1
|
Yang CY, Pan CC, Tseng CH, Yen FL. Antioxidant, Anti-Inflammation and Antiaging Activities of Artocarpus altilis Methanolic Extract on Urban Particulate Matter-Induced HaCaT Keratinocytes Damage. Antioxidants (Basel) 2022; 11:2304. [PMID: 36421490 PMCID: PMC9687219 DOI: 10.3390/antiox11112304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 07/29/2023] Open
Abstract
Particulate matter (PM) is one of the reasons that exacerbate skin diseases. Impaired barrier function is a common symptom in skin diseases, including atopic dermatitis, eczema and psoriasis. Herbal extracts rich in antioxidants are thought to provide excellent pharmacological activities; however, the anti-pollution activity of Artocarpus altilis extract (AAM) has not been investigated yet. The present study demonstrated that 5 μg/mL of AAM was considered to be a safe dose for further experiments without cytotoxicity. Next, we evaluated the anti-pollution activity of AAM through the PM-induced keratinocytes damage cell model. The results showed that AAM could reduce PM-induced overproduction of intracellular ROS and the final product of lipid peroxidation, 4-hydroxynonenal (4HNE). In addition, AAM not only reduced the inflammatory protein expressions, including tumor necrosis factor α (TNFα), TNF receptor 1 (TNFR1) and cyclooxygenase-2 (COX-2), but also balanced the aging protein ratio of matrix metalloproteinase (MMPs) and tissue inhibitors of metalloproteases (TIMPs) through downregulating the phosphorylation of mitogen-activated protein kinase (MAPK) signaling. For skin barrier protection, AAM could repair PM-induced barrier function proteins damage, including filaggrin, loricrin and aquaporin 3 for providing anti-aging bioactivity. In conclusion, AAM has the potential to be developed as an anti-pollution active ingredient for topical skin products to prevent skin oxidation, inflammation and aging, and restore the skin barrier function.
Collapse
Affiliation(s)
- Chun-Yin Yang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | | | - Chih-Hua Tseng
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Pharmacy, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan
| | - Feng-Lin Yen
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- College of Professional Studies, National Pingtung University of Science and Technology, Pingtung County 900, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
2
|
Photoprotective Potential of the Natural Artocarpin against In Vitro UVB-Induced Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1042451. [PMID: 33014267 PMCID: PMC7520682 DOI: 10.1155/2020/1042451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/10/2020] [Accepted: 09/03/2020] [Indexed: 11/26/2022]
Abstract
Apoptosis, a well-known pattern of programmed cell death, occurs in multicellular organisms not only for controlling tissue homeostasis but also for getting rid of severely damaged cells in order to protect the redundant growth of abnormal cells undergoing cancerous cells. The epidermis of the human skin, composed largely of keratinocytes (KCs), is renewed continuously. Therefore, KCs apoptosis plays a critical role in the maintenance of epidermis structure and function. However, regulated cell death can be disturbed by environmental factors especially ultraviolet radiation (UV) B, leading to the formation of sunburn cells (KCs undergoing UVB-induced apoptosis) and impairing the skin integrity. In the present study, we firstly reported the potential of the natural artocarpin (NAR) to regulate UVB-induced human KCs apoptosis. The NAR showed antilipid peroxidation with an IC50 value of 18.2 ± 1.6 μg/mL, according to TBARS assay while the IC50 value of trolox, a well-known antioxidant, was 7.3 ± 0.8 μg/mL. For cell-based studies, KCs were pretreated with 3.1 μg/mL of the NAR for 24 hr and then exposed to UVB at 55 mJ/cm2. Our data indicated that the NAR pretreatment reduces UVB-induced oxidative stress by scavenging free radicals and nitric oxide and therefore prevents reactive oxygen species (ROS) and reactive nitrogen species- (RNS-) mediated apoptosis. The NAR pretreatment has been shown also to reduce the UVB-induced cyclobutane pyrimidine dimer (CPD) lesions by absorbing UVB radiation and regulating the cell cycle phase. Additionally, the NAR pretreatment was found to modulate the expression of cleaved caspases-3 and 8 that trigger different signalling cascades leading to apoptosis. Thus, these results provide a basis for the investigation of the photoprotective effect of the NAR isolated from A. altilis heartwood and suggest that it can be potentially used as an agent against UVB-induced skin damages.
Collapse
|
3
|
Anti-wrinkle and anti-inflammatory effects of a combination of topically applied horse oil and dietary enzyme hydrolysates from horse bone. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Yin S, Wang Y, Liu N, Yang M, Hu Y, Li X, Fu Y, Luo M, Sun J, Yang X. Potential skin protective effects after UVB irradiation afforded by an antioxidant peptide from Odorrana andersonii. Biomed Pharmacother 2019; 120:109535. [DOI: 10.1016/j.biopha.2019.109535] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/28/2019] [Accepted: 10/02/2019] [Indexed: 01/01/2023] Open
|
5
|
Antioxidant Peptide AOP-P1 Derived from Odorous Frog Showed Protective Effects Against UVB-Induced Skin Damages. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09862-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Lajis AFB, Ariff AB. Discovery of new depigmenting compounds and their efficacy to treat hyperpigmentation: Evidence from in vitro study. J Cosmet Dermatol 2019; 18:703-727. [PMID: 30866156 DOI: 10.1111/jocd.12900] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 01/22/2019] [Indexed: 12/19/2022]
Abstract
Human skin pigmentation is a result of constitutive and facultative pigmentation. Facultative pigmentation is frequently stimulated by UV radiation, pharmacologic drugs, and hormones whereby leads to the development of abnormal skin hyperpigmentation. To date, many state-of-art depigmenting compounds have been studied using in vitro model to treat hyperpigmentation problems for cosmetic dermatological applications; little attention has been made to compare the effectiveness of these depigmenting compounds and their mode of actions. In this present article, new and recent depigmenting compounds, their melanogenic pathway targets, and modes of action are reviewed. This article compares the effectiveness of these new depigmenting compounds to modulate several melanogenesis-regulatory enzymes and proteins such as tyrosinase (TYR), TYR-related protein-1 (TRP1), TYR-related protein-2 (TRP2), microphthalmia-associated transcription factor (MITF), extracellular signal-regulated kinase (ERK) and N-terminal kinases (JNK) and mitogen-activated protein kinase p38 (p38 MAPK). Other evidences from in vitro assays such as inhibition on melanosomal transfer, proteasomes, nitric oxide, and inflammation-induced melanogenesis are also highlighted. This article also reviews analytical techniques in different assays performed using in vitro model as well as their advantages and limitations. This article also provides an insight on recent finding and re-examination of some protocols as well as their effectiveness and reliability in the evaluation of depigmenting compounds. Evidence and support from related patents are also incorporated in this present article to give an overview on current patented technology, latest trends, and intellectual values of some depigmenting compounds and protocols, which are rarely highlighted in the literatures.
Collapse
Affiliation(s)
- Ahmad Firdaus B Lajis
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia.,Bioprocessing and Biomanufacturing Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Arbakariya B Ariff
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia.,Bioprocessing and Biomanufacturing Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
7
|
Nwidu LL, Alikwe PCN, Elmorsy E, Carter WG. An Investigation of Potential Sources of Nutraceuticals from the Niger Delta Areas, Nigeria for Attenuating Oxidative Stress. MEDICINES 2019; 6:medicines6010015. [PMID: 30669529 PMCID: PMC6473651 DOI: 10.3390/medicines6010015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 12/21/2022]
Abstract
Background: Diets rich in fruits, vegetables, and medicinal plants possess antioxidants potentially capable of mitigating cellular oxidative stress. This study investigated the antioxidant, anti-acetylcholinesterase (AChE), and total phenolic and flavonoids contents (TPC/TFC) of dietary sources traditionally used for memory enhancing in Niger Delta, Nigeria. Methods:Dacroydes edulis methanolic seed extract (DEMSE), Cola lepidota methanolic seed extract (CLMSE), Terminalia catappa methanolic seed extract (TeCMSE), Tricosanthes cucumerina methanolic seed extract (TrCMSE), Tetrapleura tetraptera methanolic seed extract (TTMSE), and defatted Moringa oleifera methanolic seed extract (DMOMSE); Dennettia tripetala methanolic fruit extract (DTMFE), Artocarpus communis methanolic fruit extract (ACMFE), Gnetum africana methanolic leaf extract (GAMLE), Musa paradisiaca methanolic stembark extract (MPMSE), and Mangifera indica methanolic stembark extract (MIMSE) were evaluated for free radical scavenging antioxidant ability using 2,2-Diphenyl-1-picrylhydrazyl (DPPH), reducing power capacity (reduction of ferric iron to ferrous iron), AChE inhibitory potential by Ellman assay, and then TPC/TFC contents determined by estimating milli-equivalents of Gallic acid and Quercetin per gram, respectively. Results: The radical scavenging percentages were as follows: MIMSE (58%), MPMSE (50%), TrCMSE (42%), GAMLE (40%), CLMSE (40%), DMOMSE (38%), and DEMFE (37%) relative to β-tocopherol (98%). The highest iron reducing (antioxidant) capacity was by TrCMSE (52%), MIMSE (40%) and GAMLE (38%). Extracts of MIMSE, TrCMSE, DTMFE, TTMSE, and CLMSE exhibited concentration-dependent AChE inhibitory activity (p < 0.05–0.001). At a concentration of 200 µg/mL, the AChE inhibitory activity and IC50 (µg/mL) exhibited by the most potent extracts were: MIMSE (≈50%/111.9), TrCMSE (≈47%/201.2), DTMFE (≈32%/529.9), TTMSE (≈26%/495.4), and CLMSE (≈25%/438.4). The highest TPC were from MIMSE (156.2), TrCMSE (132.65), GAMLE (123.26), and CLMSE (119.63) in mg gallic acid equivalents/g, and for TFC were: MISME (87.35), GAMLE (73.26), ACMFE (69.54), CLMSE (68.35), and TCMSE2 (64.34) mg quercetin equivalents/gram. Conclusions: The results suggest that certain inedible and edible foodstuffs, most notably MIMSE, MPMSE, TrCMSE, GAMLE, and CLMSE may be beneficial to ameliorate the potentially damaging effects of redox stress.
Collapse
Affiliation(s)
- Lucky Legbosi Nwidu
- Department of Experimental Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of Port Harcourt, Port Harcourt PMB 5323, Rivers State, Nigeria.
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby DE22 3DT, UK.
| | - Philip Cheriose Nzien Alikwe
- Department of Animal Science, Niger Delta University, Wilberforce Island, Yenegoa PMB 071, Bayelsa State, Nigeria.
| | - Ekramy Elmorsy
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby DE22 3DT, UK.
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Wayne Grant Carter
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby DE22 3DT, UK.
| |
Collapse
|
8
|
Ge L, Chen L, Mo Q, Zhou G, Meng X, Wang Y. Total phenylethanoid glycosides and magnoloside IafromMagnolia officinalisvar.bilobafruits inhibit ultraviolet B-induced phototoxicity and inflammation through MAPK/NF-κB signaling pathways. RSC Adv 2018. [DOI: 10.1039/c7ra13033c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Magnolia officinalisvar.bilobais used as a traditional medicine in China and as a food additive in the United Kingdom and the European Union.
Collapse
Affiliation(s)
- Lanlan Ge
- Institute of TCM and Natural Products
- School of Pharmaceutical Sciences
- Wuhan University
- Wuhan 430071
- P. R. China
| | - Ling Chen
- Institute of TCM and Natural Products
- School of Pharmaceutical Sciences
- Wuhan University
- Wuhan 430071
- P. R. China
| | - Qigui Mo
- Institute of TCM and Natural Products
- School of Pharmaceutical Sciences
- Wuhan University
- Wuhan 430071
- P. R. China
| | - Gao Zhou
- Institute of TCM and Natural Products
- School of Pharmaceutical Sciences
- Wuhan University
- Wuhan 430071
- P. R. China
| | - Xiaoshan Meng
- Institute of TCM and Natural Products
- School of Pharmaceutical Sciences
- Wuhan University
- Wuhan 430071
- P. R. China
| | - Youwei Wang
- Institute of TCM and Natural Products
- School of Pharmaceutical Sciences
- Wuhan University
- Wuhan 430071
- P. R. China
| |
Collapse
|
9
|
Ji D, You L, Ren Y, Wen L, Zheng G, Li C. Protective effect of polysaccharides from Sargassum fusiforme against UVB-induced oxidative stress in HaCaT human keratinocytes. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.06.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
10
|
Ginsenoside Rg1 attenuates ultraviolet B-induced glucocortisides resistance in keratinocytes via Nrf2/HDAC2 signalling. Sci Rep 2016; 6:39336. [PMID: 27982079 PMCID: PMC5159887 DOI: 10.1038/srep39336] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/18/2016] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress, which occurs after ultraviolet (UV) radiation, usually results in Glucocorticoid (GC) resistance and the subsequent development of skin inflammation. One approach to protecting the skin against UV radiation is the use of antioxidants. The ginsenoside Rg1 is a novel natural antioxidant isolated from the medicinal plant Panax ginseng C.A. Mey. We demonstrated that UVB exposure exacerbated inflammation and reduced both the level of the glucocorticoid receptor (GR) and the efficacy of dexamethasone (Dex) in human keratinocytes (HaCaT cells). Pretreatment with Rg1 increased the expression of GR and restored Dex responsiveness to inflammation in UVB-irradiated HaCaT cells. Mechanistically, Rg1 rescued UVB-induced HDAC2 degradation. HDAC2 knockdown partially abolished the Rg1-induced up-regulation of GR and the enhancement of GC sensitivity. In addition, Rg1 reduced the production of reactive oxygen species (ROS), which preceded the up-regulation of HDAC2, and consequent sensitization of cells to Dex. Moreover, Rg1 treatment promoted the translocation and activation of Nrf2. Nrf2 knockdown partially abolished the Rg1-induced decrease of ROS production and increase of HDAC2. Rg1 also potentiated the anti-inflammatory effects of Dex in UVB-irradiated mouse skin. In conclusion, we demonstrated that Rg1 attenuated UVB-induced GC insensitivity. Notably, these effects were partially mediated by the Nrf2/HDAC2 pathway.
Collapse
|
11
|
Koh EK, Kim JE, Go J, Song SH, Sung JE, Son HJ, Jung YJ, Kim BH, Jung YS, Hwang DY. Protective effects of the antioxidant extract collected from Styela clava tunics on UV radiation-induced skin aging in hairless mice. Int J Mol Med 2016; 38:1565-1577. [DOI: 10.3892/ijmm.2016.2740] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/19/2016] [Indexed: 11/06/2022] Open
|
12
|
Justo OR, Simioni PU, Gabriel DL, Tamashiro WMDSC, Rosa PDTV, Moraes ÂM. Evaluation of in vitro anti-inflammatory effects of crude ginger and rosemary extracts obtained through supercritical CO2 extraction on macrophage and tumor cell line: the influence of vehicle type. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:390. [PMID: 26511466 PMCID: PMC4625945 DOI: 10.1186/s12906-015-0896-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 10/05/2015] [Indexed: 01/24/2023]
Abstract
BACKGROUND Numerous plants from have been investigated due to their anti-inflammatory activity and, among then, extracts or components of ginger (Zingiber officinale Roscoe) and rosemary (Rosmarinus officinalis L.), sources of polyphenolic compounds. 6-gingerol from ginger rhizome and carnosic acid and carnosol from rosemary leaves present anti-tumor, anti-inflammatory and antioxidant activities. However, the evaluation of the mechanisms of action of these and other plant extracts is limited due to their high hydrophobicity. Dimethylsulfoxide (DMSO) is commonly used as a vehicle of liposoluble materials to mammalian cells in vitro, presenting enhanced cell penetration. Liposomes are also able to efficiently deliver agents to mammalian cells, being capable to incorporate in their structure not only hydrophobic molecules, but also hydrophilic and amphiphilic compounds. Another strategy is based on the use of Pluronic F-68, a biocompatible low-foaming, non-ionic surfactant, to disperse hydrophobic components. Here, these three delivery approaches were compared to analyze their influence on the in vitro anti-inflammatory effects of ginger and rosemary extracts, at different concentrations, on primary mammalian cells and on a tumor cell line. METHODS Ginger and rosemary extracts free of organic solvents were obtained by supercritical fluid extraction and dispersed in DMSO, Pluronic F-68 or liposomes, in variable concentrations. Cell viability, production of inflammatory mediators and nitric oxide (NO) release were measured in vitro on J774 cell line and murine macrophages primary culture stimulated with bacterial lipopolysaccharide and interferon-γ after being exposed or not to these extracts. RESULTS Ginger and rosemary extracts obtained by supercritical CO2 extraction inhibited the production of pro-inflammatory cytokines and the release of NO by peritoneal macrophages and J774 cells. The delivery vehicles influenced the anti-inflammatory effects. Comparatively, the ginger extract showed the highest anti-inflammatory activity on the tumor cell line. Controversially, rosemary extract dispersed on DMSO induced a more significant IL-1 and TNF-α reduction than ginger extract in primary macrophages. CONCLUSIONS Amongst the tested delivery vehicles, DMSO was the most suitable, presenting reduced cytotoxicity, followed by Pluronic F-68 and liposomes, provably due to differences in their form of absorption, distribution and cellular metabolism. Co-administration of liposomes and plant extracts may cause death of macrophages cells and induction of NO production. It can be concluded that some of the beneficial effects attributed to extracts of ginger and rosemary may be associated with the inhibition of inflammatory mediators due to their high antioxidant activity. However, these effects were influenced by the type of delivery vehicle.
Collapse
Affiliation(s)
- Oselys Rodriguez Justo
- Department of Engineering of Materials and of Bioprocesses - School of Chemical Engineering, University of Campinas, 13083-852, Campinas, SP, Brazil
| | - Patricia Ucelli Simioni
- Department of Genetics, Evolution and Bioagents - Institute of Biology, University of Campinas, 13083-970, Campinas, SP, Brazil
| | - Dirce Lima Gabriel
- Department of Genetics, Evolution and Bioagents - Institute of Biology, University of Campinas, 13083-970, Campinas, SP, Brazil
| | | | - Paulo de Tarso Vieira Rosa
- Departament of Physical Chemistry - Institute of Chemistry, University of Campinas, 13083-970, Campinas, SP, Brazil
| | - Ângela Maria Moraes
- Department of Engineering of Materials and of Bioprocesses - School of Chemical Engineering, University of Campinas, 13083-852, Campinas, SP, Brazil.
| |
Collapse
|
13
|
Han X, Piao MJ, Kim KC, Madduma Hewage SRK, Yoo ES, Koh YS, Kang HK, Shin JH, Park Y, Yoo SJ, Chae S, Hyun JW. Isorhamnetin Protects Human Keratinocytes against Ultraviolet B-Induced Cell Damage. Biomol Ther (Seoul) 2015; 23:357-66. [PMID: 26157553 PMCID: PMC4489831 DOI: 10.4062/biomolther.2015.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 01/29/2015] [Accepted: 02/26/2015] [Indexed: 12/18/2022] Open
Abstract
Isorhamnetin (3-methylquercetin) is a flavonoid derived from the fruits of certain medicinal plants. This study investigated the photoprotective properties of isorhamnetin against cell damage and apoptosis resulting from excessive ultraviolet (UV) B exposure in human HaCaT keratinocytes. Isorhamnetin eliminated UVB-induced intracellular reactive oxygen species (ROS) and attenuated the oxidative modification of DNA, lipids, and proteins in response to UVB radiation. Moreover, isorhamnetin repressed UVB-facilitated programmed cell death in the keratinocytes, as evidenced by a reduction in apoptotic body formation, and nuclear fragmentation. Additionally, isorhamnetin suppressed the ability of UVB light to trigger mitochondrial dysfunction. Taken together, these results indicate that isorhamnetin has the potential to protect human keratinocytes against UVB-induced cell damage and death.
Collapse
Affiliation(s)
- Xia Han
- School of Medicine, Jeju National University, Jeju 690-756
| | - Mei Jing Piao
- School of Medicine, Jeju National University, Jeju 690-756
| | - Ki Cheon Kim
- School of Medicine, Jeju National University, Jeju 690-756
| | | | - Eun Sook Yoo
- School of Medicine, Jeju National University, Jeju 690-756
| | - Young Sang Koh
- School of Medicine, Jeju National University, Jeju 690-756
| | | | - Jennifer H Shin
- Department of Mechanical Engineering & Graduate School of Medical Science and Engineering, KAIST, Daejeon 305-701
| | - Yeunsoo Park
- National Fusion Research Institute, Plasma Technology Research Center, Gunsan 573-540
| | - Suk Jae Yoo
- National Fusion Research Institute, Plasma Technology Research Center, Gunsan 573-540
| | - Sungwook Chae
- Aging Research Center, Korea Institute of Oriental Medicine, Daejeon 305-811, Republic of Korea
| | - Jin Won Hyun
- School of Medicine, Jeju National University, Jeju 690-756
| |
Collapse
|
14
|
Divya SP, Wang X, Pratheeshkumar P, Son YO, Roy RV, Kim D, Dai J, Hitron JA, Wang L, Asha P, Shi X, Zhang Z. Blackberry extract inhibits UVB-induced oxidative damage and inflammation through MAP kinases and NF-κB signaling pathways in SKH-1 mice skin. Toxicol Appl Pharmacol 2015; 284:92-99. [PMID: 25680589 PMCID: PMC4374016 DOI: 10.1016/j.taap.2015.02.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/29/2015] [Accepted: 02/04/2015] [Indexed: 12/17/2022]
Abstract
Extensive exposure of solar ultraviolet-B (UVB) radiation to skin induces oxidative stress and inflammation that play a crucial role in the induction of skin cancer. Photochemoprevention with natural products represents a simple but very effective strategy for the management of cutaneous neoplasia. In this study, we investigated whether blackberry extract (BBE) reduces chronic inflammatory responses induced by UVB irradiation in SKH-1 hairless mice skin. Mice were exposed to UVB radiation (100 mJ/cm(2)) on alternate days for 10 weeks, and BBE (10% and 20%) was applied topically a day before UVB exposure. Our results show that BBE suppressed UVB-induced hyperplasia and reduced infiltration of inflammatory cells in the SKH-1 hairless mice skin. BBE treatment reduced glutathione (GSH) depletion, lipid peroxidation (LPO), and myeloperoxidase (MPO) in mouse skin by chronic UVB exposure. BBE significantly decreased the level of pro-inflammatory cytokines IL-6 and TNF-α in UVB-exposed skin. Likewise, UVB-induced inflammatory responses were diminished by BBE as observed by a remarkable reduction in the levels of phosphorylated MAP Kinases, Erk1/2, p38, JNK1/2 and MKK4. Furthermore, BBE also reduced inflammatory mediators such as cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), and inducible nitric oxide synthase (iNOS) levels in UVB-exposed skin. Treatment with BBE inhibited UVB-induced nuclear translocation of NF-κB and degradation of IκBα in mouse skin. Immunohistochemistry analysis revealed that topical application of BBE inhibited the expression of 8-oxo-7, 8-dihydro-2'-deoxyguanosine (8-oxodG), cyclobutane pyrimidine dimers (CPD), proliferating cell nuclear antigen (PCNA), and cyclin D1 in UVB-exposed skin. Collectively, these data indicate that BBE protects from UVB-induced oxidative damage and inflammation by modulating MAP kinase and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Sasidharan Padmaja Divya
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
- Department of Toxicology and Cancer Biology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Xin Wang
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
- Department of Toxicology and Cancer Biology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Poyil Pratheeshkumar
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
- Department of Toxicology and Cancer Biology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Young-Ok Son
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
- Department of Toxicology and Cancer Biology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Ram Vinod Roy
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
- Department of Toxicology and Cancer Biology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Donghern Kim
- Department of Toxicology and Cancer Biology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Jin Dai
- Department of Toxicology and Cancer Biology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - John Andrew Hitron
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
- Department of Toxicology and Cancer Biology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Lei Wang
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
- Department of Toxicology and Cancer Biology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Padmaja Asha
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, India
| | - Xianglin Shi
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
- Department of Toxicology and Cancer Biology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Zhuo Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| |
Collapse
|
15
|
Zhai Y, Dang Y, Gao W, Zhang Y, Xu P, Gu J, Ye X. P38 and JNK signal pathways are involved in the regulation of phlorizin against UVB-induced skin damage. Exp Dermatol 2015; 24:275-9. [PMID: 25611805 DOI: 10.1111/exd.12642] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2015] [Indexed: 12/23/2022]
Abstract
Phlorizin is well known to inhibit sodium/glucose cotransporters in the kidney and intestine for the treatment of diabetes, obesity and stress hyperglycaemia. However, the effects of phlorizin against ultraviolet B (UVB) irradiation and its molecular mechanism are still unknown. We examined the effects of phlorizin on skin keratinocyte apoptosis, reactive oxygen species (ROS) production, pro-inflammatory responses after UVB irradiation and the changes of some signal molecules by in vitro and in vivo assay. We observed that phlorizin pretreatments inhibited HaCaT cell apoptosis and overproduction of ROS induced by UVB. Phlorizin also decreased the expression of UVB-induced pro-inflammatory cytokines, such as interleukin-1 beta (IL-1β), interleukin-6 (IL-6) and interleukin-8 (IL-8) at the mRNA level. Topical application of phlorizin on UVB-exposed skin of nude mice prevented the formation of scaly skin and erythema, inhibited the increase of epidermal thickness and reduced acute inflammation infiltration in skin. Additionally, PCR, Western blot and immunohistochemical data showed that phlorizin reversed the overexpression of cyclooxygenase-2 (Cox-2) induced by UVB irradiation both in vitro and in vivo. The activation of p38 and JNK mitogen-activated protein kinases (MAPK) after UVB irradiation was also inhibited by phlorizin. These findings suggest that phlorizin is effective in protecting skin against UVB-induced skin damage by decreasing ROS overproduction, Cox-2 expression and the subsequent excessive inflammation reactions. It seemed that p38 and JNK MAPK signal pathways are involved in the regulation of the protective function of phlorizin.
Collapse
Affiliation(s)
- Yimiao Zhai
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Zheng J, Piao MJ, Kim KC, Yao CW, Cha JW, Shin JH, Yoo SJ, Hyun JW. Photo-protective effect of americanin B against ultraviolet B-induced damage in cultured human keratinocytes. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 38:891-900. [PMID: 25461549 DOI: 10.1016/j.etap.2014.08.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/21/2014] [Accepted: 08/24/2014] [Indexed: 06/04/2023]
Abstract
Excessive ultraviolet (UV) radiation, a constituent of sunlight, can induce multiple types of skin damage. We recently demonstrated that americanin B, a lignin compound, protected cells against hydrogen peroxide (H2O2)-induced damage by exerting antioxidant effects and inhibiting apoptosis. In this study, we investigated the ability of americanin B to protect against cell injury induced by UVB (280-320nm), the most harmful UV wavelengths, in human HaCaT keratinocytes. Americanin B absorbed UVB, eliminated UVB-induced intracellular reactive oxygen species (ROS), and decreased the extent of UVB-induced oxidative modification of lipids, proteins, and DNA. In addition, americanin B inhibited UVB-induced apoptosis, as indicated by reductions in apoptotic body formation and DNA fragmentation. Furthermore, americanin B reversed the depolarization of the mitochondrial membrane induced by UVB exposure. These protective activities were associated with down-regulation of apoptosis-promoting proteins, Bax, caspase-9, and caspase-3 and up-regulation of an apoptosis inhibitor, Bcl-2. These results suggest that americanin B can protect human keratinocytes against UVB-induced cell damage.
Collapse
Affiliation(s)
- Jian Zheng
- School of Medicine and Institute for Nuclear Science and Technology, Jeju National University, Jeju 690-756, Republic of Korea
| | - Mei Jing Piao
- School of Medicine and Institute for Nuclear Science and Technology, Jeju National University, Jeju 690-756, Republic of Korea
| | - Ki Cheon Kim
- School of Medicine and Institute for Nuclear Science and Technology, Jeju National University, Jeju 690-756, Republic of Korea
| | - Cheng Wen Yao
- School of Medicine and Institute for Nuclear Science and Technology, Jeju National University, Jeju 690-756, Republic of Korea
| | - Ji Won Cha
- School of Medicine and Institute for Nuclear Science and Technology, Jeju National University, Jeju 690-756, Republic of Korea
| | - Jennifer H Shin
- Department of Mechanical Engineering & Graduate School of Medical Science and Engineering, KAIST, Daejeon 305-701, Republic of Korea
| | - Suk Jae Yoo
- National Fusion Research Institute, Plasma Technology Research Center, Gunsan 573-540, Republic of Korea
| | - Jin Won Hyun
- School of Medicine and Institute for Nuclear Science and Technology, Jeju National University, Jeju 690-756, Republic of Korea.
| |
Collapse
|
17
|
Pratheeshkumar P, Son YO, Wang X, Divya SP, Joseph B, Hitron JA, Wang L, Kim D, Yin Y, Roy RV, Lu J, Zhang Z, Wang Y, Shi X. Cyanidin-3-glucoside inhibits UVB-induced oxidative damage and inflammation by regulating MAP kinase and NF-κB signaling pathways in SKH-1 hairless mice skin. Toxicol Appl Pharmacol 2014; 280:127-37. [PMID: 25062774 PMCID: PMC4330564 DOI: 10.1016/j.taap.2014.06.028] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 06/24/2014] [Accepted: 06/29/2014] [Indexed: 12/17/2022]
Abstract
Skin cancer is one of the most commonly diagnosed cancers in the United States. Exposure to ultraviolet-B (UVB) radiation induces inflammation and photocarcinogenesis in mammalian skin. Cyanidin-3-glucoside (C3G), a member of the anthocyanin family, is present in various vegetables and fruits especially in edible berries, and displays potent antioxidant and anticarcinogenic properties. In this study, we have assessed the in vivo effects of C3G on UVB irradiation induced chronic inflammatory responses in SKH-1 hairless mice, a well-established model for UVB-induced skin carcinogenesis. Here, we show that C3G inhibited UVB-induced skin damage and inflammation in SKH-1 hairless mice. Our results indicate that C3G inhibited glutathione depletion, lipid peroxidation and myeloperoxidation in mouse skin by chronic UVB exposure. C3G significantly decreased the production of UVB-induced pro-inflammatory cytokines, such as IL-6 and TNF-α, associated with cutaneous inflammation. Likewise, UVB-induced inflammatory responses were diminished by C3G as observed by a remarkable reduction in the levels of phosphorylated MAP kinases, Erk1/2, p38, JNK1/2 and MKK4. Furthermore, C3G also decreased UVB-induced cyclooxygenase-2 (COX-2), PGE2 and iNOS levels, which are well-known key mediators of inflammation and cancer. Treatment with C3G inhibited UVB-induced nuclear translocation of NF-κB and degradation of IκBα in mice skin. Immunofluorescence assay revealed that topical application of C3G inhibited the expression of 8-hydroxy-2'-deoxyguanosine, proliferating cell nuclear antigen, and cyclin D1 in chronic UVB exposed mouse skin. Collectively, these data indicates that C3G can provide substantial protection against the adverse effects of UVB radiation by modulating UVB-induced MAP kinase and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Poyil Pratheeshkumar
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA; Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Young-Ok Son
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA; Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Xin Wang
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA; Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Sasidharan Padmaja Divya
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA; Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Binoy Joseph
- Spinal Cord and Brain Injury Research Center and Department of Physiology, University of Kentucky, Lexington, KY 40536-0509, USA
| | - John Andrew Hitron
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA; Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Lei Wang
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA; Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Donghern Kim
- Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Yuanqin Yin
- Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA; Cancer Institute, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Ram Vinod Roy
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA; Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Jian Lu
- Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA; Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhuo Zhang
- Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xianglin Shi
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA; Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA.
| |
Collapse
|