1
|
Thacker D, Barghouth M, Bless M, Zhang E, Linse S. Direct observation of secondary nucleation along the fibril surface of the amyloid β 42 peptide. Proc Natl Acad Sci U S A 2023; 120:e2220664120. [PMID: 37307445 PMCID: PMC10288637 DOI: 10.1073/pnas.2220664120] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/12/2023] [Indexed: 06/14/2023] Open
Abstract
Alzheimer's disease is a neurodegenerative condition which involves heavy neuronal cell death linked to oligomers formed during the aggregation process of the amyloid β peptide 42 (Aβ42). The aggregation of Aβ42 involves both primary and secondary nucleation. Secondary nucleation dominates the generation of oligomers and involves the formation of new aggregates from monomers on catalytic fibril surfaces. Understanding the molecular mechanism of secondary nucleation may be crucial in developing a targeted cure. Here, the self-seeded aggregation of WT Aβ42 is studied using direct stochastic optical reconstruction microscopy (dSTORM) with separate fluorophores in seed fibrils and monomers. Seeded aggregation proceeds faster than nonseeded reactions because the fibrils act as catalysts. The dSTORM experiments show that monomers grow into relatively large aggregates on fibril surfaces along the length of fibrils before detaching, thus providing a direct observation of secondary nucleation and growth along the sides of fibrils. The experiments were repeated for cross-seeded reactions of the WT Aβ42 monomer with mutant Aβ42 fibrils that do not catalyze the nucleation of WT monomers. While the monomers are observed by dSTORM to interact with noncognate fibril surfaces, we fail to notice any growth along such fibril surfaces. This implies that the failure to nucleate on the cognate seeds is not a lack of monomer association but more likely a lack of structural conversion. Our findings support a templating role for secondary nucleation, which can only take place if the monomers can copy the underlying parent structure without steric clashes or other repulsive interactions between nucleating monomers.
Collapse
Affiliation(s)
- Dev Thacker
- Department of Biochemistry and Structural Biology, Lund University, 22100Lund, Sweden
| | - Mohammad Barghouth
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, 22100Lund, Sweden
| | - Mara Bless
- Department of Biochemistry and Structural Biology, Lund University, 22100Lund, Sweden
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093Zürich, Switzerland
| | - Enming Zhang
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, 22100Lund, Sweden
- NanoLund Center for NanoScience, Lund University, 22100Lund, Sweden
| | - Sara Linse
- Department of Biochemistry and Structural Biology, Lund University, 22100Lund, Sweden
- NanoLund Center for NanoScience, Lund University, 22100Lund, Sweden
| |
Collapse
|
2
|
Characterisation of Amyloid Aggregation and Inhibition by Diffusion-Based Single-Molecule Fluorescence Techniques. BIOPHYSICA 2022. [DOI: 10.3390/biophysica2040043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Protein amyloid aggregation has been associated with more than 50 human disorders, including the most common neurodegenerative disorders Alzheimer’s and Parkinson’s disease. Interfering with this process is considered as a promising therapeutic strategy for these diseases. Our understanding of the process of amyloid aggregation and its role in disease has typically been limited by the use of ensemble-based biochemical and biophysical techniques, owing to the intrinsic heterogeneity and complexity of the process. Single-molecule techniques, and particularly diffusion-based single-molecule fluorescence approaches, have been instrumental to obtain meaningful information on the dynamic nature of the fibril-forming process, as well as the characterisation of the heterogeneity of the amyloid aggregates and the understanding of the molecular basis of inhibition of a number of molecules with therapeutic interest. In this article, we reviewed some recent contributions on the characterisation of the amyloid aggregation process, the identification of distinct structural groups of aggregates in homotypic or heterotypic aggregation, as well as on the study of the interaction of amyloid aggregates with other molecules, allowing the estimation of the binding sites, affinities, and avidities as examples of the type of relevant information we can obtain about these processes using these techniques.
Collapse
|
3
|
A Palette of Fluorescent A β42 Peptides Labelled at a Range of Surface-Exposed Sites. Int J Mol Sci 2022; 23:ijms23031655. [PMID: 35163577 PMCID: PMC8836192 DOI: 10.3390/ijms23031655] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/23/2022] [Accepted: 01/27/2022] [Indexed: 01/27/2023] Open
Abstract
Fluorescence-based single molecule techniques provide important tools towards understanding the molecular mechanism of complex neurodegenerative diseases. This requires efficient covalent attachment of fluorophores. Here we create a series of cysteine mutants (S8C, Y10C, S26C, V40C, and A42C) of Aβ42, involved in Alzheimer’s disease, based on exposed positions in the fibril structure and label them with the Alexa-fluorophores using maleimide chemistry. Direct stochastic optical reconstruction microscopy imaging shows that all the labelled mutants form fibrils that can be detected by virtue of Alexa fluorescence. Aggregation assays and cryo-electron micrographs establish that the careful choice of labelling position minimizes the perturbation of the aggregation process and fibril structure. Peptides labelled at the N-terminal region, S8C and Y10C, form fibrils independently and with wild-type. Peptides labelled at the fibril core surface, S26C, V40C and A42C, form fibrils only in mixture with wild-type peptide. This can be understood on the basis of a recent fibril model, in which S26, V40 and A42 are surface exposed in two out of four monomers per fibril plane. We provide a palette of fluorescently labelled Aβ42 peptides that can be used to gain understanding of the complex mechanisms of Aβ42 self-assembly and help to develop a more targeted approach to cure the disease.
Collapse
|
4
|
Rice LJ, Ecroyd H, van Oijen AM. Illuminating amyloid fibrils: Fluorescence-based single-molecule approaches. Comput Struct Biotechnol J 2021; 19:4711-4724. [PMID: 34504664 PMCID: PMC8405898 DOI: 10.1016/j.csbj.2021.08.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022] Open
Abstract
The aggregation of proteins into insoluble filamentous amyloid fibrils is a pathological hallmark of neurodegenerative diseases that include Parkinson's disease and Alzheimer's disease. Since the identification of amyloid fibrils and their association with disease, there has been much work to describe the process by which fibrils form and interact with other proteins. However, due to the dynamic nature of fibril formation and the transient and heterogeneous nature of the intermediates produced, it can be challenging to examine these processes using techniques that rely on traditional ensemble-based measurements. Single-molecule approaches overcome these limitations as rare and short-lived species within a population can be individually studied. Fluorescence-based single-molecule methods have proven to be particularly useful for the study of amyloid fibril formation. In this review, we discuss the use of different experimental single-molecule fluorescence microscopy approaches to study amyloid fibrils and their interaction with other proteins, in particular molecular chaperones. We highlight the mechanistic insights these single-molecule techniques have already provided in our understanding of how fibrils form, and comment on their potential future use in studying amyloid fibrils and their intermediates.
Collapse
Affiliation(s)
- Lauren J. Rice
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Heath Ecroyd
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Antoine M. van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| |
Collapse
|
5
|
Symmetry-breaking transitions in the early steps of protein self-assembly. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2020; 49:175-191. [PMID: 32123956 DOI: 10.1007/s00249-020-01424-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/22/2020] [Accepted: 02/10/2020] [Indexed: 10/24/2022]
Abstract
Protein misfolding and subsequent self-association are complex, intertwined processes, resulting in development of a heterogeneous population of aggregates closely related to many chronic pathological conditions including Type 2 Diabetes Mellitus and Alzheimer's disease. To address this issue, here, we develop a theoretical model in the general framework of linear stability analysis. According to this model, self-assemblies of peptides with pronounced conformational flexibility may become, under particular conditions, unstable and spontaneously evolve toward an alternating array of partially ordered and disordered monomers. The predictions of the theory were verified by atomistic molecular dynamics (MD) simulations of islet amyloid polypeptide (IAPP) used as a paradigm of aggregation-prone polypeptides (proteins). Simulations of dimeric, tetrameric, and hexameric human-IAPP self-assemblies at physiological electrolyte concentration reveal an alternating distribution of the smallest domains (of the order of the peptide mean length) formed by partially ordered (mainly β-strands) and disordered (turns and coil) arrays. Periodicity disappears upon weakening of the inter-peptide binding, a result in line with the predictions of the theory. To further probe the general validity of our hypothesis, we extended the simulations to other peptides, the Aβ(1-40) amyloid peptide, and the ovine prion peptide as well as to other proteins (SOD1 dimer) that do not belong to the broad class of intrinsically disordered proteins. In all cases, the oligomeric aggregates show an alternate distribution of partially ordered and disordered monomers. We also carried out Surface Enhanced Raman Scattering (SERS) measurements of hIAPP as an experimental validation of both the theory and in silico simulations.
Collapse
|
6
|
Alaei L, Moosavi-Movahedi AA. Stability of multi-subunit proteins and conformational lock. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 150:145-152. [DOI: 10.1016/j.pbiomolbio.2019.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/17/2019] [Accepted: 08/21/2019] [Indexed: 12/24/2022]
|
7
|
Morel B, Conejero-Lara F. Early mechanisms of amyloid fibril nucleation in model and disease-related proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:140264. [PMID: 31437584 DOI: 10.1016/j.bbapap.2019.140264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/18/2019] [Accepted: 08/12/2019] [Indexed: 02/06/2023]
Abstract
Protein amyloid aggregation is a hallmark in neuropathologies and other diseases of tremendous impact such as Alzheimer's or Parkinson's diseases. During the last decade, it has become increasingly evident that neuronal death is mainly induced by proteinaceous oligomers rather than the mature amyloid fibrils. Therefore, the earliest molecular events occurring during the amyloid aggregation cascade represent a growing interest of study. Important breakthroughs have been achieved using experimental data from different proteins, used as models, as well as systems related to diseases. Here, we summarize the structural properties of amyloid oligomeric and fibrillar aggregates and review the recent advances on how biophysical techniques can be combined with quantitative kinetic analysis and theoretical models to study the detailed mechanism of oligomer formation and nucleation of fibrils. These insights into the mechanism of early oligomerization and amyloid nucleation are of relevant interest in drug discovery and in the design of preventive strategies against neurodegenerative diseases.
Collapse
Affiliation(s)
- Bertrand Morel
- Departamento de Química Física e Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain.
| | - Francisco Conejero-Lara
- Departamento de Química Física e Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain
| |
Collapse
|
8
|
Grüter A, Hoffmann M, Müller R, Wohland T, Jung G. A high-affinity fluorescence probe for copper(II) ions and its application in fluorescence lifetime correlation spectroscopy. Anal Bioanal Chem 2019; 411:3229-3240. [PMID: 31025181 DOI: 10.1007/s00216-019-01798-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/21/2019] [Accepted: 03/21/2019] [Indexed: 10/26/2022]
Abstract
Copper is one of the most important transition metals in many organisms where it catalyzes a manifold of different processes. As a result of copper's redox activity, organisms have to avoid unbound ions, and a dysfunctional copper homeostasis may lead to multifarious pathological processes in cells with very severe ramifications for the affected organisms. In many neurodegenerative diseases, however, the exact role of copper ions is still not completely clarified. In this work, a high-affinity and highly selective copper probe molecule, based on the naturally occurring tetrapeptide DAHK is synthesized. The sensor (log KD = - 12.8 ± 0.1) is tagged with a fluorescent BODIPY dye whose fluorescence lifetime distinctly decreases from 5.8 ns ± 0.2 ns to 0.4 ns ± 0.1 ns on binding to copper(II) cations. It is shown by using fluorescence lifetime correlation spectroscopy that the concentration of both probe and probe-copper complex can be simultaneously measured even at nanomolar concentration levels. This work presents a possible starting point for a new type of probe and method for future in vivo studies to further reveal the exact role of copper ions in organisms. Graphical abstract.
Collapse
Affiliation(s)
- Andreas Grüter
- Department of Biophysical Chemistry, Saarland University, Campus B2 2, 66123, Saarbrücken, Germany
| | - Michael Hoffmann
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, Saarland University, Campus E8 1, 66123, Saarbrücken, Germany
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, Saarland University, Campus E8 1, 66123, Saarbrücken, Germany
| | - Thorsten Wohland
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore.,Department of Biological Sciences, Center for Bio-Imaging Sciences, National University of Singapore, Singapore, 117557, Singapore
| | - Gregor Jung
- Department of Biophysical Chemistry, Saarland University, Campus B2 2, 66123, Saarbrücken, Germany.
| |
Collapse
|
9
|
Cutrale F, Rodriguez D, Hortigüela V, Chiu CL, Otterstrom J, Mieruszynski S, Seriola A, Larrañaga E, Raya A, Lakadamyali M, Fraser SE, Martinez E, Ojosnegros S. Using enhanced number and brightness to measure protein oligomerization dynamics in live cells. Nat Protoc 2019; 14:616-638. [DOI: 10.1038/s41596-018-0111-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
10
|
Yang J, Dear AJ, Michaels TCT, Dobson CM, Knowles TPJ, Wu S, Perrett S. Direct Observation of Oligomerization by Single Molecule Fluorescence Reveals a Multistep Aggregation Mechanism for the Yeast Prion Protein Ure2. J Am Chem Soc 2018; 140:2493-2503. [PMID: 29357227 PMCID: PMC5880511 DOI: 10.1021/jacs.7b10439] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
![]()
The self-assembly of polypeptides
into amyloid structures is associated
with a range of increasingly prevalent neurodegenerative diseases
as well as with a select set of functional processes in biology. The
phenomenon of self-assembly results in species with dramatically different
sizes, from small oligomers to large fibrils; however, the kinetic
relationship between these species is challenging to characterize.
In the case of prion aggregates, these structures can self-replicate
and act as infectious agents. Here we use single molecule spectroscopy
to obtain quantitative information on the oligomer populations formed
during aggregation of the yeast prion protein Ure2. Global analysis
of the aggregation kinetics reveals the molecular mechanism underlying
oligomer formation and depletion. Quantitative characterization indicates
that the majority of Ure2 oligomers are relatively short-lived, and
their rate of dissociation is much higher than their rate of conversion
into growing fibrils. We identify an initial metastable oligomer,
which can subsequently convert into a structurally distinct oligomer,
which in turn converts into growing fibrils. We also show that fragmentation
is responsible for the autocatalytic self-replication of Ure2 fibrils,
but that preformed fibrils do not promote oligomer formation, indicating
that secondary nucleation of the type observed for peptides and proteins
associated with neurodegenerative disease does not occur at a significant
rate for Ure2. These results establish a framework for elucidating
the temporal and causal relationship between oligomers and larger
fibrillar species in amyloid forming systems, and provide insights
into why functional amyloid systems are not toxic to their host organisms.
Collapse
Affiliation(s)
- Jie Yang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences , 15 Datun Road, Chaoyang District, Beijing 100101, China.,University of the Chinese Academy of Sciences , 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Alexander J Dear
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Thomas C T Michaels
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom.,Paulson School of Engineering and Applied Sciences, Harvard University , Cambridge, Massachusetts 02138, United States
| | - Christopher M Dobson
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom.,Cavendish Laboratory , J J Thomson Avenue, Cambridge CB3 1HE, United Kingdom
| | - Si Wu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences , 15 Datun Road, Chaoyang District, Beijing 100101, China.,University of the Chinese Academy of Sciences , 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Sarah Perrett
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences , 15 Datun Road, Chaoyang District, Beijing 100101, China.,University of the Chinese Academy of Sciences , 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| |
Collapse
|
11
|
Gambin Y, Polinkovsky M, Francois B, Giles N, Bhumkar A, Sierecki E. Confocal Spectroscopy to Study Dimerization, Oligomerization and Aggregation of Proteins: A Practical Guide. Int J Mol Sci 2016; 17:ijms17050655. [PMID: 27144560 PMCID: PMC4881481 DOI: 10.3390/ijms17050655] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/15/2016] [Accepted: 04/20/2016] [Indexed: 12/25/2022] Open
Abstract
Protein self-association is a key feature that can modulate the physiological role of proteins or lead to deleterious effects when uncontrolled. Protein oligomerization is a simple way to modify the activity of a protein, as the modulation of binding interfaces allows for self-activation or inhibition, or variation in the selectivity of binding partners. As such, dimerization and higher order oligomerization is a common feature in signaling proteins, for example, and more than 70% of enzymes have the potential to self-associate. On the other hand, protein aggregation can overcome the regulatory mechanisms of the cell and can have disastrous physiological effects. This is the case in a number of neurodegenerative diseases, where proteins, due to mutation or dysregulation later in life, start polymerizing and often fibrillate, leading to the creation of protein inclusion bodies in cells. Dimerization, well-defined oligomerization and random aggregation are often difficult to differentiate and characterize experimentally. Single molecule “counting” methods are particularly well suited to the study of self-oligomerization as they allow observation and quantification of behaviors in heterogeneous conditions. However, the extreme dilution of samples often causes weak complexes to dissociate, and rare events can be overlooked. Here, we discuss a straightforward alternative where the principles of single molecule detection are used at higher protein concentrations to quantify oligomers and aggregates in a background of monomers. We propose a practical guide for the use of confocal spectroscopy to quantify protein oligomerization status and also discuss about its use in monitoring changes in protein aggregation in drug screening assays.
Collapse
Affiliation(s)
- Yann Gambin
- EMBL Australia Node in Single Molecule Sciences, School of Medical Science, the University of New South Wales, Sydney, NSW 2052, Australia.
| | - Mark Polinkovsky
- EMBL Australia Node in Single Molecule Sciences, School of Medical Science, the University of New South Wales, Sydney, NSW 2052, Australia.
| | - Bill Francois
- EMBL Australia Node in Single Molecule Sciences, School of Medical Science, the University of New South Wales, Sydney, NSW 2052, Australia.
| | - Nichole Giles
- EMBL Australia Node in Single Molecule Sciences, School of Medical Science, the University of New South Wales, Sydney, NSW 2052, Australia.
| | - Akshay Bhumkar
- EMBL Australia Node in Single Molecule Sciences, School of Medical Science, the University of New South Wales, Sydney, NSW 2052, Australia.
| | - Emma Sierecki
- EMBL Australia Node in Single Molecule Sciences, School of Medical Science, the University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
12
|
Guan Y, Cao KJ, Cantlon A, Elbel K, Theodorakis EA, Walsh DM, Yang J, Shah JV. Real-Time Monitoring of Alzheimer's-Related Amyloid Aggregation via Probe Enhancement-Fluorescence Correlation Spectroscopy. ACS Chem Neurosci 2015. [PMID: 26212450 DOI: 10.1021/acschemneuro.5b00176] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
This work describes the use of fluorescence correlation spectroscopy (FCS) and a novel amyloid-binding fluorescent probe, ARCAM 1, to monitor the aggregation of the Alzheimer's disease-associated amyloid β-peptide (Aβ). ARCAM 1 exhibits a large increase in fluorescence emission upon binding to Aβ assemblies, making it an excellent candidate for probe enhancement FCS (PE-FCS). ARCAM 1 binding does not change Aβ aggregation kinetics. It also exhibits greater dynamic range as a probe in reporting aggregate size by FCS in Aβ, when compared to thioflavin T (ThT) or an Aβ peptide modified with a fluorophore. Using fluorescent burst analysis (via PE-FCS) to follow aggregation of Aβ, we detected soluble aggregates at significantly earlier time points compared to typical bulk fluorescence measurements. Autocorrelation analysis revealed the size of these early Aβ assemblies. These results indicate that PE-FCS/ARCAM 1 based assays can detect and provide size characterization of small Aβ aggregation intermediates during the assembly process, which could enable monitoring and study of such aggregates that transiently accumulate in biofluids of patients with Alzheimer's and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Yinghua Guan
- Department
of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Kevin J. Cao
- Department
of Chemistry and Biochemistry, University of California at San Diego, La
Jolla, California 92093-0358, United States
| | | | - Kristyna Elbel
- Department
of Chemistry and Biochemistry, University of California at San Diego, La
Jolla, California 92093-0358, United States
| | - Emmanuel A. Theodorakis
- Department
of Chemistry and Biochemistry, University of California at San Diego, La
Jolla, California 92093-0358, United States
| | | | - Jerry Yang
- Department
of Chemistry and Biochemistry, University of California at San Diego, La
Jolla, California 92093-0358, United States
| | - Jagesh V. Shah
- Department
of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
13
|
Castello F, Casares S, Ruedas-Rama MJ, Orte A. The First Step of Amyloidogenic Aggregation. J Phys Chem B 2015; 119:8260-7. [PMID: 26039157 DOI: 10.1021/acs.jpcb.5b01957] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The structural and dynamic characterization of the on-pathway intermediates involved in the mechanism of amyloid fibril formation is one of the major remaining biomedical challenges of our time. In addition to mature fibrils, various oligomeric structures are implicated in both the rate-limiting step of the nucleation process and the neuronal toxicity of amyloid deposition. Single-molecule fluorescence spectroscopy (SMFS) is an excellent tool for extracting most of the relevant information on these molecular systems, especially advanced multiparameter approaches, such as pulsed interleaved excitation (PIE). In our investigations of an amyloidogenic SH3 domain of α-spectrin, we have found dynamic oligomerization, even prior to incubation. Our single-molecule PIE experiments revealed that these species are small, mostly dimeric, and exhibit a loose and dynamic molecular organization. Furthermore, these experiments have allowed us to obtain quantitative information regarding the oligomer stability. These pre-amyloidogenic oligomers may potentially serve as the first target for fibrillization-prevention strategies.
Collapse
Affiliation(s)
- Fabio Castello
- †Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, Campus Cartuja, 18071 Granada, Spain
| | - Salvador Casares
- ‡Department of Physical Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva, 18071 Granada, Spain
| | - Maria J Ruedas-Rama
- †Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, Campus Cartuja, 18071 Granada, Spain
| | - Angel Orte
- †Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, Campus Cartuja, 18071 Granada, Spain
| |
Collapse
|
14
|
Statistical filtering in fluorescence microscopy and fluorescence correlation spectroscopy. Anal Bioanal Chem 2014; 406:4797-813. [DOI: 10.1007/s00216-014-7892-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 05/07/2014] [Accepted: 05/13/2014] [Indexed: 01/21/2023]
|
15
|
Mittag JJ, Milani S, Walsh DM, Rädler JO, McManus JJ. Simultaneous measurement of a range of particle sizes during Aβ1-42 fibrillogenesis quantified using fluorescence correlation spectroscopy. Biochem Biophys Res Commun 2014; 448:195-9. [PMID: 24769478 DOI: 10.1016/j.bbrc.2014.04.088] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 04/17/2014] [Indexed: 01/15/2023]
Abstract
Low molecular weight oligomers of amyloid beta (Aβ) are important drivers of Alzheimer's disease. A decrease in Aβ monomer levels in human cerebrospinal fluid (CSF) is observed in Alzheimers' patients and is a robust biomarker of the disease. It has been suggested that the decrease in monomer levels in CSF is due to the formation of Aβ oligomers. A robust technique capable of identifying Aβ oligomers in CSF is therefore desirable. We have used fluorescence correlation spectroscopy and a five Gaussian distribution model (5GDM) to monitor the aggregation of Aβ1-42 in sodium phosphate buffer and in artificial cerebrospinal fluid (ACSF). In buffer, several different sized components (monomer, oligomers, protofibrils and fibrils) can be identified simultaneously using 5GDM. In ACSF, the faster kinetics of fibrillogenesis leads to the formation of fibrils on very short timescales. This analysis method can also be used to monitor the aggregation of other proteins, nanoparticles or colloids, even in complex biological fluids.
Collapse
Affiliation(s)
- Judith J Mittag
- Ludwig-Maximilians-Universität, Fakultät für Physik & CeNS, Geschwister-Scholl-Platz 1, 80539 München, Germany.
| | - Silvia Milani
- Ludwig-Maximilians-Universität, Fakultät für Physik & CeNS, Geschwister-Scholl-Platz 1, 80539 München, Germany.
| | - Dominic M Walsh
- Laboratory for Neurodegenerative Research, Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Institutes of Medicine, Boston, MA 02115, USA.
| | - Joachim O Rädler
- Ludwig-Maximilians-Universität, Fakultät für Physik & CeNS, Geschwister-Scholl-Platz 1, 80539 München, Germany.
| | - Jennifer J McManus
- Department of Chemistry, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
16
|
Gabizon R, Friedler A. Allosteric modulation of protein oligomerization: an emerging approach to drug design. Front Chem 2014; 2:9. [PMID: 24790978 PMCID: PMC3982530 DOI: 10.3389/fchem.2014.00009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 02/22/2014] [Indexed: 01/05/2023] Open
Abstract
Many disease-related proteins are in equilibrium between different oligomeric forms. The regulation of this equilibrium plays a central role in maintaining the activity of these proteins in vitro and in vivo. Modulation of the oligomerization equilibrium of proteins by molecules that bind preferentially to a specific oligomeric state is emerging as a potential therapeutic strategy that can be applied to many biological systems such as cancer and viral infections. The target proteins for such compounds are diverse in structure and sequence, and may require different approaches for shifting their oligomerization equilibrium. The discovery of such oligomerization-modulating compounds is thus achieved based on existing structural knowledge about the specific target proteins, as well as on their interactions with partner proteins or with ligands. In silico design and combinatorial tools such as peptide arrays and phage display are also used for discovering compounds that modulate protein oligomerization. The current review highlights some of the recent developments in the design of compounds aimed at modulating the oligomerization equilibrium of proteins, including the "shiftides" approach developed in our lab.
Collapse
Affiliation(s)
| | - Assaf Friedler
- Institute of Chemistry, The Hebrew University of JerusalemJerusalem, Israel
| |
Collapse
|
17
|
Ruzafa D, Conejero-Lara F, Morel B. Modulation of the stability of amyloidogenic precursors by anion binding strongly influences the rate of amyloid nucleation. Phys Chem Chem Phys 2014; 15:15508-17. [PMID: 23942905 DOI: 10.1039/c3cp52313f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A deep understanding of the physicochemical factors modulating amyloid aggregation of proteins is crucial to develop therapeutic and preventive approaches for amyloid-related diseases. The earliest molecular events of the aggregation cascade represent some of the main targets as indicated by the toxic nature of certain early oligomers. Here, we study how different types of salt ions influence the kinetics of amyloid assembly of the N47A mutant α-spectrin SH3 domain using a battery of techniques. The salts influenced aggregation rates to different extents without altering the overall mechanism and the high apparent order of the experimental kinetics. A quantitative analysis of the initial aggregation rates measured by thioflavine-T fluorescence using a simple nucleation model allowed us to estimate the kinetic and thermodynamic magnitudes of crucial aggregation precursors, as well as to evaluate the impact of each type of ion on the earliest amyloid nucleation stages. Whilst cations did not have any noticeable effect under our experimental conditions, anions stabilized an amyloidogenic intermediate state and also increased the rate of the conformational conversion from dynamic oligomers to amyloid nuclei, resulting in a strong acceleration of the nucleation process. Anions appear to act by preferential binding to the amyloidogenic intermediate state, thus enhancing its population and subsequent oligomerization. Overall, our results contribute to the rationalization of the effect of ions on the amyloid nucleation stage and give insight into the properties of the crucial intermediate precursors of amyloid aggregation.
Collapse
Affiliation(s)
- David Ruzafa
- Departamento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain.
| | | | | |
Collapse
|
18
|
RUEDAS-RAMA MJ, ALVAREZ-PEZ JM, ORTE A. SOLVING SINGLE BIOMOLECULES BY ADVANCED FRET-BASED SINGLE-MOLECULE FLUORESCENCE TECHNIQUES. ACTA ACUST UNITED AC 2014. [DOI: 10.1142/s1793048013300041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The use of Förster resonance energy transfer (FRET) has undergone a renaissance in the last two decades, especially in the study of structure of biomolecules, biomolecular interactions, and dynamics. Thanks to powerful advances in single-molecule fluorescence (SMF) techniques, seeing molecules at work is a reality, which has helped to build up the mindset of molecular machines. In the last few years, many technical developments have broadened the applications of SMF-FRET, expanding the amount of information that can be recovered from individual molecules. Here, we focus on the non-standard SMF-FRET techniques, such as two-color coincidence detection (TCCD), alternating laser excitation (ALEX), multiparameter fluorescence detection (MFD); the addition of fluorescence lifetime as an orthogonal dimension in single-molecule experiments; or the development of novel and improved methods of analysis constituting to a set of advanced methodologies that may become routine tools in a close future. [Formula: see text]Special Issue Comment: This review about advanced single-molecule FRET techniques is specially related to the review by Jørgensen and Hatzakis,6 who detail experimetal strategies to solve the activity of single enzymes. The advanced techniques described in our paper may serve as interesting alternatives when applied to enzyme studies. Our manuscript is also related to the reviews in this Special Issue that deal with model solving.22,130
Collapse
Affiliation(s)
- M. J. RUEDAS-RAMA
- Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, Cartuja Campus, Granada, 18071, Spain
| | - J. M. ALVAREZ-PEZ
- Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, Cartuja Campus, Granada, 18071, Spain
| | - A. ORTE
- Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, Cartuja Campus, Granada, 18071, Spain
| |
Collapse
|
19
|
Nath A, Rhoades E. A flash in the pan: dissecting dynamic amyloid intermediates using fluorescence. FEBS Lett 2013; 587:1096-105. [PMID: 23458258 DOI: 10.1016/j.febslet.2013.02.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 02/21/2013] [Accepted: 02/22/2013] [Indexed: 12/15/2022]
Abstract
Several widespread and severe degenerative diseases are characterized by the deposition of amyloid protein aggregates in affected tissues. While there is great interest in the complete description of the aggregation pathway of the proteins involved, a molecular level understanding is hindered by the complexity of the self-assembly process. In particular, the early stages of aggregation, where dynamic, heterogeneous and often toxic intermediates are populated, are resistant to high-resolution structural characterization. Fluorescence spectroscopy is a powerful and versatile tool for such analysis. In this review, we survey its application to provide residue-specific information about amyloid intermediate states for three selected proteins: IAPP, α-synuclein, and tau.
Collapse
Affiliation(s)
- Abhinav Nath
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
| | | |
Collapse
|