1
|
Zhang Y, Yang H, Wang L, Zhou H, Zhang G, Xiao Z, Xue X. TOP2A correlates with poor prognosis and affects radioresistance of medulloblastoma. Front Oncol 2022; 12:918959. [PMID: 35912241 PMCID: PMC9337862 DOI: 10.3389/fonc.2022.918959] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/27/2022] [Indexed: 12/05/2022] Open
Abstract
Radiotherapy remains the standard treatment for medulloblastoma (MB), and the radioresistance contributes to tumor recurrence and poor clinical outcomes. Nuclear DNA topoisomerase II-alpha (TOP2A) is a key catalytic enzyme that initiates DNA replication, and studies have shown that TOP2A is closely related to the therapeutic effects of radiation. In this study, we found that TOP2A was significantly upregulated in MB, and high expression of TOP2A related to poor prognosis of MB patients. Knockdown of TOP2A inhibited MB cell proliferation, migration, and invasion, whereas overexpression of TOP2A enhanced the proliferative and invasive ability of MB cells. Moreover, si-TOP2A transfection in combination with irradiation (IR) significantly reduced the tumorigenicity of MB cells, compared with those transfected with si-TOP2A alone. Cell survival curve analysis revealed that the survival fraction of MB cells was significantly reduced upon TOP2A downregulation and that si-TOP2A-transfected cells had decreased D0, Dq, and SF2 values, indicating that TOP2A knockdown suppresses the resistance to radiotherapy in MB cells. In addition, western blot analysis demonstrated that the activity of Wnt/β-catenin signaling pathway was inhibited after TOP2A downregulation alone or in combination with IR treatment, whereas overexpression of TOP2A exhibited the opposite effects. Gene set enrichment analysis also revealed that Wnt/β-catenin signaling pathway is enriched in TOP2A high-expression phenotypes. Collectively, these data indicate that high expression of TOP2A leads to poor prognosis of MB, and downregulation of TOP2A inhibits the malignant behaviour as well as the radioresistance of MB cells. The Wnt/β-catenin signaling pathway may be involved in the molecular mechanisms of TOP2A mediated reduced tumorigenicity and radioresistance of MB cells.
Collapse
Affiliation(s)
- Yufeng Zhang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Haiyan Yang
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Liwen Wang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Huandi Zhou
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ge Zhang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhiqing Xiao
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoying Xue
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Xiaoying Xue,
| |
Collapse
|
2
|
Deng Y, Wen H, Yang H, Zhu Z, Huang Q, Bi Y, Wang P, Zhou M, Guan J, Zhang W, Li M. Identification of PBK as a hub gene and potential therapeutic target for medulloblastoma. Oncol Rep 2022; 48:125. [PMID: 35593307 PMCID: PMC9164263 DOI: 10.3892/or.2022.8336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/26/2022] [Indexed: 11/08/2022] Open
Abstract
Medulloblastoma (MB) is the most frequent malignant brain tumor in pediatrics. Since the current standard of care for MB consisting of surgery, cranio-spinal irradiation and chemotherapy often leads to a high morbidity rate, a number of patients suffer from long-term sequelae following treatment. Targeted therapies hold the promise of being more effective and less toxic. Therefore, the present study aimed to identify hub genes with an upregulated expression in MB and to search for potential therapeutic targets from these genes. For this purpose, gene expression profile datasets were obtained from the Gene Expression Omnibus database and processed using R 3.6.0 software to screen differentially expressed genes (DEGs) between MB samples and normal brain tissues. A total of 282 upregulated and 436 downregulated DEGs were identified. Functional enrichment analysis revealed that the upregulated DEGs were predominantly enriched in the cell cycle, DNA replication and cell division. The top 10 hub genes were identified from the protein-protein interaction network of upregulated genes, and one identified hub gene [PDZ binding kinase (PBK)] was selected for further investigation due to its possible role in the pathogenesis of MB. The aberrant expression of PBK in MB was verified in additional independent gene expression datasets. Survival analysis demonstrated that a higher expression level of PBK was significantly associated with poorer clinical outcomes in non-Wingless MBs. Furthermore, targeting PBK with its inhibitor, HI-TOPK-032, impaired the proliferation and induced the apoptosis of two MB cell lines, with the diminished phosphorylation of downstream effectors of PBK, including ERK1/2 and Akt, and the activation of caspase-3. Hence, these results suggest that PBK may be a potential prognostic biomarker and a novel candidate of targeted therapy for MB.
Collapse
Affiliation(s)
- Yuhao Deng
- Neurosurgery Center, Department of Pediatric Neurosurgery, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Huantao Wen
- Neurosurgery Center, Department of Pediatric Neurosurgery, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Hanjie Yang
- Neurosurgery Center, Department of Pediatric Neurosurgery, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Zhengqiang Zhu
- Neurosurgery Center, Department of Pediatric Neurosurgery, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Qiongzhen Huang
- Neurosurgery Center, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Yuewei Bi
- Neurosurgery Center, Department of Pediatric Neurosurgery, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Pengfei Wang
- Neurosurgery Center, Department of Pediatric Neurosurgery, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Ming Zhou
- Neurosurgery Center, Department of Pediatric Neurosurgery, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Jianwei Guan
- Neurosurgery Center, Department of Pediatric Neurosurgery, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Wangming Zhang
- Neurosurgery Center, Department of Pediatric Neurosurgery, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Min Li
- Neurosurgery Center, Department of Pediatric Neurosurgery, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| |
Collapse
|
3
|
Liang B, Zhou Y, Jiao J, Xu L, Yan Y, Wu Q, Tong X, Yan H. Integrated Analysis of Transcriptome Data Revealed AURKA and KIF20A as Critical Genes in Medulloblastoma Progression. Front Oncol 2022; 12:875521. [PMID: 35574421 PMCID: PMC9092218 DOI: 10.3389/fonc.2022.875521] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/29/2022] [Indexed: 12/03/2022] Open
Abstract
Medulloblastoma is the neuroepithelial tumor with the highest degree of malignancy in the central nervous system, accounting for about 8% to 10% of children’s brain tumors. It has a high degree of malignancy and is easily transmitted through cerebrospinal fluid, with a relatively poor prognosis. Although medulloblastoma has been widely studied and treated, its molecular mechanism remains unclear. To determine which gene plays a crucial role in medulloblastoma development and progression, we analyzed three microarray datasets from Gene Expression Omnibus. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes were used to detect and evaluate differentially expressed genes. Protein interaction network was established, and the hub genes were determined in cytoHubba through various assessment methods, while the target genes were screened out using survival analysis. Ultimately, human medulloblastoma samples were utilized to confirm target gene expression. In conclusion, This study found that aurora kinase A (AURKA) and kinesin family member 20A (KIF20A) may be involved in the initiation and development of medulloblastoma, have a close association with prognosis, and may become a potential therapeutic target and prognostic marker of MED.
Collapse
Affiliation(s)
- Bo Liang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China.,Department of Neurosurgery, The Fifith Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Zhou
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Jiji Jiao
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Lixia Xu
- Tianjin Neurosurgical Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China
| | - Yan Yan
- Clinical Laboratory, Tianjin Huanhu Hospital, Tianjin, China
| | - Qiaoli Wu
- Tianjin Neurosurgical Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China
| | - Xiaoguang Tong
- Tianjin Neurosurgical Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China.,Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
| | - Hua Yan
- Tianjin Neurosurgical Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China.,Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
| |
Collapse
|
4
|
Kafka A, Bukovac A, Brglez E, Jarmek AM, Poljak K, Brlek P, Žarković K, Njirić N, Pećina-Šlaus N. Methylation Patterns of DKK1, DKK3 and GSK3β Are Accompanied with Different Expression Levels in Human Astrocytoma. Cancers (Basel) 2021; 13:cancers13112530. [PMID: 34064046 PMCID: PMC8196684 DOI: 10.3390/cancers13112530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 01/24/2023] Open
Abstract
In the present study, we investigated genetic and epigenetic changes and protein expression levels of negative regulators of Wnt signaling, DKK1, DKK3, and APC as well as glycogen synthase kinase 3 (GSK3β) and β-catenin in 64 human astrocytomas of grades II-IV. Methylation-specific PCR revealed promoter methylation of DKK1, DKK3, and GSK3β in 38%, 43%, and 18% of samples, respectively. Grade IV comprised the lowest number of methylated GSK3β cases and highest of DKK3. Evaluation of the immunostaining using H-score was performed for β-catenin, both total and unphosphorylated (active) forms. Additionally, active (pY216) and inactive (pS9) forms of GSK3β protein were also analyzed. Spearman's correlation confirmed the prevalence of β-catenin's active form (rs = 0.634, p < 0.001) in astrocytoma tumor cells. The Wilcoxon test revealed that astrocytoma with higher levels of the active pGSK3β-Y216 form had lower expression levels of its inactive form (p < 0.0001, Z = -5.332). Changes in APC's exon 11 were observed in 44.44% of samples by PCR/RFLP. Astrocytomas with changes of APC had higher H-score values of total β-catenin compared to the group without genetic changes (t = -2.264, p = 0.038). Furthermore, a positive correlation between samples with methylated DKK3 promoter and the expression of active pGSK3β-Y216 (rs = 0.356, p = 0.011) was established. Our results emphasize the importance of methylation for the regulation of Wnt signaling. Large deletions of the APC gene associated with increased β-catenin levels, together with oncogenic effects of both β-catenin and GSK3β, are clearly involved in astrocytoma evolution. Our findings contribute to a better understanding of the etiology of gliomas. Further studies should elucidate the clinical and therapeutic relevance of the observed molecular alterations.
Collapse
Affiliation(s)
- Anja Kafka
- Laboratory of Neuro-Oncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10 000 Zagreb, Croatia; (A.B.); (E.B.); (A.-M.J.); (K.P.); (P.B.); (N.N.); (N.P.-Š.)
- Department of Biology, School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
- Correspondence:
| | - Anja Bukovac
- Laboratory of Neuro-Oncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10 000 Zagreb, Croatia; (A.B.); (E.B.); (A.-M.J.); (K.P.); (P.B.); (N.N.); (N.P.-Š.)
- Department of Biology, School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
| | - Emilija Brglez
- Laboratory of Neuro-Oncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10 000 Zagreb, Croatia; (A.B.); (E.B.); (A.-M.J.); (K.P.); (P.B.); (N.N.); (N.P.-Š.)
| | - Ana-Marija Jarmek
- Laboratory of Neuro-Oncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10 000 Zagreb, Croatia; (A.B.); (E.B.); (A.-M.J.); (K.P.); (P.B.); (N.N.); (N.P.-Š.)
| | - Karolina Poljak
- Laboratory of Neuro-Oncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10 000 Zagreb, Croatia; (A.B.); (E.B.); (A.-M.J.); (K.P.); (P.B.); (N.N.); (N.P.-Š.)
| | - Petar Brlek
- Laboratory of Neuro-Oncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10 000 Zagreb, Croatia; (A.B.); (E.B.); (A.-M.J.); (K.P.); (P.B.); (N.N.); (N.P.-Š.)
| | - Kamelija Žarković
- Department of Pathology, School of Medicine, University of Zagreb, Šalata 10, 10 000 Zagreb, Croatia;
- Division of Pathology, University Hospital Center “Zagreb”, Kišpatićeva 12, 10 000 Zagreb, Croatia
| | - Niko Njirić
- Laboratory of Neuro-Oncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10 000 Zagreb, Croatia; (A.B.); (E.B.); (A.-M.J.); (K.P.); (P.B.); (N.N.); (N.P.-Š.)
- Department of Neurosurgery, University Hospital Center “Zagreb”, School of Medicine, University of Zagreb, Kišpatićeva 12, 10 000 Zagreb, Croatia
| | - Nives Pećina-Šlaus
- Laboratory of Neuro-Oncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10 000 Zagreb, Croatia; (A.B.); (E.B.); (A.-M.J.); (K.P.); (P.B.); (N.N.); (N.P.-Š.)
- Department of Biology, School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
| |
Collapse
|
5
|
Kheirandish S, Eshghyar N, Yazdani F, Amini Shakib P, Hosseini-Bereshneh A, Nouri Z, Kheiran-Dish A, Karami F. Methylation Assessment of Two DKK2 and DKK4 Genes in Oral Squamous Cell Carcinoma Patients. IRANIAN JOURNAL OF PUBLIC HEALTH 2020; 49:1947-1953. [PMID: 33346226 PMCID: PMC7719650 DOI: 10.18502/ijph.v49i10.4698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background: Oral squamous cell carcinoma (OSCC) is one of the most important types of oral malignancies. DKK gene family members as well as DKK2/4 have critical roles in regulation of Wnt signaling as one of the main determining pathway in oral carcinogenesis. This study aimed to identify promoter methylation status of DKK2/4 genes to provide possible biomarkers for early detection and treatment of OSCC patients. Methods: A case control study was performed on 31 fresh tissues obtained from oral cavity of patients affected by OSCC and 31 fresh corresponding tissues from normal healthy controls in Tehran and, between the years of 2016–2018. Purified DNA from tissue samples was subjected to bisulfite treatment and then methylation specific polymerase chain reaction (MSP-PCR) was carried out on treated DNA samples. Results: DKK4 promoter was methylated in none of OSCC samples while it was methylated in 16.1% of healthy controls. 16.1% of OSCC samples were detected to be semimethylated and 22.6% of healthy normal samples were methylated for DKK2 promoter gene. Meaningful difference was found in DKK4 promoter methylation among OSCC patients and healthy controls. Significant correlation was found between DKK4 promoter methylation and tumor grade. The age of all enrolled samples was demonstrated to have strong effect on promoter methylation of studied genes. Conclusion: Hypomethylation of DKK2 and DKK4 genes in higher grades of OSCC samples may indicate the pivotal role of their expression in tumor cells invasion and progression through modulation of Wnt signaling pathway. Further study required to determine simultaneous expression of those genes and Wnt signaling elements at mRNA and protein levels.
Collapse
Affiliation(s)
- Sedigheh Kheirandish
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Nosratollah Eshghyar
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Yazdani
- Department of Otorhinolaryngology, Amir A'lam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Pouyan Amini Shakib
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Hosseini-Bereshneh
- Department of Medical Genetics, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Nouri
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Kheiran-Dish
- Department of Medical Genetics, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Fatemeh Karami
- Department of Medical Genetics, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
6
|
Jessa S, Blanchet-Cohen A, Krug B, Vladoiu M, Coutelier M, Faury D, Poreau B, De Jay N, Hébert S, Monlong J, Farmer WT, Donovan LK, Hu Y, McConechy MK, Cavalli FMG, Mikael LG, Ellezam B, Richer M, Allaire A, Weil AG, Atkinson J, Farmer JP, Dudley RWR, Larouche V, Crevier L, Albrecht S, Filbin MG, Sartelet H, Lutz PE, Nagy C, Turecki G, Costantino S, Dirks PB, Murai KK, Bourque G, Ragoussis J, Garzia L, Taylor MD, Jabado N, Kleinman CL. Stalled developmental programs at the root of pediatric brain tumors. Nat Genet 2019; 51:1702-1713. [PMID: 31768071 PMCID: PMC6885128 DOI: 10.1038/s41588-019-0531-7] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 10/18/2019] [Indexed: 02/08/2023]
Abstract
Childhood brain tumors have suspected prenatal origins. To identify vulnerable developmental states, we generated a single-cell transcriptome atlas of >65,000 cells from embryonal pons and forebrain, two major tumor locations. We derived signatures for 191 distinct cell populations and defined regional cellular diversity and differentiation dynamics. Projection of bulk tumor transcriptomes onto this dataset shows that WNT medulloblastomas match the rhombic lip-derived mossy fiber neuronal lineage, embryonal tumors with multilayered rosettes fully recapitulate a neuronal lineage, while Group 2a/b atypical teratoid/rhabdoid tumors may originate outside of the neuroectoderm. Importantly, single-cell tumor profiles reveal highly defined cell hierarchies mirroring transcriptional programs of the corresponding normal lineages. Our findings identify impaired differentiation of specific neural progenitors as a common mechanism underlying these pediatric cancers and provide a rational framework for future modeling and therapeutic interventions.
Collapse
Affiliation(s)
- Selin Jessa
- Quantitative Life Sciences, McGill University, Montreal, Quebec, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Alexis Blanchet-Cohen
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Brian Krug
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Maria Vladoiu
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Marie Coutelier
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Damien Faury
- Department of Pediatrics, McGill University, Montreal, Quebec, Canada.,The Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Brice Poreau
- Department of Pediatrics, McGill University, Montreal, Quebec, Canada.,The Research Institute of the McGill University Health Center, Montreal, Quebec, Canada.,Service de Génétique et Procréation, Centre Hospitalier Universitaire, Grenoble-Alpes, Grenoble, France
| | - Nicolas De Jay
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Steven Hébert
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Jean Monlong
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,UC Santa Cruz Genomics Institute, University of California, Santa Cruz, CA, USA
| | - W Todd Farmer
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Laura K Donovan
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Yixing Hu
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | | | - Florence M G Cavalli
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Leonie G Mikael
- Department of Pediatrics, McGill University, Montreal, Quebec, Canada.,The Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Benjamin Ellezam
- Department of Pathology, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Maxime Richer
- Department of Pathology, Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Andréa Allaire
- Department of Pathology, Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Alexander G Weil
- Department of Pediatric Neurosurgery, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Jeffrey Atkinson
- Department of Pediatric Surgery, Division of Neurosurgery, Montreal Children's Hospital, McGill University, Montreal, Querbec, Canada
| | - Jean-Pierre Farmer
- Department of Pediatric Surgery, Division of Neurosurgery, Montreal Children's Hospital, McGill University, Montreal, Querbec, Canada
| | - Roy W R Dudley
- Department of Pediatric Surgery, Division of Neurosurgery, Montreal Children's Hospital, McGill University, Montreal, Querbec, Canada
| | - Valerie Larouche
- Department of Pediatrics, Centre mère-enfant Soleil du CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Louis Crevier
- Department of Surgery, Université de Laval, Quebec City, Quebec, Canada
| | - Steffen Albrecht
- Department of Pathology, Montreal Children's Hospital, McGill University Health Center, Montreal, Quebec, Canada
| | - Mariella G Filbin
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center, Boston, MA, USA
| | - Hervé Sartelet
- Department of Pathology, Centre Hospitalier Universitaire de Grenoble, Grenoble, France
| | - Pierre-Eric Lutz
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France.,Department of Psychiatry, McGill University, Montreal, Quebec, Canada.,Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Corina Nagy
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada.,Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Gustavo Turecki
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada.,Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Santiago Costantino
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec, Canada.,Department of Ophthalmology, Université de Montréal, Montreal, Quebec, Canada
| | - Peter B Dirks
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Keith K Murai
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Guillaume Bourque
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada.,Canadian Center for Computational Genomics, Montreal, Quebec, Canada
| | - Jiannis Ragoussis
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | - Livia Garzia
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Division of Orthopedic Surgery, Faculty of Surgery, McGill University, Montreal, Quebec, Canada
| | - Michael D Taylor
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada. .,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada. .,Department of Surgery, University of Toronto, Toronto, Ontario, Canada. .,Division of Neurosurgery, The Hospital for Sick Children, Toronto, Ontario, Canada. .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada. .,Department of Pediatrics, McGill University, Montreal, Quebec, Canada. .,The Research Institute of the McGill University Health Center, Montreal, Quebec, Canada.
| | - Claudia L Kleinman
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada. .,Department of Human Genetics, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
7
|
Cai X, Yao Z, Li L, Huang J. Role of DKK4 in Tumorigenesis and Tumor Progression. Int J Biol Sci 2018; 14:616-621. [PMID: 29904276 PMCID: PMC6001654 DOI: 10.7150/ijbs.24329] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/26/2018] [Indexed: 11/05/2022] Open
Abstract
Tumor is the most public health problem. The Wnt signal pathway extensively participates in diverse progresses containing embryonic development, maintenance of homeostasis and tumor pathogenesis. The Wnt signal pathway consists of canonical signal pathway, noncanonical Wnt/PCP pathway and noncanonical Wnt/Ca2+ pathway. The deletion of the ligand of Wnts results in cytoplasmic β-catenin phosphorylation, stopping entry of β-catenin to nuclear in canonical Wnt signaling. Instead, binding of Wnts to frizzled (FZ/FZD) as well as LRP5/6 causes activation of Wnt signal pathways. This facilitates entry of β-catenin to nuclear. The Dickkopf proteins (DKKs) have been known as the antagonist of Wnt signal pathway. A number of research of DKK1, 2, 3 have been reported, however, the effect of DKK4 on tumor process is still mysterious. A more distinct comprehension about the effect of DKK4 on tumorigenesis and tumor process will shed light on biomedical research of DKK4 and tumor research. This review summarizes the current knowledge of DKK4 in various kinds of tumors.
Collapse
Affiliation(s)
- Xinjia Cai
- Department of Oral Pathology, Xiangya Stomalogical Hospital, Central South University, 410078, Chansha, Hunan, China
| | - Zhigang Yao
- Department of Oral Pathology, Xiangya Stomalogical Hospital, Central South University, 410078, Chansha, Hunan, China
| | - Long Li
- Department of Oral Pathology, Xiangya Stomalogical Hospital, Central South University, 410078, Chansha, Hunan, China
| | - Junhui Huang
- Department of Oral Pathology, Xiangya Stomalogical Hospital, Central South University, 410078, Chansha, Hunan, China
| |
Collapse
|
8
|
Hamzehzadeh L, Caraglia M, Atkin SL, Sahebkar A. Dickkopf homolog 3 (DKK3): A candidate for detection and treatment of cancers? J Cell Physiol 2018; 233:4595-4605. [PMID: 29206297 DOI: 10.1002/jcp.26313] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/01/2017] [Indexed: 12/25/2022]
Abstract
Wnt signaling is an evolutionary highly conserved pathway that is modulated by several inhibitors and activators, and plays a key role in numerous physiological processes. One of the extracellular Wnt inhibitors is the DKK (Dickkopf Homolog) family which has four members (Dkk1-4) and a unique Dkk3-related gene, Dkkl1 (soggy). DKK3 is a divergent member of the DKK protein family. Evidence suggests that DKK3 may serve as a potential therapeutic target in several types of human cancers. We review here the biological role of DKK3 as a tumor suppressor gene (TSG) or oncogene, and its correlation with various miRNAs. In addition, we discuss the role of polymorphisms and promoter methylation of the DKK3 gene, and of its expression in regulating cancer cell proliferation. Finally, we propose that DKK3 may be considered as both a biomarker and a therapeutic target in different cancers.
Collapse
Affiliation(s)
- Leila Hamzehzadeh
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Michele Caraglia
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "L. Vanvitelli", Naples, Italy
| | | | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Pharmaceutical Technology Institute, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Zhang L, Sun C, Jin Y, Gao K, Shi X, Qiu W, Ma C, Zhang L. Dickkopf 3 (Dkk3) Improves Amyloid-β Pathology, Cognitive Dysfunction, and Cerebral Glucose Metabolism in a Transgenic Mouse Model of Alzheimer’s Disease. J Alzheimers Dis 2017; 60:733-746. [DOI: 10.3233/jad-161254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Li Zhang
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medical Center, Peking Union Medical College, Beijing, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Caixian Sun
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medical Center, Peking Union Medical College, Beijing, China
| | - Yaxi Jin
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medical Center, Peking Union Medical College, Beijing, China
| | - Kai Gao
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medical Center, Peking Union Medical College, Beijing, China
| | - Xudong Shi
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medical Center, Peking Union Medical College, Beijing, China
| | - Wenying Qiu
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Chao Ma
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Lianfeng Zhang
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medical Center, Peking Union Medical College, Beijing, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
10
|
Association of Wnt signaling pathway genetic variants in gallbladder cancer susceptibility and survival. Tumour Biol 2015; 37:8083-95. [PMID: 26715268 DOI: 10.1007/s13277-015-4728-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/21/2015] [Indexed: 12/15/2022] Open
Abstract
Gallbladder cancer (GBC) is the most common malignancy of the biliary tract with adverse prognosis and poor survival. Wnt signaling plays an important role in embryonic development and regeneration of tissues in all the species. Deregulation of expression and mutations in this pathway may lead to disease state such as cancer. In this study, we assessed the association of common germline variants of Wnt pathway genes (SFRP2, SFRP4, DKK2, DKK3, WISP3, APC, β-catenin, AXIN-2, GLI-1) to evaluate their contribution in predisposition to GBC and treatment outcomes. The study included 564 GBC patients and 250 controls. Out of 564, 200 patients were followed up for treatment response and survival. Tumor response (RECIST 1.1) was recorded in 116 patients undergoing non-adjuvant chemotherapy (NACT). Survival was assessed by Kaplan-Meier curve and Cox-proportional hazard regression. Single locus analysis showed significant association of SFRP4 rs1802073G > T [p value = 0.0001], DKK2 rs17037102C > T [p value = 0.0001], DKK3 rs3206824C > T [p value = 0.012], APC rs4595552 A/T [p value = 0.021], APC rs11954856G > T [p value = 0.047], AXIN-2 rs4791171C > T [p value = 0.001], β-catenin rs4135385A > G [p value = 0.031], and GLI-1 rs222826C > G [p value = 0.001] with increased risk of GBC. Gene-gene interaction using GMDR analysis predicted APC rs11954856 and AXIN2 rs4791171 as significant in conferring GBC susceptibility. Cox-proportional hazard model showed GLI-1 rs2228226 CG/GG and AXIN-2 rs4791171 TT genotype higher hazard ratio. In recursive partitioning, AXIN-2 rs4791171 TT genotype showed higher mortality and hazard. Most of studied genetic variants influence GBC susceptibility. APC rs11954856, GLI-1 rs2228226, and AXIN-2 rs4791171 were found to be associated with poor survival in advanced GBC patients.
Collapse
|
11
|
Gopalakrishnan V, Tao RH, Dobson T, Brugmann W, Khatua S. Medulloblastoma development: tumor biology informs treatment decisions. CNS Oncol 2015; 4:79-89. [PMID: 25768332 DOI: 10.2217/cns.14.58] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Medulloblastoma is the most common malignant pediatric brain tumor. Current treatments including surgery, craniospinal radiation and high-dose chemotherapy have led to improvement in survival. However, the risk for recurrence as well as significant long-term neurocognitive and endocrine sequelae associated with current treatment modalities underscore the urgent need for novel tumor-specific, normal brain-sparing therapies. It has also provided the impetus for research focused on providing a better understanding of medulloblastoma biology. The expectation is that such studies will lead to the identification of new therapeutic targets and eventually to an increase in personalized treatment approaches.
Collapse
Affiliation(s)
- Vidya Gopalakrishnan
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
12
|
Swartling FJ, Čančer M, Frantz A, Weishaupt H, Persson AI. Deregulated proliferation and differentiation in brain tumors. Cell Tissue Res 2015; 359:225-54. [PMID: 25416506 PMCID: PMC4286433 DOI: 10.1007/s00441-014-2046-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 10/22/2014] [Indexed: 01/24/2023]
Abstract
Neurogenesis, the generation of new neurons, is deregulated in neural stem cell (NSC)- and progenitor-derived murine models of malignant medulloblastoma and glioma, the most common brain tumors of children and adults, respectively. Molecular characterization of human malignant brain tumors, and in particular brain tumor stem cells (BTSCs), has identified neurodevelopmental transcription factors, microRNAs, and epigenetic factors known to inhibit neuronal and glial differentiation. We are starting to understand how these factors are regulated by the major oncogenic drivers in malignant brain tumors. In this review, we will focus on the molecular switches that block normal neuronal differentiation and induce brain tumor formation. Genetic or pharmacological manipulation of these switches in BTSCs has been shown to restore the ability of tumor cells to differentiate. We will discuss potential brain tumor therapies that will promote differentiation in order to reduce treatment resistance, suppress tumor growth, and prevent recurrence in patients.
Collapse
Affiliation(s)
- Fredrik J Swartling
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, SE-751 85, Sweden
| | - Matko Čančer
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, SE-751 85, Sweden
| | - Aaron Frantz
- Departments of Neurology and Neurological Surgery, Sandler Neurosciences Center, University of California, San Francisco, CA, 94158, USA
- Brain Tumor Research Center, University of California, San Francisco, CA, 94158, USA
| | - Holger Weishaupt
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, SE-751 85, Sweden
| | - Anders I Persson
- Departments of Neurology and Neurological Surgery, Sandler Neurosciences Center, University of California, San Francisco, CA, 94158, USA
- Brain Tumor Research Center, University of California, San Francisco, CA, 94158, USA
| |
Collapse
|
13
|
Forsdahl S, Kiselev Y, Hogseth R, Mjelle JE, Mikkola I. Pax6 regulates the expression of Dkk3 in murine and human cell lines, and altered responses to Wnt signaling are shown in FlpIn-3T3 cells stably expressing either the Pax6 or the Pax6(5a) isoform. PLoS One 2014; 9:e102559. [PMID: 25029272 PMCID: PMC4100929 DOI: 10.1371/journal.pone.0102559] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 06/19/2014] [Indexed: 02/07/2023] Open
Abstract
Pax6 is a transcription factor important for early embryo development. It is expressed in several cancer cell lines and tumors. In glioblastoma, PAX6 has been shown to function as a tumor suppressor. Dickkopf 3 (Dkk3) is well established as a tumor suppressor in several tumor types, but not much is known about the regulation of its expression. We have previously found that Pax6 and Pax6(5a) increase the expression of the Dkk3 gene in two stably transfected mouse fibroblast cell lines. In this study the molecular mechanism behind this regulation is looked at. Western blot and reverse transcriptase quantitative PCR (RT-qPCR) confirmed higher level of Dkk3 expression in both Pax6 and Pax6(5a) expressing cell lines compared to the control cell line. By the use of bioinformatics and electrophoretic mobility shift assay (EMSA) we have mapped a functional Pax6 binding site in the mouse Dkk3 promoter. The minimal Dkk3 promoter fragment required for transcriptional activation by Pax6 and Pax6(5a) was a 200 bp region just upstream of the transcriptional start site. Mutation of the evolutionary conserved binding site in this region abrogated transcriptional activation and binding of Pax6/Pax6(5a) to the mouse Dkk3 promoter. Since the identified Pax6 binding site in this promoter is conserved, RT-qPCR and Western blot were used to look for regulation of Dkk3/REIC expression in human cell lines. Six of eight cell lines tested showed changes in Dkk3/REIC expression after PAX6 siRNA knockdown. Interestingly, we observed that the Pax6/Pax6(5a) expressing mouse fibroblast cell lines were less responsive to canonical Wnt pathway stimulation than the control cell line when TOP/FOP activity and the levels of active β-catenin and GSK3-β Ser9 phosphorylation were measured after LiCl stimulation.
Collapse
Affiliation(s)
- Siri Forsdahl
- Research Group of Pharmacology, Department of Pharmacy, UiT – The Artic University of Norway, Tromsoe, Norway
| | - Yury Kiselev
- Research Group of Pharmacology, Department of Pharmacy, UiT – The Artic University of Norway, Tromsoe, Norway
- Norwegian Translational Cancer Research Center, Department of Medical Biology, UiT – The Arctic University of Norway, Tromsoe, Norway
| | - Rune Hogseth
- Research Group of Pharmacology, Department of Pharmacy, UiT – The Artic University of Norway, Tromsoe, Norway
| | - Janne E. Mjelle
- Research Group of Pharmacology, Department of Pharmacy, UiT – The Artic University of Norway, Tromsoe, Norway
| | - Ingvild Mikkola
- Research Group of Pharmacology, Department of Pharmacy, UiT – The Artic University of Norway, Tromsoe, Norway
- * E-mail:
| |
Collapse
|
14
|
Mei H, Lin ZY, Tong QS. The roles of microRNAs in neuroblastoma. World J Pediatr 2014; 10:10-6. [PMID: 24464658 DOI: 10.1007/s12519-014-0448-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 12/26/2013] [Indexed: 01/22/2023]
Abstract
BACKGROUND Neuroblastoma (NB) is the most common extracranial solid tumor in childhood and displays remarkable heterogeneity in clinical behaviors, ranging from spontaneous regression to rapid progression or resistance to multimodal treatment. Recent evidence has shown that microRNAs (miRNAs), a class of small non-coding RNAs, are involved in tumor development and progression. This article aimed to review recent advances in investigating the roles of miRNAs in NB. METHODS We searched the PubMed/MEDLINE database for articles about the expression profile, functions and target genes of miRNAs in NB. RESULTS We reviewed the most recent evidence regarding the functional roles of oncogenic and tumor suppressive miRNAs in NB and application of novel miRNA-based methods for diagnostic, prognostic and therapeutic purposes. CONCLUSIONS Deregulation of miRNAs is associated with the development and progression of NB, suggesting that miRNAs may serve as novel targets for the treatment of high-risk NB patients. However, their precise functions and underlying mechanisms still warrant further studies.
Collapse
Affiliation(s)
- Hong Mei
- Department of Pediatric Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | | | | |
Collapse
|