic Lupus Erythematosus. Curr Rheumatol Rep 2022; 24:88-95. [PMID: 35290598 DOI: 10.1007/s11926-022-01063-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2022] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by autoantibody production and inflammation in multiple organs. In this article, we present data on how various mitochondria pathologies are involved in the pathogenesis of the disease including the fact that they serve as a reservoir of autoantigens which contribute to the upending of lymphocyte tolerance. RECENT FINDINGS Mitochondrial DNA from various cell sources, including neutrophil extracellular traps, platelets, and red blood cells, elicits the production of type I interferon which contributes to breaking of peripheral tolerance. Mitochondrial DNA also serves as autoantigen targeted by autoantibodies. Mutations of mitochondrial DNA triggered by reactive oxygen species induce T cell cross-reactivity against self-antigens. Selective gene polymorphisms that regulate mitochondrial apoptosis in autoreactive B and T cells represent another key aspect in the induction of autoimmunity. Various mitochondrial abnormalities, including changes in mitochondrial function, oxidative stress, genetic polymorphism, mitochondrial DNA mutations, and apoptosis pathways, are each linked to different aspects of lupus pathogenesis. However, whether targeting these mitochondrial pathologies can be used to harness autoimmunity remains to be explored.
Collapse
Affiliation(s)
- Ping-Min Chen
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - George C Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
Teng Y, Yan ZY, Wang LL, Wang YH, Zhang TY, Li Z, Liu S, Cai J, Chen YF, Li M, Liu SX, Xu ZZ, Huang HL, Wang F, Pan FM, Pan HF, Su H, Zou YF. Mitochondrial DNA genetic variants are associated with systemic lupus erythematosus susceptibility, glucocorticoids efficacy, and prognosis. Rheumatology (Oxford) 2021; 61:2652-2662. [PMID: 34718439 DOI: 10.1093/rheumatology/keab806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/08/2021] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE To investigate the associations of mitochondrial DNA (mtDNA) genetic variants with systemic lupus erythematosus (SLE) susceptibility, glucocorticoids (GCs) efficacy, and prognosis. METHODS Our study was done in two stages. First, we performed the whole mitochondrial genome sequencing in 100 patients and 100 controls to initially screen potential mtDNA variants associated with disease and glucocorticoids efficacy. Then, we validated the results in an independent set of samples. In total, 605 SLE patients and 604 normal controls were included in our two-stage study. A two-stage efficacy study was conducted in 512 patients treated with GCs for 12 weeks. We also explored the association between mtDNA variants and SLE prognosis. RESULTS In the combined sample, four mtDNA variants (A4833G, T5108C, G14569A, CA514-515-) were associated with SLE susceptibility (all P BH<0.05). We confirmed that T16362C was related to GCs efficacy (P BH=0.014). Significant associations were detected between T16362C and T16519C and the efficacy of GCs in females with SLE (P BH<0.05). In the prognosis study, variants A4833G (P BH=0.003) and G14569A (P BH=9.744 × 1 0 -4) substantially increased SLE relapse risk. Female patients harbouring variants T5108C and T16362C were more prone to relapse (P BH<0.05). Haplotype analysis showed that haplogroup G was linked with SLE susceptibility (P BH=0.001) and prognosis (P BH=0.013). Moreover, mtDNA variants-environment interactions were observed. CONCLUSION We identified novel mtDNA genetic variants that were associated with SLE susceptibility, GCs efficacy, and prognosis. Interactions between mtDNA variants and environmental factors were related to SLE risk and GCs efficacy. Our findings provide important information for future understanding the occurrence and development of SLE.
Collapse
Affiliation(s)
- Ying Teng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Anhui Medical Autoimmune Diseases, Hefei, Anhui, China
| | - Zi-Ye Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Anhui Medical Autoimmune Diseases, Hefei, Anhui, China
| | - Lin-Lin Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Anhui Medical Autoimmune Diseases, Hefei, Anhui, China
| | - Yu-Hua Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Anhui Medical Autoimmune Diseases, Hefei, Anhui, China
| | - Ting-Yu Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Anhui Medical Autoimmune Diseases, Hefei, Anhui, China
| | - Zhen Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Anhui Medical Autoimmune Diseases, Hefei, Anhui, China
| | - Shuang Liu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jing Cai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yang-Fan Chen
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Mu Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Sheng-Xiu Liu
- Institute of Dermatology and Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhou-Zhou Xu
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hai-Liang Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Fang Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Fa-Ming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Anhui Medical Autoimmune Diseases, Hefei, Anhui, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Anhui Medical Autoimmune Diseases, Hefei, Anhui, China
| | - Hong Su
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Anhui Medical Autoimmune Diseases, Hefei, Anhui, China
| | - Yan-Feng Zou
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Anhui Medical Autoimmune Diseases, Hefei, Anhui, China
| |
Collapse
|
13
|
Buang N, Tapeng L, Gray V, Sardini A, Whilding C, Lightstone L, Cairns TD, Pickering MC, Behmoaras J, Ling GS, Botto M. Type I interferons affect the metabolic fitness of CD8 + T cells from patients with systemic lupus erythematosus. Nat Commun 2021; 12:1980. [PMID: 33790300 PMCID: PMC8012390 DOI: 10.1038/s41467-021-22312-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 03/06/2021] [Indexed: 02/01/2023] Open
Abstract
The majority of patients with systemic lupus erythematosus (SLE) have high expression of type I IFN-stimulated genes. Mitochondrial abnormalities have also been reported, but the contribution of type I IFN exposure to these changes is unknown. Here, we show downregulation of mitochondria-derived genes and mitochondria-associated metabolic pathways in IFN-High patients from transcriptomic analysis of CD4+ and CD8+ T cells. CD8+ T cells from these patients have enlarged mitochondria and lower spare respiratory capacity associated with increased cell death upon rechallenge with TCR stimulation. These mitochondrial abnormalities can be phenocopied by exposing CD8+ T cells from healthy volunteers to type I IFN and TCR stimulation. Mechanistically these 'SLE-like' conditions increase CD8+ T cell NAD+ consumption resulting in impaired mitochondrial respiration and reduced cell viability, both of which can be rectified by NAD+ supplementation. Our data suggest that type I IFN exposure contributes to SLE pathogenesis by promoting CD8+ T cell death via metabolic rewiring.
Collapse
Affiliation(s)
- Norzawani Buang
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London, London, UK
| | - Lunnathaya Tapeng
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London, London, UK
| | - Victor Gray
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London, London, UK
| | - Alessandro Sardini
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Chad Whilding
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Liz Lightstone
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London, London, UK
- Imperial Lupus Centre, Imperial College Healthcare NHS Trust, London, UK
| | - Thomas D Cairns
- Imperial Lupus Centre, Imperial College Healthcare NHS Trust, London, UK
| | - Matthew C Pickering
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London, London, UK
- Imperial Lupus Centre, Imperial College Healthcare NHS Trust, London, UK
| | - Jacques Behmoaras
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London, London, UK
| | - Guang Sheng Ling
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London, London, UK.
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Marina Botto
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London, London, UK.
- Imperial Lupus Centre, Imperial College Healthcare NHS Trust, London, UK.
| |
Collapse
|
14
|
The Effect of Smoking on Mitochondrial Biogenesis in Patients With Graves Ophthalmopathy. Ophthalmic Plast Reconstr Surg 2021; 36:172-177. [PMID: 31789788 DOI: 10.1097/iop.0000000000001514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE To evaluate the effects of cigarette smoking on oxidative stress (OS) and mitochondrial biogenesis related parameters in patients Graves Ophthalmopathy (GO). METHODS Patients with moderate-to-severe GO according to the European Group on Graves Orbitopathy (EUGOGO) criteria were prospectively enrolled in this study. Age- and sex-matched healthy volunteers who applied to outpatient clinic due to refractive problems consisted the control group. Participants were divided into 4 groups based on their diagnosis and smoking status: group 1 (n = 30) smoker GO patients, group 2 (n = 30) nonsmoker GO patients, group 3 (n = 30) smoker healthy controls, and group 4 (n = 30) nonsmoker healthy controls. In the sera, total antioxidant status, total oxidant status and OS index values, peroxisome proliferator-activated receptor-γ coactivator 1-α, mitochondrial transcriptional factor A levels, and paraoxonase-1 enzyme activity were evaluated. RESULTS Total oxidant status and OS index values were the highest in group 1 compared to other groups (p = 0.031, p = 0.042; respectively). There was no statistically significant difference in total antioxidant status and peroxisome proliferator-activated receptor-γ coactivator 1α levels among the groups (p = 0.521, p = 0.388; respectively). Paraoxonase-1 enzyme activity was the lowest in group 1 and highest in group 4 (p = 0.024). The levels of mitochondrial transcriptional factor A was the lowest in group 1 compared to other groups (p = 0.012). CONCLUSIONS Cigarette smoking in GO patients seems to be a risk factor that increases OS, and therefore, it may have an unfavorable impact on the mitochondrial biogenesis.
Collapse
|
15
|
Tsai CY, Shen CY, Liu CW, Hsieh SC, Liao HT, Li KJ, Lu CS, Lee HT, Lin CS, Wu CH, Kuo YM, Yu CL. Aberrant Non-Coding RNA Expression in Patients with Systemic Lupus Erythematosus: Consequences for Immune Dysfunctions and Tissue Damage. Biomolecules 2020; 10:biom10121641. [PMID: 33291347 PMCID: PMC7762297 DOI: 10.3390/biom10121641] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex systemic autoimmune disease with heterogeneous clinical manifestations. A diverse innate and adaptive immune dysregulation is involved in the immunopathogenesis of SLE. The dysregulation of immune-related cells may derive from the intricate interactions among genetic, epigenetic, environmental, and immunological factors. Of these contributing factors, non-coding RNAs (ncRNAs), including microRNAs (miRNAs, miRs), and long non-coding RNAs (lncRNAs) play critical roles in the post-transcriptional mRNA expression of cytokines, chemokines, and growth factors, which are essential for immune modulation. In the present review, we emphasize the roles of ncRNA expression in the immune-related cells and cell-free plasma, urine, and tissues contributing to the immunopathogenesis and tissue damage in SLE. In addition, the circular RNAs (circRNA) and their post-translational regulation of protein synthesis in SLE are also briefly described. We wish these critical reviews would be useful in the search for biomarkers/biosignatures and novel therapeutic strategies for SLE patients in the future.
Collapse
MESH Headings
- Adaptive Immunity/genetics
- Autoimmunity/genetics
- Chemokines/genetics
- Chemokines/immunology
- Dendritic Cells/immunology
- Dendritic Cells/pathology
- Gene Expression Regulation
- Humans
- Immunity, Innate/genetics
- Intercellular Signaling Peptides and Proteins/genetics
- Intercellular Signaling Peptides and Proteins/immunology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/pathology
- Lupus Erythematosus, Systemic/blood
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/pathology
- MicroRNAs/genetics
- MicroRNAs/immunology
- Neutrophils/immunology
- Neutrophils/pathology
- RNA, Circular/genetics
- RNA, Circular/immunology
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/immunology
- RNA, Messenger/genetics
- RNA, Messenger/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
Collapse
Affiliation(s)
- Chang-Youh Tsai
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei 11217, Taiwan; (C.-W.L.); (H.-T.L.)
- Correspondence: (C.-Y.T.); (C.-L.Y.)
| | - Chieh-Yu Shen
- Division of Rheumatology, Immunology, & Allergy, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (S.-C.H.); (K.-J.L.); (C.-S.L.); (C.-H.W.); (Y.-M.K.)
- Institute of Clinical Medicine, National Taiwan University School of Medicine, Taipei 10002, Taiwan
| | - Chih-Wei Liu
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei 11217, Taiwan; (C.-W.L.); (H.-T.L.)
| | - Song-Chou Hsieh
- Division of Rheumatology, Immunology, & Allergy, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (S.-C.H.); (K.-J.L.); (C.-S.L.); (C.-H.W.); (Y.-M.K.)
| | - Hsien-Tzung Liao
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei 11217, Taiwan; (C.-W.L.); (H.-T.L.)
| | - Ko-Jen Li
- Division of Rheumatology, Immunology, & Allergy, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (S.-C.H.); (K.-J.L.); (C.-S.L.); (C.-H.W.); (Y.-M.K.)
| | - Cheng-Shiun Lu
- Division of Rheumatology, Immunology, & Allergy, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (S.-C.H.); (K.-J.L.); (C.-S.L.); (C.-H.W.); (Y.-M.K.)
| | - Hui-Ting Lee
- Mackay Memorial Hospital and Mackay College of Medicine, Taipei 10449, Taiwan;
| | - Cheng-Sung Lin
- Department of Thoracic Surgery, Ministry of Health and Welfare Taipei Hospital, New Taipei City 24213, Taiwan;
| | - Cheng-Han Wu
- Division of Rheumatology, Immunology, & Allergy, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (S.-C.H.); (K.-J.L.); (C.-S.L.); (C.-H.W.); (Y.-M.K.)
| | - Yu-Min Kuo
- Division of Rheumatology, Immunology, & Allergy, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (S.-C.H.); (K.-J.L.); (C.-S.L.); (C.-H.W.); (Y.-M.K.)
| | - Chia-Li Yu
- Division of Rheumatology, Immunology, & Allergy, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (S.-C.H.); (K.-J.L.); (C.-S.L.); (C.-H.W.); (Y.-M.K.)
- Correspondence: (C.-Y.T.); (C.-L.Y.)
| |
Collapse
|
16
|
Yang SK, Zhang HR, Shi SP, Zhu YQ, Song N, Dai Q, Zhang W, Gui M, Zhang H. The Role of Mitochondria in Systemic Lupus Erythematosus: A Glimpse of Various Pathogenetic Mechanisms. Curr Med Chem 2020; 27:3346-3361. [PMID: 30479205 DOI: 10.2174/0929867326666181126165139] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/05/2018] [Accepted: 11/20/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Systemic Lupus Erythematosus (SLE) is a polysystem autoimmune disease that adversely affects human health. Various organs can be affected, including the kidney or brain. Traditional treatment methods for SLE primarily rely on glucocorticoids and immunosuppressors. Unfortunately, these therapeutic agents cannot prevent a high recurrence rate after SLE remission. Therefore, novel therapeutic targets are urgently required. METHODS A systematic search of the published literature regarding the abnormal structure and function of mitochondria in SLE and therapies targeting mitochondria was performed in several databases. RESULTS Accumulating evidence indicates that mitochondrial dysfunction plays important roles in the pathogenesis of SLE, including influencing mitochondrial DNA damage, mitochondrial dynamics change, abnormal mitochondrial biogenesis and energy metabolism, mitophagy, oxidative stress, inflammatory reactions, apoptosis and NETosis. Further investigation of mitochondrial pathophysiological roles will result in further clarification of SLE. Specific lupus-induced organ damage also exhibits characteristic mitochondrial changes. CONCLUSION This review aimed to summarize the current research on the role of mitochondrial dysfunction in SLE, which will necessarily provide potential novel therapeutic targets for SLE.
Collapse
Affiliation(s)
- Shi-Kun Yang
- Department of Nephrology and rheumatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hao-Ran Zhang
- Department of Nephrology and rheumatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.,Xiangya Medical School, Central South University, Changsha, Hunan, China
| | - Shu-Peng Shi
- Department of Nephrology and rheumatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.,Xiangya Medical School, Central South University, Changsha, Hunan, China
| | - Ying-Qiu Zhu
- Department of Nephrology and rheumatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Na Song
- Department of Nephrology and rheumatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qing Dai
- Department of Nephrology and rheumatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Zhang
- Department of Nephrology and rheumatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Gui
- Department of Nephrology and rheumatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hao Zhang
- Department of Nephrology and rheumatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
17
|
Lin CS, Wei YH, Yeh YC, Pan SC, Lu SY, Chen YJ, Chueh WY. Role of mitochondrial DNA copy number alteration in non-small cell lung cancer. FORMOSAN JOURNAL OF SURGERY 2020. [DOI: 10.4103/fjs.fjs_15_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
18
|
Systemic Lupus Erythematosus: Pathogenesis at the Functional Limit of Redox Homeostasis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1651724. [PMID: 31885772 PMCID: PMC6899283 DOI: 10.1155/2019/1651724] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/15/2019] [Accepted: 09/09/2019] [Indexed: 12/14/2022]
Abstract
Systemic lupus erythematosus (SLE) is a disease characterized by the production of autoreactive antibodies and cytokines, which are thought to have a major role in disease activity and progression. Immune system exposure to excessive amounts of autoantigens that are not efficiently removed is reported to play a significant role in the generation of autoantibodies and the pathogenesis of SLE. While several mechanisms of cell death-based autoantigenic exposure and compromised autoantigen removal have been described in relation to disease onset, a significant association with the development of SLE can be attributed to increased apoptosis and impaired phagocytosis of apoptotic cells. Both apoptosis and impaired phagocytosis can be caused by hydrogen peroxide whose cellular production is enhanced by exposure to endogenous hormones or environmental chemicals, which have been implicated in the pathogenesis of SLE. Hydrogen peroxide can cause lymphocyte apoptosis and glutathione depletion, both of which are associated with the severity of SLE. The cellular accumulation of hydrogen peroxide is facilitated by the myriad of stimuli causing increased cellular bioenergetic activity that enhances metabolic production of this toxic oxidizing agent such as emotional stress and infection, which are recognized SLE exacerbating factors. When combined with impaired cellular hydrogen peroxide removal caused by xenobiotics and genetically compromised hydrogen peroxide elimination due to enzymatic polymorphic variation, a mechanism for cellular accumulation of hydrogen peroxide emerges, leading to hydrogen peroxide-induced apoptosis and impaired phagocytosis, enhanced autoantigen exposure, formation of autoantibodies, and development of SLE.
Collapse
|
19
|
Immunometabolic disorders in the pathogenesis of systemic lupus erythematosus. Postepy Dermatol Alergol 2019; 36:513-518. [PMID: 31839766 PMCID: PMC6906972 DOI: 10.5114/ada.2019.85251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/10/2018] [Indexed: 12/31/2022] Open
Abstract
Systemic lupus erythematosus is a chronic autoimmune disease connected with complex and unclear disorders of the immune system, which causes inflammation of body tissues and internal organs. It leads to the formation of anti-nuclear antibodies (ANA) and immune complexes. Numerous immune system disorders and dysfunctions in the biochemical processes can occur in the course of the disease, and a wide range of abnormalities associated with cellular respiratory processes and mitochondrial function have been documented. The following paper presents the current understanding of the contribution of these disorders to the pathogenesis of lupus.
Collapse
|
20
|
Tsai CY, Hsieh SC, Lu CS, Wu TH, Liao HT, Wu CH, Li KJ, Kuo YM, Lee HT, Shen CY, Yu CL. Cross-Talk between Mitochondrial Dysfunction-Provoked Oxidative Stress and Aberrant Noncoding RNA Expression in the Pathogenesis and Pathophysiology of SLE. Int J Mol Sci 2019; 20:ijms20205183. [PMID: 31635056 PMCID: PMC6829370 DOI: 10.3390/ijms20205183] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/10/2019] [Accepted: 10/14/2019] [Indexed: 12/16/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a prototype of systemic autoimmune disease involving almost every organ. Polygenic predisposition and complicated epigenetic regulations are the upstream factors to elicit its development. Mitochondrial dysfunction-provoked oxidative stress may also play a crucial role in it. Classical epigenetic regulations of gene expression may include DNA methylation/acetylation and histone modification. Recent investigations have revealed that intracellular and extracellular (exosomal) noncoding RNAs (ncRNAs), including microRNAs (miRs), and long noncoding RNAs (lncRNAs), are the key molecules for post-transcriptional regulation of messenger (m)RNA expression. Oxidative and nitrosative stresses originating from mitochondrial dysfunctions could become the pathological biosignatures for increased cell apoptosis/necrosis, nonhyperglycemic metabolic syndrome, multiple neoantigen formation, and immune dysregulation in patients with SLE. Recently, many authors noted that the cross-talk between oxidative stress and ncRNAs can trigger and perpetuate autoimmune reactions in patients with SLE. Intracellular interactions between miR and lncRNAs as well as extracellular exosomal ncRNA communication to and fro between remote cells/tissues via plasma or other body fluids also occur in the body. The urinary exosomal ncRNAs can now represent biosignatures for lupus nephritis. Herein, we’ll briefly review and discuss the cross-talk between excessive oxidative/nitrosative stress induced by mitochondrial dysfunction in tissues/cells and ncRNAs, as well as the prospect of antioxidant therapy in patients with SLE.
Collapse
Affiliation(s)
- Chang-Youh Tsai
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital & National Yang-Ming University, #201 Sec.2, Shih-Pai Road, Taipei 11217, Taiwan.
| | - Song-Chou Hsieh
- Department of Internal Medicine, National Taiwan University Hospital, #7 Chung-Shan South Road, Taipei 10002, Taiwan.
| | - Cheng-Shiun Lu
- Department of Internal Medicine, National Taiwan University Hospital, #7 Chung-Shan South Road, Taipei 10002, Taiwan.
- Institute of Clinical Medicine, National Taiwan University College of Medicine, #7 Chung-Shan South Road, Taipei 10002, Taiwan.
| | - Tsai-Hung Wu
- Division of Nephrology, Taipei Veterans General Hospital & National Yang-Ming University, #201 Sec. 2, Shih-Pai Road, Taipei 11217, Taiwan.
| | - Hsien-Tzung Liao
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital & National Yang-Ming University, #201 Sec.2, Shih-Pai Road, Taipei 11217, Taiwan.
| | - Cheng-Han Wu
- Department of Internal Medicine, National Taiwan University Hospital, #7 Chung-Shan South Road, Taipei 10002, Taiwan.
- Institute of Clinical Medicine, National Taiwan University College of Medicine, #7 Chung-Shan South Road, Taipei 10002, Taiwan.
| | - Ko-Jen Li
- Department of Internal Medicine, National Taiwan University Hospital, #7 Chung-Shan South Road, Taipei 10002, Taiwan.
| | - Yu-Min Kuo
- Department of Internal Medicine, National Taiwan University Hospital, #7 Chung-Shan South Road, Taipei 10002, Taiwan.
- Institute of Clinical Medicine, National Taiwan University College of Medicine, #7 Chung-Shan South Road, Taipei 10002, Taiwan.
| | - Hui-Ting Lee
- Section of Allergy, Immunology & Rheumatology, Mackay Memorial Hospital, #92 Sec. 2, Chung-Shan North Road, Taipei 10449, Taiwan.
| | - Chieh-Yu Shen
- Department of Internal Medicine, National Taiwan University Hospital, #7 Chung-Shan South Road, Taipei 10002, Taiwan.
- Institute of Clinical Medicine, National Taiwan University College of Medicine, #7 Chung-Shan South Road, Taipei 10002, Taiwan.
| | - Chia-Li Yu
- Department of Internal Medicine, National Taiwan University Hospital, #7 Chung-Shan South Road, Taipei 10002, Taiwan.
| |
Collapse
|
21
|
Molecular and Cellular Bases of Immunosenescence, Inflammation, and Cardiovascular Complications Mimicking "Inflammaging" in Patients with Systemic Lupus Erythematosus. Int J Mol Sci 2019; 20:ijms20163878. [PMID: 31395799 PMCID: PMC6721773 DOI: 10.3390/ijms20163878] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/04/2019] [Accepted: 08/05/2019] [Indexed: 12/19/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an archetype of systemic autoimmune disease, characterized by the presence of diverse autoantibodies and chronic inflammation. There are multiple factors involved in lupus pathogenesis, including genetic/epigenetic predisposition, sexual hormone imbalance, environmental stimulants, mental/psychological stresses, and undefined events. Recently, many authors noted that "inflammaging", consisting of immunosenescence and inflammation, is a common feature in aging people and patients with SLE. It is conceivable that chronic oxidative stresses originating from mitochondrial dysfunction, defective bioenergetics, abnormal immunometabolism, and premature telomere erosion may accelerate immune cell senescence in patients with SLE. The mitochondrial dysfunctions in SLE have been extensively investigated in recent years. The molecular basis of normoglycemic metabolic syndrome has been found to be relevant to the production of advanced glycosylated and nitrosative end products. Besides, immunosenescence, autoimmunity, endothelial cell damage, and decreased tissue regeneration could be the results of premature telomere erosion in patients with SLE. Herein, the molecular and cellular bases of inflammaging and cardiovascular complications in SLE patients will be extensively reviewed from the aspects of mitochondrial dysfunctions, abnormal bioenergetics/immunometabolism, and telomere/telomerase disequilibrium.
Collapse
|
22
|
Lee WC, Lin CS, Ko FC, Cheng W, Lee MH, Wei YH. Low mitochondrial DNA copy number of resected cecum appendix correlates with high severity of acute appendicitis. J Formos Med Assoc 2018; 118:406-413. [PMID: 30100165 DOI: 10.1016/j.jfma.2018.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/05/2018] [Accepted: 07/20/2018] [Indexed: 10/28/2022] Open
Abstract
BACKGROUND/PURPOSE The roles of mitochondrial DNA alterations in acute appendicitis (AA) remain unclear. We evaluated the alterations of mtDNA copy number and mtDNA integrity [proportion of mtDNA templates without 8-hydroxyl-2'-deoxyguanosine (8-OHdG)] of the resected cecum appendixes in clinically suspected acute appendicitis (CSAA). METHODS A total of 228 CSAA patients, including 50 harbored negative AA (NAA), 155 true AA (TAA) without rupture and 23 TAA with rupture, who underwent appendectomies were enrolled. Tissues of resected cecum appendixes from the paraffin-embedded pathological blocks were subjected to DNA extraction, and their mtDNA copy number and mtDNA integrity were determined by quantitative real-time polymerase chain reaction (Q-PCR). RESULTS During the progression of disease severity from NAA to TAA without rupture and further TAA with rupture, increases of white blood cell (WBC) counts (p = 0.001), positive bacterial culture rates in turbid ascites (p = 0.016) and area (p < 0.001)/or volume (p < 0.001) indices of resected cecum appendixes were noted among CSAA patients. On the contrary, decrease of mtDNA copy number (p = 0.003) was observed during disease progression of CSAA patients, especially in female patients (p = 0.007). Furthermore, lower mtDNA copy numbers were correlated with higher WBC counts (p = 0.001) and larger area (p = 0.003) or volume (p < 0.001) indices of the resected cecum appendixes. However, such an alteration was not observed in mtDNA integrity of resected cecum appendixes. CONCLUSION We conclude that a low mtDNA copy number of the resected cecum appendix may reflect high severity of acute appendicitis.
Collapse
Affiliation(s)
- Wei-Cheng Lee
- Division of Gastroenterology, Department of Internal Medicine, Yonghe Cardinal Tien Hospital, New Taipei City, Taiwan
| | - Chen-Sung Lin
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Biochemistry and Molecular Biology, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan; Division of Thoracic Surgery, Taipei Hospital, Ministry of Health and Welfare, New Taipei City, Taiwan
| | - Fang-Chu Ko
- Department of Surgery, Keelung Hospital, Ministry of Health and Welfare, Keelung City, Taiwan
| | - Wei Cheng
- Department of Pathology, Keelung Hospital, Ministry of Health and Welfare, Keelung City, Taiwan
| | - Mau-Hwa Lee
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Gastroenterology, Keelung Hospital, Ministry of Health and Welfare, Keelung City, Taiwan; Good Liver Foundation and Clinic, Taipei, Taiwan.
| | - Yau-Huei Wei
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Biochemistry and Molecular Biology, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan; Department of Medicine, Mackay Medical College, New Taipei City, Taiwan; Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, Changhua, Taiwan.
| |
Collapse
|
23
|
Kapnick SM, Pacheco SE, McGuire PJ. The emerging role of immune dysfunction in mitochondrial diseases as a paradigm for understanding immunometabolism. Metabolism 2018; 81:97-112. [PMID: 29162500 PMCID: PMC5866745 DOI: 10.1016/j.metabol.2017.11.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/07/2017] [Accepted: 11/11/2017] [Indexed: 01/08/2023]
Abstract
Immunometabolism aims to define the role of intermediary metabolism in immune cell function, with bioenergetics and the mitochondria recently taking center stage. To date, the medical literature on mitochondria and immune function extols the virtues of mouse models in exploring this biologic intersection. While the laboratory mouse has become a standard for studying mammalian biology, this model comprises part of a comprehensive approach. Humans, with their broad array of inherited phenotypes, serve as a starting point for studying immunometabolism; specifically, patients with mitochondrial disease. Using this top-down approach, the mouse as a model organism facilitates further exploration of the consequences of mutations involved in mitochondrial maintenance and function. In this review, we will discuss the emerging phenotype of immune dysfunction in mitochondrial disease as a model for understanding the role of the mitochondria in immune function in available mouse models.
Collapse
Affiliation(s)
- Senta M Kapnick
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Susan E Pacheco
- Department of Pediatrics, The University of Texas Health Science Center, Houston, TX, USA
| | - Peter J McGuire
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
24
|
Lee HT, Lin CS, Pan SC, Wu TH, Lee CS, Chang DM, Tsai CY, Wei YH. Alterations of oxygen consumption and extracellular acidification rates by glutamine in PBMCs of SLE patients. Mitochondrion 2018; 44:65-74. [PMID: 29337141 DOI: 10.1016/j.mito.2018.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 12/31/2017] [Accepted: 01/10/2018] [Indexed: 02/05/2023]
Abstract
We evaluated plasma glutamine levels and basal mitochondrial oxygen consumption rate (mOCRB) and basal extracellular acidification rate (ECARB) of peripheral blood mononuclear cells (PBMCs) of systemic lupus erythematous (SLE) patients and healthy controls (HCs). Lower plasma glutamine levels correlated with higher SLE disease activity indexes (p=0.025). Incubated in DMEM containing 100mg/dL glucose, SLE-PBMCs displayed lower mOCRB (p=0.018) but similar ECARB (p=0.467) to those of HC-PBMCs, and their mOCRB got elevated (p<0.001) without altering ECARB (p=0.239) by supplementation with 2 or 4mM glutamine. We conclude that impaired mitochondrial respiration of SLE-PBMCs could be improved by glutamine under euglycemic condition.
Collapse
Affiliation(s)
- Hui-Ting Lee
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Medicine, Mackay Medical College, New Taipei City, Taiwan; Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan
| | - Chen-Sung Lin
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan; Division of Thoracic Surgery, Taipei Hospital, Ministry of Health and Welfare, New Taipei City, Taiwan
| | - Siao-Cian Pan
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan; Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan; Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, Changhua City, Taiwan
| | - Tsai-Hung Wu
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Nephrology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chyou-Shen Lee
- Mackay Junior College of Medicine, Nursing and Management, New Taipei City, Taiwan; Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan
| | - Deh-Ming Chang
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Allergy, Immunology and Rheumatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chang-Youh Tsai
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Allergy, Immunology and Rheumatology, Taipei Veterans General Hospital, Taipei, Taiwan.
| | - Yau-Huei Wei
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan; Department of Medicine, Mackay Medical College, New Taipei City, Taiwan; Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, Changhua City, Taiwan.
| |
Collapse
|
25
|
Vaseghi H, Houshmand M, Jadali Z. Increased levels of mitochondrial DNA copy number in patients with vitiligo. Clin Exp Dermatol 2017; 42:749-754. [PMID: 28866865 DOI: 10.1111/ced.13185] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Oxidative stress is known to be involved in the pathogenesis of autoimmune diseases such as vitiligo. Evidence suggests that the human mitochondrial DNA copy number (mtDNAcn) is vulnerable to damage mediated by oxidative stress. The purpose of this study was to examine and compare peripheral blood mtDNAcn and oxidative DNA damage byproducts (8-hydroxy-2-deoxyguanosine; 8-OHdG) in patients with vitiligo and healthy controls (HCs). METHODS The relative mtDNAcn and the oxidative damage (formation of 8-OHdG in mtDNA) of each sample were determined by real-time quantitative PCR. Blood samples were obtained from 56 patients with vitiligo and 46 HCs. RESULTS The mean mtDNAcn and the degree of mtDNA damage were higher in patients with vitiligo than in HCs. CONCLUSION These data suggest that increase in mtDNAcn and oxidative DNA damage may be involved in the pathogenesis of vitiligo.
Collapse
Affiliation(s)
- H Vaseghi
- Department of Biology, Faculty of Biological Sciences, Gonbad Kavous University, Gonbad Kavous, Iran
| | - M Houshmand
- Medical Genetics Department, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Z Jadali
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Hsieh SC, Tsai CY, Yu CL. Potential serum and urine biomarkers in patients with lupus nephritis and the unsolved problems. Open Access Rheumatol 2016; 8:81-91. [PMID: 27843374 PMCID: PMC5098719 DOI: 10.2147/oarrr.s112829] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lupus nephritis (LN) is one of the most frequent and serious complications in the patients with systemic lupus erythematosus. Autoimmune-mediated inflammation in both renal glomerular and tubulointerstitial tissues is the major pathological finding of LN. In clinical practice, the elevated anti-dsDNA antibody titer concomitant with reduced complement C3 and C4 levels has become the predictive and disease-activity surrogate biomarkers in LN. However, more and more evidences suggest that autoantibodies other than anti-dsDNA antibodies, such as anti-nucleosome, anti-C1q, anti-C3b, anti-cardiolipin, anti-endothelial cell, anti-ribonuclear proteins, and anti-glomerular matrix (anti-actinin) antibodies, may also involve in LN. Researchers have demonstrated that the circulating preformed and in situ-formed immune complexes as well as the direct cytotoxic effects by those cross-reactive autoantibodies mediated kidney damage. On the other hand, many efforts had been made to find useful urine biomarkers for LN activity via measurement of immune-related mediators, surface-enhanced laser desorption/ionization time-of-flight mass spectrometry proteomic signature, and assessment of mRNA and exosomal-derived microRNA from urine sediment cell. Our group had also devoted to this field with some novel findings. In this review, we briefly discuss the possible mechanisms of LN and try to figure out the potential serum and urine biomarkers in LN. Finally, some of the unsolved problems in this field are discussed.
Collapse
Affiliation(s)
- Song-Chou Hsieh
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine
| | - Chang-Youh Tsai
- Section of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital
| | - Chia-Li Yu
- Department of Internal Medicine, Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
27
|
Lee HT, Wu TH, Lin CS, Lee CS, Wei YH, Tsai CY, Chang DM. The pathogenesis of systemic lupus erythematosus - From the viewpoint of oxidative stress and mitochondrial dysfunction. Mitochondrion 2016; 30:1-7. [DOI: 10.1016/j.mito.2016.05.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 05/18/2016] [Accepted: 05/20/2016] [Indexed: 01/26/2023]
|
28
|
Wiens KE, Ernst JD. The Mechanism for Type I Interferon Induction by Mycobacterium tuberculosis is Bacterial Strain-Dependent. PLoS Pathog 2016; 12:e1005809. [PMID: 27500737 PMCID: PMC4976988 DOI: 10.1371/journal.ppat.1005809] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 07/13/2016] [Indexed: 12/30/2022] Open
Abstract
Type I interferons (including IFNαβ) are innate cytokines that may contribute to pathogenesis during Mycobacterium tuberculosis (Mtb) infection. To induce IFNβ, Mtb must gain access to the host cytosol and trigger stimulator of interferon genes (STING) signaling. A recently proposed model suggests that Mtb triggers STING signaling through bacterial DNA binding cyclic GMP-AMP synthase (cGAS) in the cytosol. The aim of this study was to test the generalizability of this model using phylogenetically distinct strains of the Mtb complex (MTBC). We infected bone marrow derived macrophages with strains from MTBC Lineages 2, 4 and 6. We found that the Lineage 6 strain induced less IFNβ, and that the Lineage 2 strain induced more IFNβ, than the Lineage 4 strain. The strains did not differ in their access to the host cytosol and IFNβ induction by each strain required both STING and cGAS. We also found that the three strains shed similar amounts of bacterial DNA. Interestingly, we found that the Lineage 6 strain was associated with less mitochondrial stress and less mitochondrial DNA (mtDNA) in the cytosol compared with the Lineage 4 strain. Treating macrophages with a mitochondria-specific antioxidant reduced cytosolic mtDNA and inhibited IFNβ induction by the Lineage 2 and 4 strains. We also found that the Lineage 2 strain did not induce more mitochondrial stress than the Lineage 4 strain, suggesting that additional pathways contribute to higher IFNβ induction. These results indicate that the mechanism for IFNβ by Mtb is more complex than the established model suggests. We show that mitochondrial dynamics and mtDNA contribute to IFNβ induction by Mtb. Moreover, we show that the contribution of mtDNA to the IFNβ response varies by MTBC strain and that additional mechanisms exist for Mtb to induce IFNβ.
Collapse
Affiliation(s)
- Kirsten E. Wiens
- Department of Pathology, New York University School of Medicine, New York, New York, United States of America
- Division of Infectious Disease, Department of Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Joel D. Ernst
- Department of Pathology, New York University School of Medicine, New York, New York, United States of America
- Division of Infectious Disease, Department of Medicine, New York University School of Medicine, New York, New York, United States of America
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
29
|
Role of Mitochondrial DNA Copy Number Alteration in Human Renal Cell Carcinoma. Int J Mol Sci 2016; 17:ijms17060814. [PMID: 27231905 PMCID: PMC4926348 DOI: 10.3390/ijms17060814] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 12/19/2022] Open
Abstract
We investigated the role of mitochondrial DNA (mtDNA) copy number alteration in human renal cell carcinoma (RCC). The mtDNA copy numbers of paired cancer and non-cancer parts from five resected RCC kidneys after radical nephrectomy were determined by quantitative polymerase chain reaction (Q-PCR). An RCC cell line, 786-O, was infected by lentiviral particles to knock down mitochondrial transcriptional factor A (TFAM). Null target (NT) and TFAM-knockdown (TFAM-KD) represented the control and knockdown 786-O clones, respectively. Protein or mRNA expression levels of TFAM; mtDNA-encoded NADH dehydrogenase subunit 1 (ND1), ND6 and cytochrome c oxidase subunit 2 (COX-2); nuclear DNA (nDNA)-encoded succinate dehydrogenase subunit A (SDHA); v-akt murine thymoma viral oncogene homolog 1 gene (AKT)-encoded AKT and v-myc myelocytomatosis viral oncogene homolog gene (c-MYC)-encoded MYC; glycolytic enzymes including hexokinase II (HK-II), glucose 6-phosphate isomerase (GPI), phosphofructokinase (PFK), and lactate dehydrogenase subunit A (LDHA); and hypoxia-inducible factors the HIF-1α and HIF-2α, pyruvate dehydrogenase kinase 1 (PDK1), and pyruvate dehydrogenase E1 component α subunit (PDHA1) were analyzed by Western blot or Q-PCR. Bioenergetic parameters of cellular metabolism, basal mitochondrial oxygen consumption rate (mOCRB) and basal extracellular acidification rate (ECARB), were measured by a Seahorse XFe-24 analyzer. Cell invasiveness was evaluated by a trans-well migration assay and vimentin expression. Doxorubicin was used as a chemotherapeutic agent. The results showed a decrease of mtDNA copy numbers in resected RCC tissues (p = 0.043). The TFAM-KD clone expressed lower mtDNA copy number (p = 0.034), lower mRNA levels of TFAM (p = 0.008), ND1 (p = 0.007), and ND6 (p = 0.017), and lower protein levels of TFAM and COX-2 than did the NT clone. By contrast, the protein levels of HIF-2α, HK-II, PFK, LDHA, AKT, MYC and vimentin; trans-well migration activity (p = 0.007); and drug resistance to doxorubicin (p = 0.008) of the TFAM-KD clone were significantly higher than those of the NT clone. Bioenergetically, the TFAM-KD clone expressed lower mOCRB (p = 0.009) but higher ECARB (p = 0.037) than did the NT clone. We conclude that a reduction of mtDNA copy number and decrease of respiratory function of mitochondria in RCC might be compensated for by an increase of enzymes and factors that are involved in the upregulation of glycolysis to confer RCC more invasive and a drug-resistant phenotype in vitro.
Collapse
|
30
|
Lin CS, Chang SC, Ou LH, Chen CM, Hsieh SSW, Chung YP, King KL, Lin SL, Wei YH. Mitochondrial DNA alterations correlate with the pathological status and the immunological ER, PR, HER-2/neu, p53 and Ki-67 expression in breast invasive ductal carcinoma. Oncol Rep 2015; 33:2924-34. [PMID: 25845386 DOI: 10.3892/or.2015.3887] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/19/2015] [Indexed: 11/05/2022] Open
Abstract
We analyzed the changes in mitochondrial DNA (mtDNA) copy numbers and the shifting of mtDNA D310 sequence variations (D310 mutation) with their relationships to pathological status and the expression levels of estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor-2 (HER-2/neu), tumor-suppressor protein p53 and cellular proliferation protein Ki-67 in breast invasive ductal carcinoma (BIDC), respectively. Fifty-one paraffin-embedded BIDCs and their paired non-cancerous breast tissues were dissected for DNA extraction. The mtDNA copy number and mtDNA D310 sequence variations were determined by quantitative real-time polymerase chain reaction (q-PCR) and PCR-based direct sequencing, respectively. The expression levels of ER, PR, HER-2/neu, p53 and Ki-67 were determined by immunohistochemical (IHC) staining. Compared to the paired non-cancerous breast tissues, 24 (47.1%) BIDCs had elevated mtDNA copy numbers and 29 (56.9%) harbored mtDNA D310 mutations. Advanced T-status (p=0.056), negative-ER (p=0.005), negative-PR (p=0.007), positive-p53 (p=0.050) and higher Ki-67 (p=0.004) expressions were related to a higher mtDNA copy ratio. In addition, advanced T-status (p=0.019) and negative-HER-2/neu expression (p=0.061) were associated with mtDNA D310 mutations. In conclusion, higher mtDNA copy ratio and D310 mutations may be relevant biomarkers correlated with pathological T-status and the expression levels of ER, PR, HER-2/neu, p53 and Ki-67 in BIDCs.
Collapse
Affiliation(s)
- Chen-Sung Lin
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 112, Taiwan, R.O.C
| | - Shi-Chuan Chang
- Institute of Emergency and Critical Care Medicine, National Yang-Ming University, Taipei 112, Taiwan, R.O.C
| | - Liang-Hung Ou
- Faculty of Medicine, National Yang-Ming University, Taipei 112, Taiwan, R.O.C
| | - Chien-Ming Chen
- Division of Hematology and Oncology, Department of Internal Medicine, Taipei Hospital, Ministry of Health and Welfare, New Taipei City 242, Taiwan, R.O.C
| | - Sophie Swen-Wan Hsieh
- Department of Pathology, Taipei Hospital, Ministry of Health and Welfare, New Taipei City 242, Taiwan, R.O.C
| | - Yu-Ping Chung
- Department of Pathology, Taipei Hospital, Ministry of Health and Welfare, New Taipei City 242, Taiwan, R.O.C
| | - Kuang-Liang King
- Faculty of Medicine, National Yang-Ming University, Taipei 112, Taiwan, R.O.C
| | - Shoei-Loong Lin
- Chon-inn Hospital, Chon-inn Healthcare Corp. Aggregate, New Taipei City 220, Taiwan, R.O.C
| | - Yau-Huei Wei
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan, R.O.C
| |
Collapse
|
31
|
|
32
|
Lee HT, Lin CS, Lee CS, Tsai CY, Wei YH. The role of hOGG1 C1245G polymorphism in the susceptibility to lupus nephritis and modulation of the plasma 8-OHdG in patients with systemic lupus erythematosus. Int J Mol Sci 2015; 16:3757-68. [PMID: 25671815 PMCID: PMC4346924 DOI: 10.3390/ijms16023757] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/29/2015] [Indexed: 01/08/2023] Open
Abstract
We investigated whether the C1245G polymorphism of human 8-oxoguanine glycosylase 1 (hOGG1) gene confers the susceptibility to systemic lupus erythematosus (SLE) occurrence of lupus nephritis and affects the plasma level of 8-hydroxy-2'-deoxyguanosine (8-OHdG) in patients with SLE. A total of 45 healthy controls and 85 SLE patients were recruited. The C1245G polymorphism of the hOGG1 gene was determined by direct sequencing. The frequency of occurrence of the hOGG1 1245 GG genotype in SLE patients was 31.8% (27/85), which is lower than that of healthy controls of 53.3% (24/45). Thirty-three (33/85, 38.8%) SLE patients developed lupus nephritis. Significantly, SLE patients harboring the hOGG1 1245 GG genotype had a higher incidence to develop lupus nephritis than did those harboring the hOGG1 1245 CC or CG genotype (15/27, 55.6% vs.18/58, 31.0%, p = 0.031). Divided into subgroups, SLE patients harboring the hOGG1 1245 GG genotype had the highest plasma levels of 8-OHdG among patients with all genotypes, with regard to the coexistence of lupus nephritis (p = 0.020, ANOVA), including those with nephritis harboring the hOGG1 1245 CC or CG genotypes (p = 0.037), those without nephritis harboring the hOGG1 1245 GG genotype (p = 0.050), and those without nephritis harboring the hOGG1 1245 CC or CG genotype (p = 0.054). We conclude that the C1245G polymorphism of hOGG1 may be one of the factors that confer the susceptibility to lupus nephritis and modulate the plasma level of 8-OHdG in patients with SLE.
Collapse
Affiliation(s)
- Hui-Ting Lee
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- Faculty of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan.
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei 104, Taiwan.
| | - Chen-Sung Lin
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- Faculty of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- Division of Thoracic Surgery, Taipei Hospital, Ministry of Health and Welfare, New Taipei City 242, Taiwan.
| | - Chyou-Shen Lee
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan.
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei 104, Taiwan.
- Mackay Junior College of Medicine, Nursing, and Management, New Taipei City 252, Taiwan.
| | - Chang-Youh Tsai
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- Faculty of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan.
| | - Yau-Huei Wei
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- Faculty of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan.
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan.
| |
Collapse
|
33
|
West AP, Khoury-Hanold W, Staron M, Tal MC, Pineda CM, Lang SM, Bestwick M, Duguay BA, Raimundo N, MacDuff DA, Kaech SM, Smiley JR, Means RE, Iwasaki A, Shadel GS. Mitochondrial DNA stress primes the antiviral innate immune response. Nature 2015; 520:553-7. [PMID: 25642965 PMCID: PMC4409480 DOI: 10.1038/nature14156] [Citation(s) in RCA: 1229] [Impact Index Per Article: 136.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 12/15/2014] [Indexed: 12/18/2022]
Abstract
Mitochondrial DNA (mtDNA) is normally present at thousands of copies per cell and is packaged into several hundred higher-order structures termed nucleoids1. The abundant mtDNA-binding protein, transcription factor A mitochondrial (TFAM), regulates nucleoid architecture, abundance, and segregation2. Complete mtDNA depletion profoundly impairs oxidative phosphorylation (OXPHOS), triggering calcium-dependent stress signaling and adaptive metabolic responses3. However, the cellular responses to mtDNA instability, a physiologically relevant stress observed in many human diseases and aging, remain ill-defined4. Here we show that moderate mtDNA stress elicited by TFAM deficiency engages cytosolic antiviral signaling to enhance the expression of a subset of interferon-stimulated genes (ISG). Mechanistically, we have found that aberrant mtDNA packaging promotes escape of mtDNA into the cytosol, where it engages the DNA sensor cGAS and promotes STING-IRF3-dependent signaling to elevate ISG expression, potentiate type I interferon responses, and confer broad viral resistance. Furthermore, we demonstrate that herpesviruses induce mtDNA stress, which potentiates antiviral signaling and type I interferon responses during infection. Our results further demonstrate that mitochondria are central participants in innate immunity, identify mtDNA stress as a cell-intrinsic trigger of antiviral signaling, and suggest that cellular monitoring of mtDNA homeostasis cooperates with canonical virus sensing mechanisms to fully license antiviral innate immunity.
Collapse
Affiliation(s)
- A Phillip West
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - William Khoury-Hanold
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Matthew Staron
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Michal C Tal
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Cristiana M Pineda
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Sabine M Lang
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Megan Bestwick
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Brett A Duguay
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Nuno Raimundo
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Donna A MacDuff
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Susan M Kaech
- 1] Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut 06520, USA [2] Howard Hughes Medical Institute, Chevy Chase, Maryland 20815-6789, USA
| | - James R Smiley
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Robert E Means
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Akiko Iwasaki
- 1] Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut 06520, USA [2] Howard Hughes Medical Institute, Chevy Chase, Maryland 20815-6789, USA
| | - Gerald S Shadel
- 1] Department of Pathology, Yale School of Medicine, New Haven, Connecticut 06520, USA [2] Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|
34
|
López-López L, Nieves-Plaza M, Castro MDR, Font YM, Torres-Ramos CA, Vilá LM, Ayala-Peña S. Mitochondrial DNA damage is associated with damage accrual and disease duration in patients with systemic lupus erythematosus. Lupus 2014; 23:1133-41. [PMID: 24899636 DOI: 10.1177/0961203314537697] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To determine the extent of mitochondrial DNA (mtDNA) damage in systemic lupus erythematosus (SLE) patients compared to healthy subjects and to determine the factors associated with mtDNA damage among SLE patients. METHODS A cross-sectional study was performed in 86 SLE patients (per American College of Rheumatology classification criteria) and 86 healthy individuals matched for age and gender. Peripheral blood mononuclear cells (PBMCs) were collected from subjects to assess the relative amounts of mtDNA damage. Quantitative polymerase chain reaction assay was used to measure the frequency of mtDNA lesions and mtDNA abundance. Socioeconomic-demographic features, clinical manifestations, pharmacologic treatment, disease activity, and damage accrual were determined. Statistical analyses were performed using t test, pairwise correlation, and Pearson's chi-square test (or Fisher's exact test) as appropriate. RESULTS Among SLE patients, 93.0% were women. The mean (SD) age was 38.0 (10.4) years and the mean (SD) disease duration was 8.7 (7.5) years. SLE patients exhibited increased levels of mtDNA damage as shown by higher levels of mtDNA lesions and decreased mtDNA abundance as compared to healthy individuals. There was a negative correlation between disease damage and mtDNA abundance and a positive correlation between mtDNA lesions and disease duration. No association was found between disease activity and mtDNA damage. CONCLUSION PBMCs from SLE patients exhibited more mtDNA damage compared to healthy subjects. Higher levels of mtDNA damage were observed among SLE patients with major organ involvement and damage accrual. These results suggest that mtDNA damage have a potential role in the pathogenesis of SLE.
Collapse
Affiliation(s)
- L López-López
- Department of Medicine (Division of Rheumatology), University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - M Nieves-Plaza
- Puerto Rico Clinical and Translational Research Consortium, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico School of Medicine, Institute for Clinical Research Education, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - M del R Castro
- Department of Pharmacology and Toxicology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Y M Font
- Department of Medicine (Division of Rheumatology), University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - C A Torres-Ramos
- Department of Physiology and Biophysics, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - L M Vilá
- Department of Medicine (Division of Rheumatology), University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - S Ayala-Peña
- Department of Pharmacology and Toxicology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| |
Collapse
|
35
|
Lee HT, Lin CS, Lee CS, Tsai CY, Wei YH. Increased 8-hydroxy-2'-deoxyguanosine in plasma and decreased mRNA expression of human 8-oxoguanine DNA glycosylase 1, anti-oxidant enzymes, mitochondrial biogenesis-related proteins and glycolytic enzymes in leucocytes in patients with systemic lupus erythematosus. Clin Exp Immunol 2014; 176:66-77. [PMID: 24345202 PMCID: PMC3958155 DOI: 10.1111/cei.12256] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2013] [Indexed: 12/14/2022] Open
Abstract
We measured plasma levels of the oxidative DNA damage marker 8-hydroxy-2'-deoxyguanosine (8-OHdG) and leucocyte mRNA expression levels of the genes encoding the 8-OHdG repair enzyme human 8-oxoguanine DNA glycosylase 1 (hOGG1), the anti-oxidant enzymes copper/zinc superoxide dismutase (Cu/ZnSOD), manganese superoxide dismutase (MnSOD), catalase, glutathione peroxidase-1 (GPx-1), GPx-4, glutathione reductase (GR) and glutathione synthetase (GS), the mitochondrial biogenesis-related proteins mtDNA-encoded ND 1 polypeptide (ND1), ND6, ATPase 6, mitochondrial transcription factor A (Tfam), nuclear respiratory factor 1(NRF-1), pyruvate dehydrogenase E1 component alpha subunit (PDHA1), pyruvate dehydrogenase kinase isoenzyme 1 (PDK-1) and hypoxia inducible factor-1α (HIF-1α) and the glycolytic enzymes hexokinase-II (HK-II), glucose 6-phosphate isomerase (GPI), phosphofructokinase (PFK), glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and lactate dehydrogenase A (LDHa). We analysed their relevance to oxidative damage in 85 systemic lupus erythematosus (SLE) patients, four complicated SLE patients undergoing rituximab treatment and 45 healthy individuals. SLE patients had higher plasma 8-OHdG levels (P < 0·01) but lower leucocyte expression of the genes encoding hOGG1(P < 0·01), anti-oxidant enzymes (P < 0·05), mitochondrial biogenesis-related proteins (P < 0·05) and glycolytic enzymes (P < 0·05) than healthy individuals. The increase in plasma 8-OHdG was correlated positively with the elevation of leucocyte expression of the genes encoding hOGG1 (P < 0·05), anti-oxidant enzymes (P < 0·05), several mitochondrial biogenesis-related proteins (P < 0·05) and glycolytic enzymes (P < 0·05) in lupus patients. The patients, whose leucocyte mtDNA harboured D310 heteroplasmy, exhibited a positive correlation between the mtDNA copy number and expression of ND1, ND6 and ATPase 6 (P < 0·05) and a negative correlation between mtDNA copy number and systemic lupus erythematosus disease activity index (SLEDAI) (P < 0·05), as well as plasma 8-OHdG (P < 0·05). In particular, four complicated SLE patients with increased expression of the genes encoding the anti-oxidant enzymes, GAPDH, Tfam and PDHA1, experienced better therapeutic outcomes after rituximab therapy. In conclusion, higher oxidative damage with suboptimal increases in DNA repair, anti-oxidant capacity, mitochondrial biogenesis and glucose metabolism may be implicated in SLE deterioration, and this impairment might be improved by targeted biological therapy.
Collapse
Affiliation(s)
- H-T Lee
- Institute of Clinical Medicine, National Yang-Ming UniversityTaipei, Taiwan,Faculty of Medicine, National Yang-Ming UniversityTaipei, Taiwan,Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Mackay Memorial HospitalTaipei, Taiwan,Department of Medicine, Mackay Medical CollegeNew Taipei City, Taiwan
| | - C-S Lin
- Institute of Clinical Medicine, National Yang-Ming UniversityTaipei, Taiwan,Faculty of Medicine, National Yang-Ming UniversityTaipei, Taiwan,Division of Thoracic Surgery, Taipei Hospital, Ministry of Health and WelfareNew Taipei City, Taiwan
| | - C-S Lee
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Mackay Memorial HospitalTaipei, Taiwan,Department of Medicine, Mackay Medical CollegeNew Taipei City, Taiwan,Mackay Junior College of Medicine, Nursing, and ManagementNew Taipei City, Taiwan
| | - C-Y Tsai
- Institute of Clinical Medicine, National Yang-Ming UniversityTaipei, Taiwan,Faculty of Medicine, National Yang-Ming UniversityTaipei, Taiwan,Division of Allergy, Immunology and Rheumatology, Department of Medicine, Taipei Veterans General HospitalTaipei, Taiwan,Correspondence: C. Y. Tsai, Division of Allergy, Immunology and Rheumatology, Taipei Veterans General Hospital, No.201, Section 2, Shi-Pai Road, Bei-Tou District, Taipei 112, Taiwan., Y. H. Wei, Department of Medicine, Mackay Medical College, No. 46, Section 3, Zhong-Zheng Road, San-Zhi District, New Taipei City 252, Taiwan, E-mail: (C. Y. T.) or (Y. H. W.)
| | - Y-H Wei
- Institute of Clinical Medicine, National Yang-Ming UniversityTaipei, Taiwan,Institute of Biochemistry and Molecular Biology, National Yang-Ming UniversityTaipei, Taiwan,Faculty of Medicine, National Yang-Ming UniversityTaipei, Taiwan,Department of Medicine, Mackay Medical CollegeNew Taipei City, Taiwan,Correspondence: C. Y. Tsai, Division of Allergy, Immunology and Rheumatology, Taipei Veterans General Hospital, No.201, Section 2, Shi-Pai Road, Bei-Tou District, Taipei 112, Taiwan., Y. H. Wei, Department of Medicine, Mackay Medical College, No. 46, Section 3, Zhong-Zheng Road, San-Zhi District, New Taipei City 252, Taiwan, E-mail: (C. Y. T.) or (Y. H. W.)
| |
Collapse
|
36
|
Domann FE. Aberrant free radical biology is a unifying theme in the etiology and pathogenesis of major human diseases. Int J Mol Sci 2013; 14:8491-5. [PMID: 23594999 PMCID: PMC3645757 DOI: 10.3390/ijms14048491] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 04/16/2013] [Accepted: 04/16/2013] [Indexed: 12/18/2022] Open
Abstract
The seemingly disparate areas of oxygen toxicity, radiation exposure, and aging are now recognized to share a common feature—the aberrant production and/or removal of biologically derived free radicals and other reactive oxygen and nitrogen species (ROS/RNS). Advances in our understanding of the effects of free radicals in biology and medicine have been, and continue to be, actively translated into clinically tractable diagnostic and therapeutic applications. This issue is dedicated to recent advances, both basic discoveries and clinical applications, in the field of free radicals in biology and medicine. As more is understood about the proximal biological targets of aberrantly produced or removed reactive species, their sensors, and effectors of compensatory response, a great deal more will be learned about the commonalities in mechanisms underlying seemingly disparate disease states. Together with this deeper understanding, opportunities will arise to devise rational therapeutic interventions to decrease the incidence and severity of these diseases and positively impact the human healthspan.
Collapse
Affiliation(s)
- Frederick E Domann
- Departments of Radiation Oncology, Surgery, and Pathology; Carver College of Medicine, the University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|