2
|
Castro-Torres E, Jimenez-Sandoval P, Fernández-de Gortari E, López-Castillo M, Baruch-Torres N, López-Hidalgo M, Peralta-Castro A, Díaz-Quezada C, Sotelo-Mundo RR, Benitez-Cardoza CG, Espinoza-Fonseca LM, Ochoa-Leyva A, Brieba LG. Structural Basis for the Limited Response to Oxidative and Thiol-Conjugating Agents by Triosephosphate Isomerase From the Photosynthetic Bacteria Synechocystis. Front Mol Biosci 2018; 5:103. [PMID: 30538993 PMCID: PMC6277545 DOI: 10.3389/fmolb.2018.00103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 11/05/2018] [Indexed: 11/18/2022] Open
Abstract
In plants, the ancestral cyanobacterial triosephosphate isomerase (TPI) was replaced by a duplicated version of the cytosolic TPI. This isoform acquired a transit peptide for chloroplast localization and functions in the Calvin-Benson cycle. To gain insight into the reasons for this gene replacement in plants, we characterized the TPI from the photosynthetic bacteria Synechocystis (SyTPI). SyTPI presents typical TPI enzyme kinetics profiles and assembles as a homodimer composed of two subunits that arrange in a (β-α)8 fold. We found that oxidizing agents diamide (DA) and H2O2, as well as thiol-conjugating agents such as oxidized glutathione (GSSG) and methyl methanethiosulfonate (MMTS), do not inhibit the catalytic activity of SyTPI at concentrations required to inactivate plastidic and cytosolic TPIs from the plant model Arabidopsis thaliana (AtpdTPI and AtcTPI, respectively). The crystal structure of SyTPI revealed that each monomer contains three cysteines, C47, C127, and C176; however only the thiol group of C176 is solvent exposed. While AtcTPI and AtpdTPI are redox-regulated by chemical modifications of their accessible and reactive cysteines, we found that C176 of SyTPI is not sensitive to redox modification in vitro. Our data let us postulate that SyTPI was replaced by a eukaryotic TPI, because the latter contains redox-sensitive cysteines that may be subject to post-translational modifications required for modulating TPI's enzymatic activity.
Collapse
Affiliation(s)
- Eduardo Castro-Torres
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Guanajuato, Mexico
| | - Pedro Jimenez-Sandoval
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Guanajuato, Mexico
| | - Eli Fernández-de Gortari
- Division of Cardiovascular Medicine, Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI, United States
| | - Margarita López-Castillo
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Guanajuato, Mexico
| | - Noe Baruch-Torres
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Guanajuato, Mexico
| | - Marisol López-Hidalgo
- Laboratorio de Investigación Bioquímica, Programa Institucional en Biomedicina Molecular ENMyH-IPN, Ciudad de México, Mexico
| | - Antolín Peralta-Castro
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Guanajuato, Mexico
| | - Corina Díaz-Quezada
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Guanajuato, Mexico
| | - Rogerio R Sotelo-Mundo
- Laboratorio de Estructura Biomolecular, Centro de Investigación en Alimentación y Desarrollo, A.C., Hermosillo, Mexico
| | - Claudia G Benitez-Cardoza
- Laboratorio de Investigación Bioquímica, Programa Institucional en Biomedicina Molecular ENMyH-IPN, Ciudad de México, Mexico
| | - L Michel Espinoza-Fonseca
- Division of Cardiovascular Medicine, Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI, United States
| | - Adrian Ochoa-Leyva
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Luis G Brieba
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Guanajuato, Mexico
| |
Collapse
|
3
|
Mutation of a conserved tryptophan residue in the CBM3c of a GH9 endoglucanase inhibits activity. Int J Biol Macromol 2016; 92:159-166. [DOI: 10.1016/j.ijbiomac.2016.06.091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/29/2016] [Accepted: 06/29/2016] [Indexed: 02/01/2023]
|
4
|
Dumont S, Bykova NV, Pelletier G, Dorion S, Rivoal J. Cytosolic Triosephosphate Isomerase from Arabidopsis thaliana Is Reversibly Modified by Glutathione on Cysteines 127 and 218. FRONTIERS IN PLANT SCIENCE 2016; 7:1942. [PMID: 28066493 PMCID: PMC5177656 DOI: 10.3389/fpls.2016.01942] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/07/2016] [Indexed: 05/03/2023]
Abstract
In plant cells, an increase in cellular oxidants can have multiple effects, including the promotion of mixed disulfide bonds between glutathione and some proteins (S-glutathionylation). The present study focuses on the cytosolic isoform of the glycolytic enzyme triosephosphate isomerase (cTPI) from Arabidopsis thaliana and its reversible modification by glutathione. We used purified recombinant cTPI to demonstrate the enzyme sensitivity to inhibition by N-ethylmaleimide, hydrogen peroxide and diamide. Treatment of cTPI with diamide in the presence of reduced glutathione (GSH) led to a virtually complete inhibition of its enzymatic activity by S-glutathionylation. Recombinant cTPI was also sensitive to the oxidized form of glutathione (GSSG) in the micromolar range. Activity of cTPI was restored after reversion of S-glutathionylation by two purified recombinant A. thaliana cytosolic glutaredoxins (GRXs). GRXs-mediated deglutathionylation of cTPI was dependent on a GSH-regenerating system. Analysis of cTPI by mass spectrometry after S-glutathionylation by GSSG revealed that two Cys residues (Cys127 and Cys218) were modified by glutathione. The role of these two residues was assessed using site-directed mutagenesis. Mutation of Cys127 and Cys218 to Ser separately or together caused different levels of decrease in enzyme activity, loss of stability, as well as alteration of intrinsic fluorescence, underlining the importance of these Cys residues in protein conformation. Comparison of wild-type and mutant proteins modified with biotinyl glutathione ethyl ester (BioGEE) showed partial binding with single mutants and total loss of binding with the double mutant, demonstrating that both Cys residues were significantly S-glutathionylated. cTPI modification with BioGEE was reversed using DTT. Our study provides the first identification of the amino acid residues involved in cTPI S-glutathionylation and supports the hypothesis that this reversible modification could be part of an oxidative stress response pathway.
Collapse
Affiliation(s)
- Sébastien Dumont
- Institut de Recherche en Biologie Végétale, Département de sciences biologiques, Université de MontréalMontréal, QC, Canada
| | - Natalia V. Bykova
- Morden Research and Development Centre, Agriculture and Agri-Food CanadaMorden, MB, Canada
| | - Guillaume Pelletier
- Institut de Recherche en Biologie Végétale, Département de sciences biologiques, Université de MontréalMontréal, QC, Canada
| | - Sonia Dorion
- Institut de Recherche en Biologie Végétale, Département de sciences biologiques, Université de MontréalMontréal, QC, Canada
| | - Jean Rivoal
- Institut de Recherche en Biologie Végétale, Département de sciences biologiques, Université de MontréalMontréal, QC, Canada
- *Correspondence: Jean Rivoal,
| |
Collapse
|
5
|
Bandyopadhyay D, Murthy MRN, Balaram H, Balaram P. Probing the role of highly conserved residues in triosephosphate isomerase - analysis of site specific mutants at positions 64 and 75 in thePlasmodialenzyme. FEBS J 2015. [DOI: 10.1111/febs.13384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
| | | | - Hemalatha Balaram
- Molecular Biology and Genetics Unit; Jawaharlal Nehru Centre for Advanced Scientific Research; Bangalore India
| | | |
Collapse
|
6
|
Baruah A, Biswas P. The role of site-directed point mutations in protein misfolding. Phys Chem Chem Phys 2014; 16:13964-73. [PMID: 24898496 DOI: 10.1039/c3cp55367a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mutations inducing higher clashing and lower matching residue pairs lead to misfolding.
Collapse
Affiliation(s)
- Anupaul Baruah
- Department of Chemistry
- University of Delhi
- Delhi-110007, India
| | - Parbati Biswas
- Department of Chemistry
- University of Delhi
- Delhi-110007, India
| |
Collapse
|