1
|
Cordier W, Yousaf M, Nell MJ, Steenkamp V. Underlying mechanisms of cytotoxicity in HepG2 hepatocarcinoma cells exposed to arsenic, cadmium and mercury individually and in combination. Toxicol In Vitro 2021; 72:105101. [PMID: 33497711 DOI: 10.1016/j.tiv.2021.105101] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/16/2020] [Accepted: 01/20/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Toxicity data regarding combinational exposure of humans to arsenic, cadmium and mercury is scarce. Although hepatotoxicity has been reported, limited information is available on their mechanistic underpinnings. The cytotoxic mechanisms of these metals were determined in HepG2 hepatocarcinoma cell lines after individual and combinational exposure. METHODS HepG2 cells were exposed to heavy metals (sodium arsenite, cadmium chloride, and mercury chloride) individually or in combination for 24 h, after which cell density, mitochondrial membrane potential (ΔΨm), reactive oxygen species (ROS), reduced glutathione (GSH), adenosine triphosphate (ATP) and caspase-3/7 activity was assessed. RESULTS AND DISCUSSION Cadmium (IC50 = 0.43 mg/L) and the combination (0.45 mg/L, arsenic reference) were most cytotoxic, followed by arsenic (6.71 mg/L) and mercury (28.23 mg/L). Depolarisation of the ΔΨm and reductions in ROS, GSH and ATP levels occurred. Arsenic, cadmium and the combination increased caspase-3/7 activity, while mercury reduced it. CONCLUSION The combination produced a greater, albeit mechanistically similar, cytotoxicity compared to individual metals. Cytotoxicity was dependent on altered mitochondrial integrity, redox-status, and bioenergetics. Although the combination's cytotoxicity was associated with caspase-3/7 activity, this was not true for mercury. Heavy metal interactions should be assessed to elucidate molecular underpinnings of cytotoxicity.
Collapse
Affiliation(s)
- W Cordier
- Department of Pharmacology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| | - M Yousaf
- Department of Pharmacology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - M J Nell
- Department of Pharmacology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - V Steenkamp
- Department of Pharmacology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
2
|
Perez-Fernandez C, Morales-Navas M, Aguilera-Sáez LM, Abreu AC, Guardia-Escote L, Fernández I, Garrido-Cárdenas JA, Colomina MT, Giménez E, Sánchez-Santed F. Medium and long-term effects of low doses of Chlorpyrifos during the postnatal, preweaning developmental stage on sociability, dominance, gut microbiota and plasma metabolites. ENVIRONMENTAL RESEARCH 2020; 184:109341. [PMID: 32179266 DOI: 10.1016/j.envres.2020.109341] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/30/2020] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental pathology characterized by altered verbalizations, reduced social interaction behavior, and stereotypies. Environmental factors have been associated with its development. Some researchers have focused on pesticide exposure. Chlorpyrifos (CPF) is the most used Organophosphate. Previous developmental studies with CPF showed decreased, enhanced or no effect on social outcomes eminently in mice. The study of CPF exposure during preweaning stages on social behavior is sparse in mice and non-existent in rats. d stressors could be at the basis of ASD development, and around postnatal day 10 in the rat is equivalent to the human birthday in neurodevelopmental terms. We explored the effects of exposure to low doses (1mg/kg/mL/day) of CPF during this stage regarding: sociability, dominance gut microbiome and plasma metabolomic profile, since alterations in these systems have also been linked to ASD. There was a modest influence of CPF on social behavior in adulthood, with null effects during adolescence. Dominance and hierarchical status were not affected by exposure. Dominance status explained the significant reduction in reaction to social novelty observed on the sociability test. CPF induced a significant gut microbiome dysbiosis and triggered a hyperlipidemic, hypoglycemic/hypogluconeogenesis and a general altered cell energy production in females. These behavioral results in rats extend and complement previous studies with mice and show novel influences on gut metagenomics and plasma lipid profile and metabolomics, but do not stablish a relation between the exposure to CPF and the ASD phenotype. The effects of dominance status on reaction to social novelty have an important methodological meaning for future research on sociability.
Collapse
Affiliation(s)
- Cristian Perez-Fernandez
- Department of Psychology and Health Research Center, University of Almería, Ctra. Sacramento, s/n, 04120, Almería, Spain.
| | - Miguel Morales-Navas
- Department of Psychology and Health Research Center, University of Almería, Ctra. Sacramento, s/n, 04120, Almería, Spain.
| | - Luis Manuel Aguilera-Sáez
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, 04120, Almería, Spain.
| | - Ana Cristina Abreu
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, 04120, Almería, Spain.
| | - Laia Guardia-Escote
- Department of Biochemistry and Biotechnology and Research in Neurobehavior and Health (NEUROLAB), Universitat Rovira i Virgili, 43007, C/ Macel.lí Domingo 1, Tarragona, Spain.
| | - Ignacio Fernández
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, 04120, Almería, Spain.
| | | | - María Teresa Colomina
- Department of Psychology and Research Center for Behavior Assessment (CRAMC), Universitat Rovira i Virgili, 43007, C/ Carretera de Valls, s/n, Tarragona, Spain.
| | - Estela Giménez
- Department of Biology and Geology, University of Almería, Ctra. Sacramento, s/n, 04120, Almería, Spain.
| | - Fernando Sánchez-Santed
- Department of Psychology and Health Research Center, University of Almería, Ctra. Sacramento, s/n, 04120, Almería, Spain.
| |
Collapse
|
3
|
Ma NL, Kadir NA, Nordin MMA, Tan SH, Lam SS. Progress and Challenges of Detecting Biomarkers for the Development of Pesticide Biosensor in Rice Plants. ADVANCES IN RICE RESEARCH FOR ABIOTIC STRESS TOLERANCE 2019:821-838. [DOI: 10.1016/b978-0-12-814332-2.00041-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
4
|
Spertino S, Boatti L, Icardi S, Manfredi M, Cattaneo C, Marengo E, Cavaletto M. Cellulomonas fimi secretomes: In vivo and in silico approaches for the lignocellulose bioconversion. J Biotechnol 2018; 270:21-29. [PMID: 29409863 DOI: 10.1016/j.jbiotec.2018.01.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 12/30/2017] [Accepted: 01/26/2018] [Indexed: 12/17/2022]
Abstract
Lignocellulose degradation is a challenging step for value added products and biofuels production. Cellulomonas fimi secretes complex mixtures of carbohydrate active enzymes (CAZymes) which synergistically degrade cellulose and hemicelluloses. Their characterization may provide new insights for enzymatic cocktails implementation. Bioinformatic analysis highlighted 1127 secreted proteins, constituting the in silico secretome, graphically represented in a 2DE map. According to Blast2GO functional annotation, many of these are involved in carbohydrates metabolism. In vivo secretomes were obtained, growing C. fimi on glucose, CMC or wheat straw for 24 h. Zymography revealed degradative activity on carbohydrates and proteomic analysis identified some CAZymes, only in secretomes obtained with CMC and wheat straw. An interaction between cellobiohydrolases is proposed as a strategy adopted by soluble multimodular cellulases. Such approach can be crucial for a better characterization and industrial exploitation of the synergism among C. fimi enzymes.
Collapse
Affiliation(s)
- Stefano Spertino
- Department of Scienze e Innovazione Tecnologica, University of Piemonte Orientale, Alessandria, Italy.
| | - Lara Boatti
- Department of Scienze e Innovazione Tecnologica, University of Piemonte Orientale, Alessandria, Italy
| | - Sara Icardi
- Department of Scienze e Innovazione Tecnologica, University of Piemonte Orientale, Alessandria, Italy
| | - Marcello Manfredi
- Department of Scienze e Innovazione Tecnologica, University of Piemonte Orientale, Alessandria, Italy; ISALIT S.r.l., Novara, Italy
| | - Chiara Cattaneo
- Department of Scienze e Innovazione Tecnologica, University of Piemonte Orientale, Alessandria, Italy
| | - Emilio Marengo
- Department of Scienze e Innovazione Tecnologica, University of Piemonte Orientale, Alessandria, Italy
| | - Maria Cavaletto
- Department of Scienze e Innovazione Tecnologica, University of Piemonte Orientale, Alessandria, Italy
| |
Collapse
|
5
|
Van Emon JM, Pan P, van Breukelen F. Effects of chlorpyrifos and trichloropyridinol on HEK 293 human embryonic kidney cells. CHEMOSPHERE 2018; 191:537-547. [PMID: 29059561 PMCID: PMC7462251 DOI: 10.1016/j.chemosphere.2017.10.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 10/03/2017] [Accepted: 10/07/2017] [Indexed: 06/07/2023]
Abstract
Chlorpyrifos (CPF) [O, O-diethyl -O-3, 5, 6-trichloro-2-pyridyl phosphorothioate] is an organophosphate insecticide widely used for agricultural and urban pest control. Trichloropyridinol (TCP; 3,5,6-trichloro-2-pyridinol), the primary metabolite of CPF, is often used as a generic biomarker of exposure for CPF and related compounds. Human embryonic kidney 293 (HEK 293) cells were exposed to CPF and TCP with varying concentrations and exposure periods. Cell cultures enable the cost-effective study of specific biomarkers to help determine toxicity pathways to predict the effects of chemical exposures without relying on whole animals. Both CPF and TCP were found to induce cytotoxic effects with CPF being more toxic than TCP with EC50 values of 68.82 μg/mL and 146.87 μg·ml-1 respectively. Cell flow cytometric analyses revealed that exposure to either CPF or TCP leads to an initial burst of apoptotic induction followed by a slow recruitment of cells leading towards further apoptosis. CPF produced a strong induction of IL6, while TCP exposure resulted in a strong induction of IL1α. Importantly, the concentrations of CPF and TCP required for these cytokine inductions were higher than those required to induce apoptosis. These data suggest CPF and TCP are cytotoxic to HEK 293 cells but that the mechanism may not be related to an inflammatory response. CPF and TCP also varied in their effects on the HEK 293 proteome with 5 unique proteins detected after exposure to CPF and 31 unique proteins after TCP exposure.
Collapse
Affiliation(s)
- Jeanette M Van Emon
- U. S. Environmental Protection Agency, National Exposure Research Laboratory, 944 E. Harmon Ave, Las Vegas, NV 89119, USA.
| | - Peipei Pan
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV 89154, USA
| | - Frank van Breukelen
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV 89154, USA
| |
Collapse
|
6
|
Singh N, Gupta VK, Kumar A, Sharma B. Synergistic Effects of Heavy Metals and Pesticides in Living Systems. Front Chem 2017; 5:70. [PMID: 29075624 PMCID: PMC5641569 DOI: 10.3389/fchem.2017.00070] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 09/11/2017] [Indexed: 12/20/2022] Open
Abstract
There is a widespread repeated exposure of the population to the pesticides and heavy metals of occupational and environmental origin. Such population is forced to undergo continuous stress imposed by combined exposure of the heavy metals and different classes of the pesticides used in agricultural as well as health practices. The existing reports from several workers have indicated that heavy metals and pesticides in combination may lead more severe impact on the human health when compared to their individual effects. Such a combination of pesticides and heavy metals may also change or influence the detection of exposure. Several studies in past have shown the synergistic toxic effects of heavy metals and pesticides. Such evaluations have revealed the synergistic interactions of various heavy metals and pesticides in animals as well as humans. The aim of the present article is to provide a synthesis of existing knowledge on the synergistic effects of heavy metal and pesticides in living systems. The information included in this article may be useful for different environment protection agencies and policy makers to consider the combined effects of heavy metals and pesticides on humans while designing strategies toward environmental protection and safety regulations about human health.
Collapse
Affiliation(s)
- Nitika Singh
- Department of Biochemistry, Faculty of Science, University of Allahabad, Allahabad, India
| | - Vivek Kumar Gupta
- Department of Biochemistry, Faculty of Science, University of Allahabad, Allahabad, India
| | - Abhishek Kumar
- Department of Biochemistry, Faculty of Science, University of Allahabad, Allahabad, India
| | - Bechan Sharma
- Department of Biochemistry, Faculty of Science, University of Allahabad, Allahabad, India
| |
Collapse
|
7
|
Ge Y, Bruno M, Wallace K, Leavitt S, Andrews D, Spassova MA, Xi M, Roy A, Haykal-Coates N, Lefew W, Swank A, Winnik WM, Chen C, Woodard J, Farraj A, Teichman KY, Ross JA. Systematic proteomic approach to characterize the impacts of chemical interactions on protein and cytotoxicity responses to metal mixture exposures. J Proteome Res 2014; 14:183-92. [PMID: 25285964 DOI: 10.1021/pr500795d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chemical interactions have posed a big challenge in toxicity characterization and human health risk assessment of environmental mixtures. To characterize the impacts of chemical interactions on protein and cytotoxicity responses to environmental mixtures, we established a systems biology approach integrating proteomics, bioinformatics, statistics, and computational toxicology to measure expression or phosphorylation levels of 21 critical toxicity pathway regulators and 445 downstream proteins in human BEAS-2B cells treated with 4 concentrations of nickel, 2 concentrations each of cadmium and chromium, as well as 12 defined binary and 8 defined ternary mixtures of these metals in vitro. Multivariate statistical analysis and mathematical modeling of the metal-mediated proteomic response patterns showed a high correlation between changes in protein expression or phosphorylation and cellular toxic responses to both individual metals and metal mixtures. Of the identified correlated proteins, only a small set of proteins including HIF-1α is likely to be responsible for selective cytotoxic responses to different metals and metals mixtures. Furthermore, support vector machine learning was utilized to computationally predict protein responses to uncharacterized metal mixtures using experimentally generated protein response profiles corresponding to known metal mixtures. This study provides a novel proteomic approach for characterization and prediction of toxicities of metal and other chemical mixtures.
Collapse
Affiliation(s)
- Yue Ge
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency , 109 T. W. Alexander Drive, Research Triangle Park, North Carolina 27709, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Akande MG, Aliu YO, Ambali SF, Ayo JO. Taurine mitigates cognitive impairment induced by chronic co-exposure of male Wistar rats to chlorpyrifos and lead acetate. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:315-325. [PMID: 24394474 DOI: 10.1016/j.etap.2013.11.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 10/28/2013] [Accepted: 11/20/2013] [Indexed: 06/03/2023]
Abstract
Organophosphate pesticides and heavy metals are ubiquitous environmental pollutants and neurotoxicants. We investigated the effects of taurine (an antioxidant; TA) on oxidative stress and cognition in male Wistar rats co-treated with chlorpyrifos (an organophosphate pesticide; CPF) and lead acetate (heavy metal; LA). The Wistar rats were divided into 5 groups of 10 rats each. The first two groups were administered with distilled water and soya oil respectively. The remaining three groups were administered with taurine (TA), 50 mg/kg body weight, CPF+LA group [CPF (4.25 mg/kg, 1/20 LD₅₀] and LA (233.25 mg/kg, 1/20 LD₅₀) and TA+CPF+LA group [TA (50 mg/kg), CPF (4.25 mg/kg) and LA (233.25 mg/kg)]. The xenobiotics were administered once daily by oral gavage for 16 weeks. The results showed reductions in the activities of brain antioxidant enzymes and acetylcholinesterase, increased lipoperoxidation and histopathological alterations of the cerebral cortex in the CPF+LA group. However, TA mitigated perturbations in the activities of the antioxidant enzymes and acetylcholinesterase, counteracted oxidative stress and brain lipoperoxidation and attenuated neuronal degeneration induced by joint CPF and LA-induced neurotoxicity. The results suggested that TA is neuroprotective following chronic co-exposure of rats to CPF and LA.
Collapse
Affiliation(s)
- M G Akande
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Abuja, Nigeria.
| | - Y O Aliu
- Department of Physiology and Pharmacology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria.
| | - S F Ambali
- Department of Physiology and Pharmacology, Faculty of Veterinary Medicine, University of Ilorin, Ilorin, Nigeria.
| | - J O Ayo
- Department of Physiology and Pharmacology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria.
| |
Collapse
|