1
|
Lacombe A, Scorrano L. The interplay between mitochondrial dynamics and autophagy: From a key homeostatic mechanism to a driver of pathology. Semin Cell Dev Biol 2024; 161-162:1-19. [PMID: 38430721 DOI: 10.1016/j.semcdb.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024]
Abstract
The complex relationship between mitochondrial dynamics and autophagy illustrates how two cellular housekeeping processes are intimately linked, illuminating fundamental principles of cellular homeostasis and shedding light on disparate pathological conditions including several neurodegenerative disorders. Here we review the basic tenets of mitochondrial dynamics i.e., the concerted balance between fusion and fission of the organelle, and its interplay with macroautophagy and selective mitochondrial autophagy, also dubbed mitophagy, in the maintenance of mitochondrial quality control and ultimately in cell viability. We illustrate how conditions of altered mitochondrial dynamics reverberate on autophagy and vice versa. Finally, we illustrate how altered interplay between these two key cellular processes participates in the pathogenesis of human disorders affecting multiple organs and systems.
Collapse
Affiliation(s)
- Alice Lacombe
- Dept. of Biology, University of Padova, Padova, Italy
| | - Luca Scorrano
- Dept. of Biology, University of Padova, Padova, Italy; Veneto Institute of Molecular Medicine, Padova, Italy.
| |
Collapse
|
2
|
Wang Y, Lun J, Zhang Y, Yu M, Liu X, Guo J, Zhang H, Qiu W, Fang J. miR-373-3p promotes aerobic glycolysis in colon cancer cells by targeting MFN2. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1498-1508. [PMID: 38946424 DOI: 10.3724/abbs.2024090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
Abstract
MicroRNAs (miRNAs) are implicated in the development of cancers and may serve as potential targets for therapy. However, the functions and underlying mechanisms of miRNAs in cancers are not well understood. This work aims to study the role of miR-373-3p in colon cancer cells. We find that the expression of miR-373-3p mimics promotes and the miR-373-3p inhibitor suppresses aerobic glycolysis and proliferation of colon cancer cells. Mechanistically, miR-373-3p inhibits the expression of MFN2, a gene that is known to suppress glycolysis, which leads to the activation of glycolysis and eventually the proliferation of cells. In a nude mouse tumor model, the expression of miR-373-3p in colon cancer cells promotes tumor growth by enhancing lactate formation, which is inhibited by the co-expression of MFN2 in the cells. Administration of the miR-373-3p antagomir blunts in vivo tumor growth by decreasing lactate production. In addition, in human colon cancers, the expression levels of miR-373-3p are increased, while those of MFN2 mRNA are decreased, and the increase of miR-373-3p is associated with the decrease of MFN2 mRNA. Our results reveal a previously unknown function and underlying mechanism of miR-373-3p in the regulation of glycolysis and proliferation in cancer cells and underscore the potential of targeting miR-373-3p for colon cancer treatment.
Collapse
Affiliation(s)
- Yu Wang
- Department of Oncology, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Jie Lun
- Department of Oncology, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
- School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Yuying Zhang
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Mengchao Yu
- Central Laboratory, Qingdao Municipal Hospital, Qingdao 266071, China
| | - Xingqian Liu
- Department of Oncology, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Jing Guo
- Department of Oncology, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Hongwei Zhang
- Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China
| | - Wensheng Qiu
- Department of Oncology, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Jing Fang
- Department of Oncology, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| |
Collapse
|
3
|
Purohit G, Ghosh P, Khalimonchuk O. Mitochondrial metallopeptidase OMA1 in cancer. Adv Cancer Res 2024; 162:75-97. [PMID: 39069370 DOI: 10.1016/bs.acr.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Our understanding of the roles that mitochondria play in cellular physiology has evolved drastically-from a mere cellular energy supplier to a crucial regulator of metabolic and signaling processes, particularly in the context of development and progression of human diseases such as cancers. The present review examines the role of OMA1, a conserved, redox-sensitive metallopeptidase in cancer biology. OMA1's involvement in mitochondrial quality control, redox activity, and stress responses underscores its potential as a novel target in cancer diagnosis and treatment. However, our incomplete understanding of OMA1's regulation and structural detail presents ongoing challenges to target OMA1 for therapeutic purposes. Further exploration of OMA1 holds promise in uncovering novel insights into cancer mechanisms and therapeutic strategies. In this chapter, we briefly summarize our current knowledge about OMA1, its redox-regulation, and emerging role in certain cancers.
Collapse
Affiliation(s)
- Gunjan Purohit
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Polash Ghosh
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States; Nebraska Redox Biology Center, Lincoln, NE, United States; Fred & Pamela Buffett Cancer Center, Omaha, NE, United States.
| |
Collapse
|
4
|
Zhang B, Han D, Yang L, He Y, Yang S, Wang H, Zhang X, Du Y, Xiong W, Ha H, Shang P. The mitochondrial fusion-associated protein MFN2 can be used as a novel prognostic molecule for clear cell renal cell carcinoma. BMC Cancer 2023; 23:986. [PMID: 37845657 PMCID: PMC10577979 DOI: 10.1186/s12885-023-11419-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 09/19/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Mitofusin 2 (MFN2) plays an important role in many tumors, but how its role in renal clear cell carcinoma needs further research. METHODS In this study, we analyzed the expression of MFN2 in renal clear cell carcinoma tissues and normal kidney tissues through the Cancer Genome Atlas (TCGA) database and our clinical samples.Enrichment analysis was performed to determine MFN2-related pathways and biological functions. The correlation of MFN2 expression with immune cells was analyzed.The correlation of the expression of methylation and the methylation sites of MFN2 were analyzed by UALCAN and TCGA databases. Univariate / multivariate COX risk regression and Kaplan-Meier methods were used to determine the prognostic value of MFN2.Nomograms were drawn to predict overall survival (OS) at 1,3, and 5 years. We investigated the role of MFN2 in renal cancer cells using CCK 8, clone formation, wound healing assay, and methylase qPCR experiments. RESULTS MFN2 is poorly expressed in renal clear cell carcinoma compared to normal kidney tissue,and is significantly negatively associated with TNM stage, histological grade and pathological stage.MFN2 was directly associated with OS after multivariate Cox regression analysis.MFN2 shows a hypomethylation state and shows a positive correlation with multiple methylation sites.Signaling pathways through functional enrichment to B-cell receptors and oxidative stress-induced senescence.Moreover, the low expression of MFN2 was positively correlated with the degree of immune cell infiltration in a variety of immune cells.In vitro experiments showed that overexpression of MFN2 significantly inhibited the proliferation and migration of renal clear cells and promoted methylation. CONCLUSIONS In conclusion, MFN2 can be used as a novel prognostic marker for renal clear cell carcinoma and requires further investigation of its role in tumor development.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Urology, Institute of Urology, Key Laboratory of Urological Diseases in Gansu Province, Gansu Nephro-Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Dali Han
- Department of Urology, Institute of Urology, Key Laboratory of Urological Diseases in Gansu Province, Gansu Nephro-Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - LiMing Yang
- Department of Skin and Venereal Diseases, Jincheng People's Hospital, Jincheng, 048000, Shanxi, China
| | - Yang He
- Department of Urology, Institute of Urology, Key Laboratory of Urological Diseases in Gansu Province, Gansu Nephro-Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Shujun Yang
- Department of Urology, Institute of Urology, Key Laboratory of Urological Diseases in Gansu Province, Gansu Nephro-Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Hongbo Wang
- Department of Urology, Institute of Urology, Key Laboratory of Urological Diseases in Gansu Province, Gansu Nephro-Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Xingxing Zhang
- Department of Urology, Institute of Urology, Key Laboratory of Urological Diseases in Gansu Province, Gansu Nephro-Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Yuelin Du
- Department of Urology, Institute of Urology, Key Laboratory of Urological Diseases in Gansu Province, Gansu Nephro-Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Wei Xiong
- Department of Urology, Institute of Urology, Key Laboratory of Urological Diseases in Gansu Province, Gansu Nephro-Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Hualan Ha
- Department of Urology, Institute of Urology, Key Laboratory of Urological Diseases in Gansu Province, Gansu Nephro-Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Panfeng Shang
- Department of Urology, Institute of Urology, Key Laboratory of Urological Diseases in Gansu Province, Gansu Nephro-Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
5
|
Chen W, Zhao H, Li Y. Mitochondrial dynamics in health and disease: mechanisms and potential targets. Signal Transduct Target Ther 2023; 8:333. [PMID: 37669960 PMCID: PMC10480456 DOI: 10.1038/s41392-023-01547-9] [Citation(s) in RCA: 117] [Impact Index Per Article: 117.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/29/2023] [Accepted: 06/24/2023] [Indexed: 09/07/2023] Open
Abstract
Mitochondria are organelles that are able to adjust and respond to different stressors and metabolic needs within a cell, showcasing their plasticity and dynamic nature. These abilities allow them to effectively coordinate various cellular functions. Mitochondrial dynamics refers to the changing process of fission, fusion, mitophagy and transport, which is crucial for optimal function in signal transduction and metabolism. An imbalance in mitochondrial dynamics can disrupt mitochondrial function, leading to abnormal cellular fate, and a range of diseases, including neurodegenerative disorders, metabolic diseases, cardiovascular diseases and cancers. Herein, we review the mechanism of mitochondrial dynamics, and its impacts on cellular function. We also delve into the changes that occur in mitochondrial dynamics during health and disease, and offer novel perspectives on how to target the modulation of mitochondrial dynamics.
Collapse
Affiliation(s)
- Wen Chen
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Huakan Zhao
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
6
|
Liu AR, Lv Z, Yan ZW, Wu XY, Yan LR, Sun LP, Yuan Y, Xu Q. Association of mitochondrial homeostasis and dynamic balance with malignant biological behaviors of gastrointestinal cancer. J Transl Med 2023; 21:27. [PMID: 36647167 PMCID: PMC9843870 DOI: 10.1186/s12967-023-03878-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 01/07/2023] [Indexed: 01/18/2023] Open
Abstract
Mitochondria determine the physiological status of most eukaryotes. Mitochondrial dynamics plays an important role in maintaining mitochondrial homeostasis, and the disorder in mitochondrial dynamics could affect cellular energy metabolism leading to tumorigenesis. In recent years, disrupted mitochondrial dynamics has been found to influence the biological behaviors of gastrointestinal cancer with the potential to be a novel target for its individualized therapy. This review systematically introduced the role of mitochondrial dynamics in maintaining mitochondrial homeostasis, and further elaborated the effects of disrupted mitochondrial dynamics on the cellular biological behaviors of gastrointestinal cancer as well as its association with cancer progression. We aim to provide clues for elucidating the etiology and pathogenesis of gastrointestinal cancer from the perspective of mitochondrial homeostasis and disorder.
Collapse
Affiliation(s)
- Ao-ran Liu
- grid.412636.40000 0004 1757 9485Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North NanjingBei Street, Heping District, Shenyang, 110001 Liaoning People’s Republic of China ,grid.412636.40000 0004 1757 9485Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001 China ,grid.412636.40000 0004 1757 9485Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001 China
| | - Zhi Lv
- grid.412636.40000 0004 1757 9485Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North NanjingBei Street, Heping District, Shenyang, 110001 Liaoning People’s Republic of China ,grid.412636.40000 0004 1757 9485Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001 China ,grid.412636.40000 0004 1757 9485Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001 China
| | - Zi-wei Yan
- grid.412636.40000 0004 1757 9485Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North NanjingBei Street, Heping District, Shenyang, 110001 Liaoning People’s Republic of China ,grid.412636.40000 0004 1757 9485Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001 China ,grid.412636.40000 0004 1757 9485Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001 China
| | - Xiao-yang Wu
- grid.412636.40000 0004 1757 9485Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North NanjingBei Street, Heping District, Shenyang, 110001 Liaoning People’s Republic of China ,grid.412636.40000 0004 1757 9485Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001 China ,grid.412636.40000 0004 1757 9485Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001 China
| | - Li-rong Yan
- grid.412636.40000 0004 1757 9485Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North NanjingBei Street, Heping District, Shenyang, 110001 Liaoning People’s Republic of China ,grid.412636.40000 0004 1757 9485Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001 China ,grid.412636.40000 0004 1757 9485Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001 China
| | - Li-ping Sun
- grid.412636.40000 0004 1757 9485Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North NanjingBei Street, Heping District, Shenyang, 110001 Liaoning People’s Republic of China ,grid.412636.40000 0004 1757 9485Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001 China ,grid.412636.40000 0004 1757 9485Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001 China
| | - Yuan Yuan
- grid.412636.40000 0004 1757 9485Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North NanjingBei Street, Heping District, Shenyang, 110001 Liaoning People’s Republic of China ,grid.412636.40000 0004 1757 9485Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001 China ,grid.412636.40000 0004 1757 9485Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001 China
| | - Qian Xu
- grid.412636.40000 0004 1757 9485Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North NanjingBei Street, Heping District, Shenyang, 110001 Liaoning People’s Republic of China ,grid.412636.40000 0004 1757 9485Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001 China ,grid.412636.40000 0004 1757 9485Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001 China
| |
Collapse
|
7
|
Zanfardino P, Longo G, Amati A, Morani F, Picardi E, Girolamo F, Pafundi M, Cox SN, Manzari C, Tullo A, Doccini S, Santorelli FM, Petruzzella V. Mitofusin 2 mutation drives cell proliferation in Charcot-Marie-Tooth 2A fibroblasts. Hum Mol Genet 2023; 32:333-350. [PMID: 35994048 DOI: 10.1093/hmg/ddac201] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 01/20/2023] Open
Abstract
Dominant mutations in ubiquitously expressed mitofusin 2 gene (MFN2) cause Charcot-Marie-Tooth type 2A (CMT2A; OMIM 609260), an inherited sensory-motor neuropathy that affects peripheral nerve axons. Mitofusin 2 protein has been found to take part in mitochondrial fusion, mitochondria-endoplasmic reticulum tethering, mitochondrial trafficking along axons, mitochondrial quality control and various types of cancer, in which MFN2 has been indicated as a tumor suppressor gene. Discordant data on the mitochondrial altered phenotypes in patient-derived fibroblasts harboring MFN2 mutations and in animal models have been reported. We addressed some of these issues by focusing on mitochondria behavior during autophagy and mitophagy in fibroblasts derived from a CMT2AMFN2 patient with an MFN2650G > T/C217F mutation in the GTPase domain. This study investigated mitochondrial dynamics, respiratory capacity and autophagy/mitophagy, to tackle the multifaceted MFN2 contribution to CMT2A pathogenesis. We found that MFN2 mutated fibroblasts showed impairment of mitochondrial morphology, bioenergetics capacity, and impairment of the early stages of autophagy, but not mitophagy. Unexpectedly, transcriptomic analysis of mutated fibroblasts highlighted marked differentially expressed pathways related to cell population proliferation and extracellular matrix organization. We consistently found the activation of mTORC2/AKT signaling and accelerated proliferation in the CMT2AMFN2 fibroblasts. In conclusion, our evidence indicates that MFN2 mutation can positively drive cell proliferation in CMT2AMFN2 fibroblasts.
Collapse
Affiliation(s)
- Paola Zanfardino
- Department of Medical Basic Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Giovanna Longo
- Department of Medical Basic Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Alessandro Amati
- Department of Medical Basic Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Federica Morani
- Department of Biology, University of Pisa, 56126 Pisa, Italy
| | - Ernesto Picardi
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70125 Bari, Italy.,Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, 70125 Bari, Italy
| | - Francesco Girolamo
- Department of Medical Basic Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Mariella Pafundi
- Department of Medical Basic Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Sharon N Cox
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70125 Bari, Italy
| | - Caterina Manzari
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70125 Bari, Italy
| | - Apollonia Tullo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, 70125 Bari, Italy
| | - Stefano Doccini
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | - Filippo M Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | - Vittoria Petruzzella
- Department of Medical Basic Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
8
|
Cheng X, Li Y, Liu F. Prognostic impact of mitofusin 2 expression in colon cancer. Transl Cancer Res 2022; 11:3610-3619. [PMID: 36388028 PMCID: PMC9641083 DOI: 10.21037/tcr-22-589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/24/2022] [Indexed: 08/12/2024]
Abstract
BACKGROUND Mitofusin 2 (MFN2) is involved in several biological processes, including cancer. MFN2 is downregulated in some types of cancer and inhibits cancer cell proliferation, migration, and invasion. However, the relationship between MFN2 and colon cancer remains unknown. METHODS In this study, MFN2 expression was investigated using The Cancer Genome Atlas (TCGA) and the Human Protein Atlas (HPA), and the associations between prognostic factors and survival outcomes were assessed via univariate and multivariate analyses. Functional enrichment analyses based on Kyoto Encyclopedia of Genes and Genomes (KEGG) resource and Gene Set Enrichment Analysis (GSEA) were carried out. RESULTS MFN2 was downregulated in colon cancer tissues compared with paracancerous colon tissues (P<0.001), and low MFN2 expression was associated with an advanced tumor stage (stage IV vs. stage I, P=0.03; stage I-III vs. stage IV, P=0.003). MFN2 immunohistochemistry (IHC) staining was medium to high in colon normal tissues, but MFN2 IHC staining was faint or not identified in colorectal cancer (CRC) tumor tissues. MFN2 expression was either low or non-existent in colon cancer distinct cell clusters, according to differential gene analysis. Univariate analysis revealed that MFN2 expression in colon cancer patients was significantly associated with the stage [odds ratio (OR) =0.29 for stage IV vs. stage I, P=0.001], T-stage (OR =0.20 for T4 vs. T1, P=0.033), and distant metastasis (OR =0.31 for M1 vs. M0, P=0.000). Furthermore, Kaplan-Meier survival analysis revealed that patients with colon cancer and high MFN2 expression have a better prognosis than those with low MFN2 expression (P=0.002). MFN2 (hazard ratio =0.95, 95% confidence interval: 0.92-0.99, P=0.007) was an independent predictor of colon cancer according to univariate and multivariate Cox models. Finally, GSEA results showed that the KEGG GALACTOSE METABOLISM, APOPTOSIS, and VEGF SIGNALING pathways were activated in the high MFN2 mRNA expression group, whereas the KEGG RIBOSOME pathway was inhibited in the low MFN2 expression group. CONCLUSIONS Our research revealed MFN2 to be a promising predictive biomarker and therapeutic target for colon cancer.
Collapse
Affiliation(s)
- Xiaofei Cheng
- Department of Colorectal Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanqing Li
- Department of Pathology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fanlong Liu
- Department of Colorectal Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
9
|
Ramaiah P, Patra I, Abbas A, Fadhil AA, Abohassan M, Al-Qaim ZH, Hameed NM, Al-Gazally ME, Kemil Almotlaq SS, Mustafa YF, Shiravand Y. Mitofusin-2 in cancer: Friend or foe? Arch Biochem Biophys 2022; 730:109395. [PMID: 36176224 DOI: 10.1016/j.abb.2022.109395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022]
Abstract
Cancer is a category of disorders characterized by excessive cell proliferation with the ability to infiltrate or disseminate to other organs of the body. Mitochondrial dysfunction, as one of the most prominent hallmarks of cancer cells, has been related to the onset and development of various cancers. Mitofusin 2 (MFN2) is a major mediator of mitochondrial fusion, endoplasmic reticulum (ER)-mitochondria interaction, mitophagy and axonal transport of mitochondria. Available data have shown that MFN2, which its alterations have been associated with mitochondrial dysfunction, could affect cancer initiation and progression. In fact, it showed that MFN2 may have a double-edged sword effect on cancer fate. Precisely, it demonstrated that MFN2, as a tumor suppressor, induces cancer cell apoptosis and inhibits cell proliferation via Ca2+ and Bax-mediated apoptosis and increases P21 and p27 levels, respectively. It also could suppress cell survival via inhibiting PI3K/Akt, Ras-ERK1/2-cyclin D1 and mTORC2/Akt signaling pathways. On the other hand, MFN2, as an oncogene, could increase cancer invasion via snail-mediated epithelial-mesenchymal transition (EMT) and in vivo tumorigenesis. While remarkable progress has been achieved in recent decades, further exploration is required to elucidate whether MFN2 could be a friend or it's an enemy. This study aimed to highlight the different functions of MFN2 in various cancers.
Collapse
Affiliation(s)
| | | | - Anum Abbas
- Basic Health Unit, Foundation University Medical College, Islamabad, Pakistan.
| | - Ali Abdulhussain Fadhil
- College of Medical Technology, Medical Lab Techniques, Al-farahidi University, Baghdad, Iraq
| | - Mohammad Abohassan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, 9088, Saudi Arabia
| | | | | | | | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul-41001, Iraq
| | - Yavar Shiravand
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80138, Naples, Italy.
| |
Collapse
|
10
|
Cheng L, Wang Z, Nie L, Yang C, Huang H, Lin J, Zhuo D. Comprehensive analysis of MFN2 as a prognostic biomarker associated with immune cell infiltration in renal clear cell carcinoma. Int Immunopharmacol 2022; 111:109169. [PMID: 36007389 DOI: 10.1016/j.intimp.2022.109169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Treatment of advanced kidney renal clear cell carcinoma (KIRC) remains challenging in clinic. The functional role and prognostic significance of MFN2 in KIRC are still unclear. METHODS In this study, we first performed a bioinformatic analysis to determine the expression level and prognostic value of MFN2 in KIRC using The Cancer Genome Atlas (TCGA) dataset, and then validated the MFN2 mRNA expression in our cohort of clinical tissue samples and cell lines of KIRC via RT-qPCR. Cox regression model was used to identify the independent prognostic factors. A nomogram was constructed to predict the prognosis of KIRC patients. Gene set enrichment analysis (GSEA) was performed to predict the involved functional pathways of MFN2 co-expressed genes. The association between MFN2 expression level and immune cell infiltration was assessed using the TIMER and the TIDISB databases. In addition, cell proliferation and migration abilities of two KIRC cell lines with MFN2 overexpression were evaluated by MTS and wound healing assays, respectively. RESULTS Downregulation of MFN2 was observed in KIRC tissues and cell lines compared to the normal controls. Kaplan-Meier curve analysis indicated an inferior survival outcomes in KIRC patients with lower MFN2 expression, uncovering the tumor-suppressive role of MFN2 in KIRC. Cox regression results showed that higher MFN2 expression was one of the independent protective factors in KIRC. Besides, function predictive analysis revealed that MFN2 co-expressed genes were enriched in the biological processes of energy metabolism and autophagy. Moreover, MFN2 expression was observed to be significantly associated with immune cell infiltration and a variety of markers of tumor infiltrating immune cells (TIICs) including multiple immune checkpoints in KIRC tissues. Finally, MFN2 overexpression significantly inhibited cell proliferation and migration abilities of two KIRC cell lines examined. CONCLUSION Generally, our data suggested that MFN2 may serve as a potential prognostic biomarker and therapeutic target in KIRC.
Collapse
Affiliation(s)
- Li Cheng
- Department of Urology, the First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Zicheng Wang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Liang Nie
- Department of Urology, the First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Chenglin Yang
- Department of Urology, the First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Houbao Huang
- Department of Urology, the First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Jian Lin
- Department of Urology, Peking University First Hospital, Beijing, China.
| | - Dong Zhuo
- Department of Urology, the First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China.
| |
Collapse
|
11
|
Deng H, Zhu S, Zhu L, Sun J, Ding Y, Li F, Jian Z, Zhao J, Deng L, Deng J, Deng Y, Guo H, Sun X, Lai SY, Tang H, Cui H, Ge LP, Xu Z. Mfn2 is responsible for inhibition of the RIG-I/IRF7 pathway and activation of NLRP3 inflammasome in Seneca Valley virus-infected PK-15 cells to promote viral replication. Front Immunol 2022; 13:955671. [PMID: 35958608 PMCID: PMC9359100 DOI: 10.3389/fimmu.2022.955671] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
Seneca Valley virus (SVV), a non-enveloped positive single-stranded virus can cause vesicular disease in swine. However, the mechanisms by which SVV activates an innate immune response remain unknown. Mitofusin-2 (MFN2), a mitochondria-shaping protein regulating mitochondrial fusion and fission, plays a crucial role in innate immune responses. But, the roles of Mfn2 in SVV infection have not been elucidated. Here, we show that SVV inhibited Mfn2 expression and NLRP3 inflammasome, activating RIG-I/IRF7 signaling pathway to increase IFN-λ3 expression. Overexpression of Mfn2 inhibited RIG-I/IRF7 signaling pathway, thus decreasing IFN-λ3 expression and promoting SVV replication. Interestingly, overexpression of Mfn2 also activated NLRP3 inflammasome but did not inhibit SVV proliferation. That may mean the RIG-I/IRF7 signaling pathway plays a more important role in SVV proliferation in PK-15 cells. This study could provide important insights into the modulation of host metabolism during SVV infection and provide a strong theoretical basis for a better understanding of the pathogenic mechanism and immune activation mechanism of SVV.
Collapse
Affiliation(s)
- HuiDan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Song Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jing Sun
- National Center of Technology Innovation for Pigs, Chongqing, China
| | - YuChun Ding
- National Center of Technology Innovation for Pigs, Chongqing, China
| | - FengQin Li
- College of Animal Science, Xichang University, Xichang, China
| | - ZhiJie Jian
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jun Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - LiShuang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - JunLiang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - YouTian Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - HongRui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - XianGang Sun
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Si Yuan Lai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - HuaQiao Tang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - HengMin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Liang Peng Ge
- National Center of Technology Innovation for Pigs, Chongqing, China
- *Correspondence: Liang Peng Ge, ; ZhiWen Xu,
| | - ZhiWen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- National Center of Technology Innovation for Pigs, Chongqing, China
- *Correspondence: Liang Peng Ge, ; ZhiWen Xu,
| |
Collapse
|
12
|
Tanprasert P, Limpakan Yamada S, Chattipakorn SC, Chattipakorn N, Shinlapawittayatorn K. Targeting mitochondria as a therapeutic anti-gastric cancer approach. Apoptosis 2022; 27:163-183. [PMID: 35089473 DOI: 10.1007/s10495-022-01709-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/01/2022] [Indexed: 11/29/2022]
Abstract
Gastric cancer is regarded as the fifth most common cancer globally but the third most common cancer death. Although systemic chemotherapy is the primary treatment for advanced gastric cancer patients, the outcome of chemotherapy is unsatisfactory. Novel therapeutic strategies and potential alternative treatments are therefore needed to overcome the impact of this disease. At a cellular level, mitochondria play an important role in cell survival and apoptosis. A growing body of studies have shown that mitochondria play a central role in the regulation of cellular function, metabolism, and cell death during carcinogenesis. Interestingly, the impact of mitochondrial dynamics, including fission/fusion and mitophagy, on carcinogenesis and cancer progression has also been reported, suggesting the potential targeting of mitochondrial dynamics for the treatment of cancer. This review not only comprehensively summarizes the homeostasis of gastric cancer cells, but the potential therapeutic interventions for the targeting of mitochondria for gastric cancer therapy are also highlighted and discussed.
Collapse
Affiliation(s)
- Peticha Tanprasert
- Division of Gastrointestinal Surgery and Endoscopy, Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sirikan Limpakan Yamada
- Division of Gastrointestinal Surgery and Endoscopy, Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Krekwit Shinlapawittayatorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
13
|
Deng Y, Ngo DTM, Holien JK, Lees JG, Lim SY. Mitochondrial Dynamin-Related Protein Drp1: a New Player in Cardio-oncology. Curr Oncol Rep 2022; 24:1751-1763. [PMID: 36181612 PMCID: PMC9715477 DOI: 10.1007/s11912-022-01333-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW This study is aimed at reviewing the recent progress in Drp1 inhibition as a novel approach for reducing doxorubicin-induced cardiotoxicity and for improving cancer treatment. RECENT FINDINGS Anthracyclines (e.g. doxorubicin) are one of the most common and effective chemotherapeutic agents to treat a variety of cancers. However, the clinical usage of doxorubicin has been hampered by its severe cardiotoxic side effects leading to heart failure. Mitochondrial dysfunction is one of the major aetiologies of doxorubicin-induced cardiotoxicity. The morphology of mitochondria is highly dynamic, governed by two opposing processes known as fusion and fission, collectively known as mitochondrial dynamics. An imbalance in mitochondrial dynamics is often reported in tumourigenesis which can lead to adaptive and acquired resistance to chemotherapy. Drp1 is a key mitochondrial fission regulator, and emerging evidence has demonstrated that Drp1-mediated mitochondrial fission is upregulated in both cancer cells to their survival advantage and injured heart tissue in the setting of doxorubicin-induced cardiotoxicity. Effective treatment to prevent and mitigate doxorubicin-induced cardiotoxicity is currently not available. Recent advances in cardio-oncology have highlighted that Drp1 inhibition holds great potential as a targeted mitochondrial therapy for doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Yali Deng
- Department of Surgery and Medicine, University of Melbourne, Melbourne, Victoria Australia ,O’Brien Institute Department, St Vincent’s Institute of Medical Research, Fitzroy, Victoria Australia
| | - Doan T. M. Ngo
- School of Biomedical Science and Pharmacy, College of Health, Medicine and Wellbeing, Hunter Medical Research Institute & University of Newcastle, New Lambton Heights, New South Wales Australia
| | - Jessica K. Holien
- Department of Surgery and Medicine, University of Melbourne, Melbourne, Victoria Australia ,School of Science, STEM College, RMIT University, Melbourne, Victoria Australia
| | - Jarmon G. Lees
- Department of Surgery and Medicine, University of Melbourne, Melbourne, Victoria Australia ,O’Brien Institute Department, St Vincent’s Institute of Medical Research, Fitzroy, Victoria Australia
| | - Shiang Y. Lim
- Department of Surgery and Medicine, University of Melbourne, Melbourne, Victoria Australia ,O’Brien Institute Department, St Vincent’s Institute of Medical Research, Fitzroy, Victoria Australia ,Drug Discovery Biology, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, Victoria Australia ,National Heart Research Institute Singapore, National Heart Centre, Singapore, Singapore
| |
Collapse
|
14
|
Xie L, Zhou T, Xie Y, Bode AM, Cao Y. Mitochondria-Shaping Proteins and Chemotherapy. Front Oncol 2021; 11:769036. [PMID: 34868997 PMCID: PMC8637292 DOI: 10.3389/fonc.2021.769036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/18/2021] [Indexed: 12/23/2022] Open
Abstract
The emergence, in recent decades, of an entirely new area of “Mitochondrial dynamics”, which consists principally of fission and fusion, reflects the recognition that mitochondria play a significant role in human tumorigenesis and response to therapeutics. Proteins that determine mitochondrial dynamics are referred to as “shaping proteins”. Marked heterogeneity has been observed in the response of tumor cells to chemotherapy, which is associated with imbalances in mitochondrial dynamics and function leading to adaptive and acquired resistance to chemotherapeutic agents. Therefore, targeting mitochondria-shaping proteins may prove to be a promising approach to treat chemotherapy resistant cancers. In this review, we summarize the alterations of mitochondrial dynamics in chemotherapeutic processing and the antitumor mechanisms by which chemotherapy drugs synergize with mitochondria-shaping proteins. These might shed light on new biomarkers for better prediction of cancer chemosensitivity and contribute to the exploitation of potent therapeutic strategies for the clinical treatment of cancers.
Collapse
Affiliation(s)
- Longlong Xie
- Hunan Children's Hospital, The Pediatric Academy of University of South China, Changsha, China.,Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, China
| | - Tiansheng Zhou
- Hunan Children's Hospital, The Pediatric Academy of University of South China, Changsha, China
| | - Yujun Xie
- Hunan Children's Hospital, The Pediatric Academy of University of South China, Changsha, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN, United States
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, China.,Research Center for Technologies of Nucleic Acid-Based Diagnostics and Therapeutics Hunan Province, Changsha, China.,Molecular Imaging Research Center of Central South University, Changsha, China.,National Joint Engineering Research Center for Genetic Diagnostics of Infectious Diseases and Cancer, Changsha, China
| |
Collapse
|
15
|
Zhang X, Xu X, Lu L, Wan X, Qin Y, Ruan W, Lv C, He L, Guo X. A new Mfn-2 related synthetic peptide promotes vascular smooth muscle cell apoptosis via regulating the mitochondrial apoptotic pathway by inhibiting Akt signaling. J Transl Med 2021; 19:395. [PMID: 34538249 PMCID: PMC8451139 DOI: 10.1186/s12967-021-03064-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 09/02/2021] [Indexed: 01/11/2023] Open
Abstract
Background Restenosis after angioplasty is a major challenge for the treatment of coronary artery diseases. Facilitation of vascular smooth muscle cell (VSMC) apoptosis may be an attractive approach to decrease the incidence of restenosis. We synthesized a 16-amino acid mitofusin-2 (Mfn-2) gene related peptide (MRSP) based on the sequence of the p21ras signature motif, the smallest functional sequence of the Mfn-2 gene with proapoptotic properties in VSMC. We investigated whether MRSP enhanced apoptotic activities to inhibit VSMC accumulation and neointimal hyperplasia in rats with carotid balloon injury. Methods VSMCs were treated with different concentrations of MRSP, the PI3K agonist 740 Y-P and the inhibitor LY294002. Cell apoptosis and related pathway molecules were assessed. MRSP was also given to rats with carotid artery balloon injury. Neointimal hyperplasia and cell apoptotic pathways were detected. Results In vitro experiments revealed that MRSP treatment significantly increased VSMC apoptosis and induced increases in procaspase-9 cleavage, caspase-3 activation, cytochrome c release from mitochondria to the cytoplasm and the Bax/Bcl-2 ratio but not caspase-8 expression, indicating that the mitochondrial apoptotic cascade was activated by MRSP, which might be attributed to suppression of the PI3K/Akt signaling pathway. We further found that the PI3K agonist 740 Y-P prevented and that the inhibitor LY294002 strengthened the proapoptotic effects of MRSP. MRSP strongly inhibited neointimal hyperplasia and VSMC accumulation, but increased VSMC apoptosis in the vascular wall after balloon injury. Moreover, MRSP substantially enhanced Bax and cleaved caspase-3 expression and decreased Bcl-2 levels in intima, accompanied by decreased levels of phosphorylated Akt and PI3K in vivo. Conclusions Taken together, the present study showed that MRSP treatment results in a strong proapoptotic effect by activating the mitochondrial apoptotic cascade through suppression of the PI3K/Akt pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03064-1.
Collapse
Affiliation(s)
- Xinxin Zhang
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiangyu Xu
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Cardiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong, China
| | - Li Lu
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoning Wan
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yating Qin
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weibin Ruan
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chao Lv
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lin He
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiaotong University, Shanghai, China
| | - Xiaomei Guo
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
16
|
Ahn SY, Song J, Kim YC, Kim MH, Hyun YM. Mitofusin-2 Promotes the Epithelial-Mesenchymal Transition-Induced Cervical Cancer Progression. Immune Netw 2021; 21:e30. [PMID: 34522443 PMCID: PMC8410987 DOI: 10.4110/in.2021.21.e30] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/14/2021] [Accepted: 07/17/2021] [Indexed: 12/18/2022] Open
Abstract
High expression of mitofusin-2 (MFN2), a mitochondrial fusion protein, has been frequently associated with poor prognosis of patients with cervical cancer. Here, we aimed to identify the function of MFN2 in cervical cancer to understand its influence on disease prognosis. To this end, from cervical adenocarcinoma, we performed an MTT assay and quantitative RT-PCR (qRT-PCR) analysis to assess the effects of MFN2 on the proliferation and of HeLa cells. Then, colony-formation ability and tumorigenesis were evaluated using a tumor xenograft mouse model. The migration ability related to MFN2 was also measured using a wound healing assay. Consequently, epithelial-mesenchymal transition (EMT) of MFN2-knockdowned HeLa cells originating from adenocarcinoma. markers related to MFN2 were assessed by qRT-PCR. Clinical data were analyzed using cBioPortal and The Cancer Genome Atlas. We found that MFN2 knockdown reduced the proliferation, colony formation ability, migration, and in vivo tumorigenesis of HeLa cells. Primarily, migration of MFN2-knockdowned HeLa cells decreased through the suppression of EMT. Thus, we concluded that MFN2 facilitates cancer progression and in vivo tumorigenesis in HeLa cells. These findings suggest that MFN2 could be a novel target to regulate the EMT program and tumorigenic potential in HeLa cells and might serve as a therapeutic target for cervical cancer. Taken together, this study is expected to contribute to the treatment of patients with cervical cancer.
Collapse
Affiliation(s)
- Sung Yong Ahn
- Department of Anatomy, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Jiwon Song
- Department of Anatomy, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea.,Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Yu Cheon Kim
- Department of Anatomy, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea.,Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Myoung Hee Kim
- Department of Anatomy, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea.,Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Young-Min Hyun
- Department of Anatomy, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea.,Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
17
|
Kim IS, Silwal P, Jo EK. Mitofusin 2, a key coordinator between mitochondrial dynamics and innate immunity. Virulence 2021; 12:2273-2284. [PMID: 34482801 PMCID: PMC8425681 DOI: 10.1080/21505594.2021.1965829] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Remodeling of mitochondrial dynamics and mitochondrial morphology plays a pivotal role in the maintenance of mitochondrial homeostasis in response to pathogenic attacks or stress stimuli. In addition to their role in metabolism and energy production, mitochondria participate in diverse biological functions, including innate immune responses driven by macrophages in response to infections or inflammatory stimuli. Mitofusin-2 (MFN2), a mitochondria-shaping protein regulating mitochondrial fusion and fission, plays a crucial role in linking mitochondrial function and innate immune responses. In this article, we review the role of MFN2 in the regulation of innate immune responses during viral and bacterial infections. We also summarize the current knowledge on the role of MFN2 in coordinating inflammatory, atherogenic, and fibrotic responses. MFN2-mediated crosstalk between mitochondrial dynamics and innate immune responses may determine the outcomes of pathogenic infections.
Collapse
Affiliation(s)
- In Soo Kim
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Korea.,Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, Korea
| | - Prashanta Silwal
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Korea.,Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Korea.,Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, Korea
| |
Collapse
|
18
|
Dasgupta A, Chen KH, Lima PDA, Mewburn J, Wu D, Al-Qazazi R, Jones O, Tian L, Potus F, Bonnet S, Archer SL. PINK1-induced phosphorylation of mitofusin 2 at serine 442 causes its proteasomal degradation and promotes cell proliferation in lung cancer and pulmonary arterial hypertension. FASEB J 2021; 35:e21771. [PMID: 34275172 DOI: 10.1096/fj.202100361r] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/06/2021] [Accepted: 06/17/2021] [Indexed: 12/11/2022]
Abstract
Impaired mitochondrial fusion, due in part to decreased mitofusin 2 (Mfn2) expression, contributes to unrestricted cell proliferation and apoptosis-resistance in hyperproliferative diseases like pulmonary arterial hypertension (PAH) and non-small cell lung cancer (NSCLC). We hypothesized that Mfn2 levels are reduced due to increased proteasomal degradation of Mfn2 triggered by its phosphorylation at serine 442 (S442) and investigated the potential kinase mediators. Mfn2 expression was decreased and Mfn2 S442 phosphorylation was increased in pulmonary artery smooth muscle cells from PAH patients and in NSCLC cells. Mfn2 phosphorylation was mediated by PINK1 and protein kinase A (PKA), although only PINK1 expression was increased in these diseases. We designed a S442 phosphorylation deficient Mfn2 construct (PD-Mfn2) and a S442 constitutively phosphorylated Mfn2 construct (CP-Mfn2). The effects of these modified Mfn2 constructs on Mfn2 expression and biological function were compared with those of the wildtype Mfn2 construct (WT-Mfn2). WT-Mfn2 increased Mfn2 expression and mitochondrial fusion in both PAH and NSCLC cells resulting in increased apoptosis and decreased cell proliferation. Compared to WT-Mfn2, PD-Mfn2 caused greater Mfn2 expression, suppression of proliferation, apoptosis induction, and cell cycle arrest. Conversely, CP-Mfn2 caused only a small increase in Mfn2 expression and did not restore mitochondrial fusion, inhibit cell proliferation, or induce apoptosis. Silencing PINK1 or PKA, or proteasome blockade using MG132, increased Mfn2 expression, enhanced mitochondrial fusion and induced apoptosis. In a xenotransplantation NSCLC model, PD-Mfn2 gene therapy caused greater tumor regression than did therapy with WT-Mfn2. Mfn2 deficiency in PAH and NSCLC reflects proteasomal degradation triggered by Mfn2-S442 phosphorylation by PINK1 and/or PKA. Inhibiting Mfn2 phosphorylation has potential therapeutic benefit in PAH and lung cancer.
Collapse
Affiliation(s)
- Asish Dasgupta
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Kuang-Hueih Chen
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Patricia D A Lima
- Queen's Cardiopulmonary Unit (QCPU), Department of Medicine, Translational Institute of Medicine (TIME), Queen's University, Kingston, ON, Canada
| | - Jeffrey Mewburn
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Danchen Wu
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Ruaa Al-Qazazi
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Oliver Jones
- Queen's Cardiopulmonary Unit (QCPU), Department of Medicine, Translational Institute of Medicine (TIME), Queen's University, Kingston, ON, Canada
| | - Lian Tian
- Department of Medicine, Queen's University, Kingston, ON, Canada.,Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Francois Potus
- Department of Medicine, Queen's University, Kingston, ON, Canada.,Pulmonary Hypertension Research Group, Institut Universitaire de Cardiologie et de Pneumologie de Québec Research Center, Laval University, Quebec City, QC, Canada
| | - Sebastien Bonnet
- Pulmonary Hypertension Research Group, Institut Universitaire de Cardiologie et de Pneumologie de Québec Research Center, Laval University, Quebec City, QC, Canada
| | - Stephen L Archer
- Department of Medicine, Queen's University, Kingston, ON, Canada.,Queen's Cardiopulmonary Unit (QCPU), Department of Medicine, Translational Institute of Medicine (TIME), Queen's University, Kingston, ON, Canada
| |
Collapse
|
19
|
Wu D, Dasgupta A, Read AD, Bentley RET, Motamed M, Chen KH, Al-Qazazi R, Mewburn JD, Dunham-Snary KJ, Alizadeh E, Tian L, Archer SL. Oxygen sensing, mitochondrial biology and experimental therapeutics for pulmonary hypertension and cancer. Free Radic Biol Med 2021; 170:150-178. [PMID: 33450375 PMCID: PMC8217091 DOI: 10.1016/j.freeradbiomed.2020.12.452] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/24/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023]
Abstract
The homeostatic oxygen sensing system (HOSS) optimizes systemic oxygen delivery. Specialized tissues utilize a conserved mitochondrial sensor, often involving NDUFS2 in complex I of the mitochondrial electron transport chain, as a site of pO2-responsive production of reactive oxygen species (ROS). These ROS are converted to a diffusible signaling molecule, hydrogen peroxide (H2O2), by superoxide dismutase (SOD2). H2O2 exits the mitochondria and regulates ion channels and enzymes, altering plasma membrane potential, intracellular Ca2+ and Ca2+-sensitization and controlling acute, adaptive, responses to hypoxia that involve changes in ventilation, vascular tone and neurotransmitter release. Subversion of this O2-sensing pathway creates a pseudohypoxic state that promotes disease progression in pulmonary arterial hypertension (PAH) and cancer. Pseudohypoxia is a state in which biochemical changes, normally associated with hypoxia, occur despite normal pO2. Epigenetic silencing of SOD2 by DNA methylation alters H2O2 production, activating hypoxia-inducible factor 1α, thereby disrupting mitochondrial metabolism and dynamics, accelerating cell proliferation and inhibiting apoptosis. Other epigenetic mechanisms, including dysregulation of microRNAs (miR), increase pyruvate dehydrogenase kinase and pyruvate kinase muscle isoform 2 expression in both diseases, favoring uncoupled aerobic glycolysis. This Warburg metabolic shift also accelerates cell proliferation and impairs apoptosis. Disordered mitochondrial dynamics, usually increased mitotic fission and impaired fusion, promotes disease progression in PAH and cancer. Epigenetic upregulation of dynamin-related protein 1 (Drp1) and its binding partners, MiD49 and MiD51, contributes to the pathogenesis of PAH and cancer. Finally, dysregulation of intramitochondrial Ca2+, resulting from impaired mitochondrial calcium uniporter complex (MCUC) function, links abnormal mitochondrial metabolism and dynamics. MiR-mediated decreases in MCUC function reduce intramitochondrial Ca2+, promoting Warburg metabolism, whilst increasing cytosolic Ca2+, promoting fission. Epigenetically disordered mitochondrial O2-sensing, metabolism, dynamics, and Ca2+ homeostasis offer new therapeutic targets for PAH and cancer. Promoting glucose oxidation, restoring the fission/fusion balance, and restoring mitochondrial calcium regulation are promising experimental therapeutic strategies.
Collapse
Affiliation(s)
- Danchen Wu
- Department of Medicine, Queen's University, 94 Stuart St., Kingston, Ontario, K7L 3N6, Canada
| | - Asish Dasgupta
- Department of Medicine, Queen's University, 94 Stuart St., Kingston, Ontario, K7L 3N6, Canada
| | - Austin D Read
- Department of Medicine, Queen's University, 94 Stuart St., Kingston, Ontario, K7L 3N6, Canada
| | - Rachel E T Bentley
- Department of Medicine, Queen's University, 94 Stuart St., Kingston, Ontario, K7L 3N6, Canada
| | - Mehras Motamed
- Department of Medicine, Queen's University, 94 Stuart St., Kingston, Ontario, K7L 3N6, Canada
| | - Kuang-Hueih Chen
- Department of Medicine, Queen's University, 94 Stuart St., Kingston, Ontario, K7L 3N6, Canada
| | - Ruaa Al-Qazazi
- Department of Medicine, Queen's University, 94 Stuart St., Kingston, Ontario, K7L 3N6, Canada
| | - Jeffrey D Mewburn
- Department of Medicine, Queen's University, 94 Stuart St., Kingston, Ontario, K7L 3N6, Canada
| | - Kimberly J Dunham-Snary
- Department of Medicine, Queen's University, 94 Stuart St., Kingston, Ontario, K7L 3N6, Canada; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Elahe Alizadeh
- Queen's Cardiopulmonary Unit (QCPU), Department of Medicine, Queen's University, 116 Barrie Street, Kingston, ON, K7L 3J9, Canada
| | - Lian Tian
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Stephen L Archer
- Department of Medicine, Queen's University, 94 Stuart St., Kingston, Ontario, K7L 3N6, Canada.
| |
Collapse
|
20
|
Yang H, Li Y, Hu B. Potential role of mitochondria in gastric cancer detection: Fission and glycolysis. Oncol Lett 2021; 21:439. [PMID: 33868477 PMCID: PMC8045152 DOI: 10.3892/ol.2021.12700] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is characterized by high morbidity and mortality rates worldwide. Helicobacter pylori infection, high salt intake, smoking, alcohol, low fiber intake, family history of GC, obesity and precancerous lesions, including chronic atrophic gastritis and intestinal metaplasia, are considered general risk factors for GC. Image enhancement endoscopy methods, which improve the visualization of mucosal structures and vascularity, may be used for the early diagnosis of GC, such as narrow band imaging, which can reveal fine details of subtle superficial abnormalities of early gastric cancer (EGC). Mitochondria are well-known for their role in producing ATP via the tricarboxylic acid cycle. In cancer cells, the energetic metabolism can be reprogrammed as anaerobic glycolysis for energy production and anabolic growth. In addition to their dominant metabolic functions, mitochondria participate in several central signaling pathways, such as the apoptotic pathway and NLRP3 inflammasome activation. Conversely, mitochondrial dynamics, including fission/fusion and mitophagy, can also contribute to the pathogenesis of cancer. The dysfunction and dysregulation of mitochondria have been associated with several ageing and degenerative diseases, as well as cancer. The present review focuses on energy metabolism and mitochondrial dynamics, and summarizes the changes in gastric carcinogenesis, the diagnosis of EGC and indicates potential targeted treatments.
Collapse
Affiliation(s)
- Hang Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yan Li
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Bing Hu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Correspondence to: Professor Bing Hu, Department of Gastroenterology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Wu Hou, Chengdu, Sichuan 610041, P.R. China, E-mail:
| |
Collapse
|
21
|
Chen L, Liu B, Qin Y, Li A, Gao M, Liu H, Gong G. Mitochondrial Fusion Protein Mfn2 and Its Role in Heart Failure. Front Mol Biosci 2021; 8:681237. [PMID: 34026850 PMCID: PMC8138128 DOI: 10.3389/fmolb.2021.681237] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022] Open
Abstract
Mitofusin 2 (Mfn2) is a transmembrane GTPase located on the mitochondrial outer membrane that contributes to mitochondrial network regulation. It is an essential multifunctional protein that participates in various biological processes under physical and pathological conditions, including mitochondrial fusion, reticulum–mitochondria contacts, mitochondrial quality control, and apoptosis. Mfn2 dysfunctions have been found to contribute to cardiovascular diseases, such as ischemia-reperfusion injury, heart failure, and dilated cardiomyopathy. Here, this review mainly focuses on what is known about the structure and function of Mfn2 and its crucial role in heart failure.
Collapse
Affiliation(s)
- Lei Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Bilin Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yuan Qin
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Department of Pharmacy, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Anqi Li
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Meng Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Hanyu Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Guohua Gong
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Department of Gastroenterology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
22
|
Targeting Mitochondrial Metabolism in Clear Cell Carcinoma of the Ovaries. Int J Mol Sci 2021; 22:ijms22094750. [PMID: 33947138 PMCID: PMC8124918 DOI: 10.3390/ijms22094750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
Ovarian clear cell carcinoma (OCCC) is a rare but chemorefractory tumor. About 50% of all OCCC patients have inactivating mutations of ARID1A, a member of the SWI/SNF chromatin-remodeling complex. Members of the SWI/SNF remodeling have emerged as regulators of the energetic metabolism of mammalian cells; however, the role of ARID1A as a modulator of the mitochondrial metabolism in OCCCs is yet to be defined. Here, we show that ARID1A loss results in increased mitochondrial metabolism and renders ARID1A-mutated cells increasingly and selectively dependent on it. The increase in mitochondrial activity following ARID1A loss is associated with increase in c-Myc expression and increased mitochondrial number and reduction of their size consistent with a higher mitochondrial cristae/outer membrane ratio. Significantly, preclinical testing of the complex I mitochondrial inhibitor IACS-010759 showed it extends overall survival in a preclinical model of ARID1A-mutated OCCC. These findings provide for the targeting mitochondrial activity in ARID1A-mutated OCCCs.
Collapse
|
23
|
Xin Y, Li J, Wu W, Liu X. Mitofusin-2: A New Mediator of Pathological Cell Proliferation. Front Cell Dev Biol 2021; 9:647631. [PMID: 33869201 PMCID: PMC8049505 DOI: 10.3389/fcell.2021.647631] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/02/2021] [Indexed: 02/05/2023] Open
Abstract
Cell proliferation is an important cellular process for physiological tissue homeostasis and remodeling. The mechanisms of cell proliferation in response to pathological stresses are not fully understood. Mitochondria are highly dynamic organelles whose shape, number, and biological functions are modulated by mitochondrial dynamics, including fusion and fission. Mitofusin-2 (Mfn-2) is an essential GTPase-related mitochondrial dynamics protein for maintaining mitochondrial network and bioenergetics. A growing body of evidence indicates that Mfn-2 has a potential role in regulating cell proliferation in various cell types. Here we review these new functions of Mfn-2, highlighting its crucial role in several signaling pathways during the process of pathological cell proliferation. We conclude that Mfn-2 could be a new mediator of pathological cell proliferation and a potential therapeutic target.
Collapse
Affiliation(s)
- Yanguo Xin
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Junli Li
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wenchao Wu
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaojing Liu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
24
|
Padder RA, Bhat ZI, Ahmad Z, Singh N, Husain M. DRP1 Promotes BRAF V600E-Driven Tumor Progression and Metabolic Reprogramming in Colorectal Cancer. Front Oncol 2021; 10:592130. [PMID: 33738242 PMCID: PMC7961078 DOI: 10.3389/fonc.2020.592130] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/30/2020] [Indexed: 12/12/2022] Open
Abstract
Background Mitochondria are highly dynamic organelles which remain in a continuous state of fission/ fusion dynamics to meet the metabolic needs of a cell. However, this fission/fusion dynamism has been reported to be dysregulated in most cancers. Such enhanced mitochondrial fission is demonstrated to be positively regulated by some activating oncogenic mutations; such as those of KRAS (Kristen rat sarcoma viral oncogene homologue) or BRAF (B- rapidly accelerated fibrosarcoma), thereby increasing tumor progression/ chemotherapeutic resistance and metabolic deregulation. However, the underlying mechanism(s) are still not clear, thus highlighting the need to further explore possible mechanism(s) of intervention. We sought to investigate how BRAFV600E driven CRC (colorectal cancer) progression is linked to mitochondrial fission/fusion dynamics and whether this window could be exploited to target CRC progression. Methods Western blotting was employed to study the differences in expression levels of key proteins regulating mitochondrial dynamics, which was further confirmed by confocal microscopy imaging of mitochondria in endogenously expressing BRAFWT and BRAFV600E CRC cells. Proliferation assays, soft agar clonogenic assays, glucose uptake/lactate production, ATP/ NADPH measurement assays were employed to study the extent of carcinogenesis and metabolic reprograming in BRAFV600E CRC cells. Genetic knockdown (shRNA/ siRNA) and/or pharmacologic inhibition of Dynamin related protein1/Pyruvate dehydrogenase kinase1 (DRP1/PDK1) and/or BRAFV600E were employed to study the involvement and possible mechanism of these proteins in BRAFV600E driven CRC. Statistical analyses were carried out using Graph Pad Prism v 5.0, data was analyzed by unpaired t-test and two-way ANOVA with appropriate post hoc tests. Results Our results demonstrate that BRAFV600E CRC cells have higher protein levels of mitochondrial fission factor- DRP1/pDRP1S616 leading to a more fragmented mitochondrial state compared to those harboring BRAFWT . This fragmented mitochondrial state was found to confer glycolytic phenotype, clonogenic potential and metastatic advantage to cells harboring BRAFV600E . Interestingly, such fragmented mitochondrial state seemed positively regulated by mitochondrial PDK1 as observed through pharmacologic as well as genetic inhibition of PDK1. Conclusion In conclusion, our data suggest that BRAFV600E driven colorectal cancers have fragmented mitochondria which confers glycolytic phenotype and growth advantage to these tumors, and such phenotype is dependent at least in part on PDK1- thus highlighting a potential therapeutic target.
Collapse
Affiliation(s)
- Rayees Ahmad Padder
- 409-Cancer Biology Laboratory, Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Zafar Iqbal Bhat
- Department of Zoology, PMB Gujrati Science College, Devi Ahilya Vishwavidyalaya, Indore, India
| | - Zaki Ahmad
- 409-Cancer Biology Laboratory, Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Neetu Singh
- Advanced Instrumentation Research Facility, Jawaharlal Nehru University, New Delhi, India
| | - Mohammad Husain
- 409-Cancer Biology Laboratory, Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
25
|
Díaz P, Sandoval-Bórquez A, Bravo-Sagua R, Quest AFG, Lavandero S. Perspectives on Organelle Interaction, Protein Dysregulation, and Cancer Disease. Front Cell Dev Biol 2021; 9:613336. [PMID: 33718356 PMCID: PMC7946981 DOI: 10.3389/fcell.2021.613336] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
In recent decades, compelling evidence has emerged showing that organelles are not static structures but rather form a highly dynamic cellular network and exchange information through membrane contact sites. Although high-throughput techniques facilitate identification of novel contact sites (e.g., organelle-organelle and organelle-vesicle interactions), little is known about their impact on cellular physiology. Moreover, even less is known about how the dysregulation of these structures impacts on cellular function and therefore, disease. Particularly, cancer cells display altered signaling pathways involving several cell organelles; however, the relevance of interorganelle communication in oncogenesis and/or cancer progression remains largely unknown. This review will focus on organelle contacts relevant to cancer pathogenesis. We will highlight specific proteins and protein families residing in these organelle-interfaces that are known to be involved in cancer-related processes. First, we will review the relevance of endoplasmic reticulum (ER)-mitochondria interactions. This section will focus on mitochondria-associated membranes (MAMs) and particularly the tethering proteins at the ER-mitochondria interphase, as well as their role in cancer disease progression. Subsequently, the role of Ca2+ at the ER-mitochondria interphase in cancer disease progression will be discussed. Members of the Bcl-2 protein family, key regulators of cell death, also modulate Ca2+ transport pathways at the ER-mitochondria interphase. Furthermore, we will review the role of ER-mitochondria communication in the regulation of proteostasis, focusing on the ER stress sensor PERK (PRKR-like ER kinase), which exerts dual roles in cancer. Second, we will review the relevance of ER and mitochondria interactions with other organelles. This section will focus on peroxisome and lysosome organelle interactions and their impact on cancer disease progression. In this context, the peroxisome biogenesis factor (PEX) gene family has been linked to cancer. Moreover, the autophagy-lysosome system is emerging as a driving force in the progression of numerous human cancers. Thus, we will summarize our current understanding of the role of each of these organelles and their communication, highlighting how alterations in organelle interfaces participate in cancer development and progression. A better understanding of specific organelle communication sites and their relevant proteins may help to identify potential pharmacological targets for novel therapies in cancer control.
Collapse
Affiliation(s)
- Paula Díaz
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Center for Studies on Exercise, Metabolism and Cancer (CEMC), Program of Cell and Molecular Biology, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
| | - Alejandra Sandoval-Bórquez
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Center for Studies on Exercise, Metabolism and Cancer (CEMC), Program of Cell and Molecular Biology, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
| | - Roberto Bravo-Sagua
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Santiago, Chile
| | - Andrew F G Quest
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Center for Studies on Exercise, Metabolism and Cancer (CEMC), Program of Cell and Molecular Biology, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile.,Corporación Centro de Estudios Científicos de las Enfermedades Crónicas (CECEC), Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Center for Studies on Exercise, Metabolism and Cancer (CEMC), Program of Cell and Molecular Biology, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile.,Corporación Centro de Estudios Científicos de las Enfermedades Crónicas (CECEC), Santiago, Chile.,Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
26
|
You MH, Jeon MJ, Kim SR, Lee WK, Cheng SY, Jang G, Kim TY, Kim WB, Shong YK, Kim WG. Mitofusin-2 modulates the epithelial to mesenchymal transition in thyroid cancer progression. Sci Rep 2021; 11:2054. [PMID: 33479369 PMCID: PMC7820342 DOI: 10.1038/s41598-021-81469-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/05/2021] [Indexed: 12/11/2022] Open
Abstract
Here, we investigated the potential roles of Mitofusin-2 (MFN2) in thyroid cancer progression. MFN2 regulates mitochondrial fusion/division in cells and plays an important role in various aspects of cell metabolism. MFN2 might involve in cell cycle regulation, apoptosis, and differentiation, and it might play a role as a tumor suppressor in carcinogenesis. We evaluated the prognostic impacts of MFN2 expression in thyroid cancer by analyzing TCGA data. In vitro and in vivo, MFN2 was knocked out using CRISPR/Cas9 or siRNA, and MFN2 was stably overexpressed in two thyroid cancer cell lines (Cal62 and HTH83). TCGA analysis revealed that MFN2 expression was lower in thyroid cancer than in normal tissues and significantly associated with a degree of differentiation, RAS mutations, and less lymph node metastasis. MFN2 expression was significantly correlated with cell adhesion molecules and epithelial to mesenchymal transition (EMT) in a gene-set enrichment assay. MFN2 knock-out (KO) in Cal62 and HTH83 cells using CRISPR/Cas9 or siRNA significantly promoted cell migration and invasion in vitro. The same trends were observed in MFN2 KO mouse embryonic fibroblasts (MEFs) compared to those in the controls (MFN2 WT MEFs). Conversely, MFN2 overexpression in cancer cell lines greatly inhibited cell migration and invasion. However, there was no difference in colony formation and proliferation in Cal62 and HTH83 cells after modulating MFN2, although there were significant differences between MFN KO and WT MEFs. EMT-associated protein expression was induced after MFN2 KO in both cancer cell lines. The mechanistic results suggest that MFN2 might modulate EMT through inducing the AKT signaling pathway. EMT-associated changes in protein expression were also confirmed by modulating MFN2 in xenograft tumors. Thus, MFN2 acts as a tumor suppressor in thyroid cancer progression and metastasis by modulating EMT.
Collapse
Affiliation(s)
- Mi-Hyeon You
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Min Ji Jeon
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Seong Ryeong Kim
- College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Woo Kyung Lee
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr., Bethesda, MD, 20892-4264, USA
| | - Sheue-Yann Cheng
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr., Bethesda, MD, 20892-4264, USA
| | - Goo Jang
- College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Tae Yong Kim
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Won Bae Kim
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Young Kee Shong
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Won Gu Kim
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea.
| |
Collapse
|
27
|
Li J, Xu MX, Dai Z, Xu T. Mitofusion 2 Overexpression Decreased Proliferation of Human Embryonic Lung Fibroblasts in Acute Respiratory Distress Syndrome through Inhibiting RAS-RAF-1-ERK1/2 Pathway. Curr Med Sci 2021; 40:1092-1098. [PMID: 33428137 DOI: 10.1007/s11596-020-2305-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 09/08/2020] [Indexed: 11/28/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is one of the most fatal diseases worldwide. Pulmonary fibrosis occurs early in ARDS, and its severity plays a crucial role in ARDS mortality rate. Some studies suggested that fibroproliferation is an essential mechanism in ARDS. Mitofusion2 (Mfn2) overexpression plays a role in inhibiting cell proliferation. However, the role and potential mechanism of Mfn2 on the proliferation of fibroblasts is still unknown. In this study, we aimed at exploring the effect of Mfn2 on the human embryonic lung fibroblasts (HELF) and discussed its related mechanism. The HELF were treated with the Mfn2 overexpressing lentivirus (adv-Mfn2). The cell cycle was detected by flow cytometry. MTT, PCR and Western blotting were used to investigate the effect of Mfn2 on the proliferation of the HELF, collagen expression, the RAS-RAF-1-ERK1/2 pathway and the expression of cycle-related proteins (p21, p27, Rb, Raf-1, p-Raf-1, Erk1/2 and p-Erk1/2). The co-immunoprecipitation assay was used to explore the interaction between Mfn2 and Ras. The results showed that the overexpression of Mfn2 inhibited the proliferation of the HELF and induced the cell cycle arrest at the G0/G1 phase. Meanwhile, Mfn2 also inhibited the expression of collagen I, p-Erk and p-Raf-1. In addition, an interaction between Mfn2 and Ras existed in the HELF. This study suggests that the overexpression of Mfn2 can decrease the proliferation of HELF in ARDS, which was associated with the inhibition of the RAS-RAF-1-ERK1/2 pathway. The results may offer a potential therapeutic intervention for patients with ARDS.
Collapse
Affiliation(s)
- Juan Li
- Department of Critical Care Medicine, Wuhan Fourth Hospital (Puai Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mei-Xia Xu
- Department of Critical Care Medicine, Wuhan Fourth Hospital (Puai Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhong Dai
- Department of Critical Care Medicine, Wuhan Fourth Hospital (Puai Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tao Xu
- Department of Critical Care Medicine, Wuhan Fourth Hospital (Puai Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
28
|
Zhang Q, Lv L, Ma P, Zhang Y, Deng J, Zhang Y. Identification of an Autophagy-Related Pair Signature for Predicting Prognoses and Immune Activity in Pancreatic Adenocarcinoma. Front Immunol 2021; 12:743938. [PMID: 34956177 PMCID: PMC8695429 DOI: 10.3389/fimmu.2021.743938] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/10/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Pancreatic adenocarcinoma (PAAD) spreads quickly and has a poor prognosis. Autophagy research on PAAD could reveal new biomarkers and targets for diagnosis and treatment. METHODS Autophagy-related genes were translated into autophagy-related gene pairs, and univariate Cox regression was performed to obtain overall survival (OS)-related IRGPs (P<0.001). LASSO Cox regression analyses were performed to construct an autophagy-related gene pair (ARGP) model for predicting OS. The Cancer Genome Atlas (TCGA)-PAAD cohort was set as the training group for model construction. The model predictive value was validated in multiple external datasets. Receiver operating characteristic (ROC) curves were used to evaluate model performance. Tumor microenvironments and immune infiltration were compared between low- and high-risk groups with ESTIMATE and CIBERSORT. Differentially expressed genes (DEGs) between the groups were further analyzed by Gene Ontology biological process (GO-BP) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses and used to identify potential small-molecule compounds in L1000FWD. RESULTS Risk scores were calculated as follows: ATG4B|CHMP4C×(-0.31) + CHMP2B|MAP1LC3B×(0.30) + CHMP6|RIPK2 ×(-0.33) + LRSAM1|TRIM5×(-0.26) + MAP1LC3A|PAFAH1B2×(-0.15) + MAP1LC3A|TRIM21×(-0.08) + MET|MFN2×(0.38) + MET|MTDH×(0.47) + RASIP1|TRIM5×(-0.23) + RB1CC1|TPCN1×(0.22). OS was significantly shorter in the high-risk group than the low-risk group in each PAAD cohort. The ESTIMATE analysis showed no difference in stromal scores but a significant difference in immune scores (p=0.0045) and ESTIMATE scores (p=0.014) between the groups. CIBERSORT analysis showed higher naive B cell, Treg cell, CD8 T cell, and plasma cell levels in the low-risk group and higher M1 and M2 macrophage levels in the high-risk group. In addition, the results showed that naive B cells (r=-0.32, p<0.001), Treg cells (r=-0.31, p<0.001), CD8 T cells (r=-0.24, p=0.0092), and plasma cells (r=-0.2, p<0.026) were statistically correlated with the ARGP risk score. The top 3 enriched GO-BPs were signal release, regulation of transsynaptic signaling, and modulation of chemical synaptic transmission, and the top 3 enriched KEGG pathways were the insulin secretion, dopaminergic synapse, and NF-kappa B signaling pathways. Several potential small-molecule compounds targeting ARGs were also identified. CONCLUSION Our results demonstrate that the ARGP-based model may be a promising prognostic indicator for identifying drug targets in patients with PAAD.
Collapse
Affiliation(s)
- Qian Zhang
- Institute of Health Service and Transfusion Medicine, Beijing, China
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, China
| | - Liping Lv
- Institute of Health Service and Transfusion Medicine, Beijing, China
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, China
| | - Ping Ma
- Institute of Health Service and Transfusion Medicine, Beijing, China
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, China
| | - Yangyang Zhang
- Institute of Health Service and Transfusion Medicine, Beijing, China
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, China
| | - Jiang Deng
- Institute of Health Service and Transfusion Medicine, Beijing, China
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, China
- *Correspondence: Jiang Deng, ; Yanyu Zhang,
| | - Yanyu Zhang
- Institute of Health Service and Transfusion Medicine, Beijing, China
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, China
- *Correspondence: Jiang Deng, ; Yanyu Zhang,
| |
Collapse
|
29
|
Gouriou Y, Alam MR, Harhous Z, Crola Da Silva C, Baetz DB, Badawi S, Lefai E, Rieusset J, Durand A, Harisseh R, Gharib A, Ovize M, Bidaux G. ANT2-Mediated ATP Import into Mitochondria Protects against Hypoxia Lethal Injury. Cells 2020; 9:cells9122542. [PMID: 33255741 PMCID: PMC7760820 DOI: 10.3390/cells9122542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/12/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022] Open
Abstract
Following a prolonged exposure to hypoxia–reoxygenation, a partial disruption of the ER-mitochondria tethering by mitofusin 2 (MFN2) knock-down decreases the Ca2+ transfer between the two organelles limits mitochondrial Ca2+ overload and prevents the Ca2+-dependent opening of the mitochondrial permeability transition pore, i.e., limits cardiomyocyte cell death. The impact of the metabolic changes resulting from the alteration of this Ca2+crosstalk on the tolerance to hypoxia–reoxygenation injury remains partial and fragmented between different field of expertise. >In this study, we report that MFN2 loss of function results in a metabolic switch driven by major modifications in energy production by mitochondria. During hypoxia, mitochondria maintain their ATP concentration and, concomitantly, the inner membrane potential by importing cytosolic ATP into mitochondria through an overexpressed ANT2 protein and by decreasing the expression and activity of the ATP hydrolase via IF1. This adaptation further blunts the detrimental hyperpolarisation of the inner mitochondrial membrane (IMM) upon re-oxygenation. These metabolic changes play an important role to attenuate cell death during a prolonged hypoxia–reoxygenation challenge.
Collapse
Affiliation(s)
- Yves Gouriou
- Univ-Lyon, CarMeN Laboratory, INSERM 1060, INRA 1397, Université Claude Bernard Lyon1, INSA Lyon, Oullins, France, IHU OPERA, Groupement Hospitalier EST, Bâtiment B13, 59 boulevard Pinel, F-69500 Bron, France; (M.R.A.); (Z.H.); (C.C.D.S.); (D.B.B.); (S.B.); (E.L.); (J.R.); (A.D.); (R.H.); (A.G.); (M.O.)
- Correspondence: (Y.G.); (G.B.)
| | - Muhammad Rizwan Alam
- Univ-Lyon, CarMeN Laboratory, INSERM 1060, INRA 1397, Université Claude Bernard Lyon1, INSA Lyon, Oullins, France, IHU OPERA, Groupement Hospitalier EST, Bâtiment B13, 59 boulevard Pinel, F-69500 Bron, France; (M.R.A.); (Z.H.); (C.C.D.S.); (D.B.B.); (S.B.); (E.L.); (J.R.); (A.D.); (R.H.); (A.G.); (M.O.)
- Department of Biochemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Zeina Harhous
- Univ-Lyon, CarMeN Laboratory, INSERM 1060, INRA 1397, Université Claude Bernard Lyon1, INSA Lyon, Oullins, France, IHU OPERA, Groupement Hospitalier EST, Bâtiment B13, 59 boulevard Pinel, F-69500 Bron, France; (M.R.A.); (Z.H.); (C.C.D.S.); (D.B.B.); (S.B.); (E.L.); (J.R.); (A.D.); (R.H.); (A.G.); (M.O.)
- Gilbert and Rose-Marie Chagoury, School of Medicine, Lebanese American University, Byblos 4M8F+8X, Lebanon
| | - Claire Crola Da Silva
- Univ-Lyon, CarMeN Laboratory, INSERM 1060, INRA 1397, Université Claude Bernard Lyon1, INSA Lyon, Oullins, France, IHU OPERA, Groupement Hospitalier EST, Bâtiment B13, 59 boulevard Pinel, F-69500 Bron, France; (M.R.A.); (Z.H.); (C.C.D.S.); (D.B.B.); (S.B.); (E.L.); (J.R.); (A.D.); (R.H.); (A.G.); (M.O.)
| | - Delphine Baetz Baetz
- Univ-Lyon, CarMeN Laboratory, INSERM 1060, INRA 1397, Université Claude Bernard Lyon1, INSA Lyon, Oullins, France, IHU OPERA, Groupement Hospitalier EST, Bâtiment B13, 59 boulevard Pinel, F-69500 Bron, France; (M.R.A.); (Z.H.); (C.C.D.S.); (D.B.B.); (S.B.); (E.L.); (J.R.); (A.D.); (R.H.); (A.G.); (M.O.)
| | - Sally Badawi
- Univ-Lyon, CarMeN Laboratory, INSERM 1060, INRA 1397, Université Claude Bernard Lyon1, INSA Lyon, Oullins, France, IHU OPERA, Groupement Hospitalier EST, Bâtiment B13, 59 boulevard Pinel, F-69500 Bron, France; (M.R.A.); (Z.H.); (C.C.D.S.); (D.B.B.); (S.B.); (E.L.); (J.R.); (A.D.); (R.H.); (A.G.); (M.O.)
| | - Etienne Lefai
- Univ-Lyon, CarMeN Laboratory, INSERM 1060, INRA 1397, Université Claude Bernard Lyon1, INSA Lyon, Oullins, France, IHU OPERA, Groupement Hospitalier EST, Bâtiment B13, 59 boulevard Pinel, F-69500 Bron, France; (M.R.A.); (Z.H.); (C.C.D.S.); (D.B.B.); (S.B.); (E.L.); (J.R.); (A.D.); (R.H.); (A.G.); (M.O.)
| | - Jennifer Rieusset
- Univ-Lyon, CarMeN Laboratory, INSERM 1060, INRA 1397, Université Claude Bernard Lyon1, INSA Lyon, Oullins, France, IHU OPERA, Groupement Hospitalier EST, Bâtiment B13, 59 boulevard Pinel, F-69500 Bron, France; (M.R.A.); (Z.H.); (C.C.D.S.); (D.B.B.); (S.B.); (E.L.); (J.R.); (A.D.); (R.H.); (A.G.); (M.O.)
| | - Annie Durand
- Univ-Lyon, CarMeN Laboratory, INSERM 1060, INRA 1397, Université Claude Bernard Lyon1, INSA Lyon, Oullins, France, IHU OPERA, Groupement Hospitalier EST, Bâtiment B13, 59 boulevard Pinel, F-69500 Bron, France; (M.R.A.); (Z.H.); (C.C.D.S.); (D.B.B.); (S.B.); (E.L.); (J.R.); (A.D.); (R.H.); (A.G.); (M.O.)
| | - Rania Harisseh
- Univ-Lyon, CarMeN Laboratory, INSERM 1060, INRA 1397, Université Claude Bernard Lyon1, INSA Lyon, Oullins, France, IHU OPERA, Groupement Hospitalier EST, Bâtiment B13, 59 boulevard Pinel, F-69500 Bron, France; (M.R.A.); (Z.H.); (C.C.D.S.); (D.B.B.); (S.B.); (E.L.); (J.R.); (A.D.); (R.H.); (A.G.); (M.O.)
| | - Abdallah Gharib
- Univ-Lyon, CarMeN Laboratory, INSERM 1060, INRA 1397, Université Claude Bernard Lyon1, INSA Lyon, Oullins, France, IHU OPERA, Groupement Hospitalier EST, Bâtiment B13, 59 boulevard Pinel, F-69500 Bron, France; (M.R.A.); (Z.H.); (C.C.D.S.); (D.B.B.); (S.B.); (E.L.); (J.R.); (A.D.); (R.H.); (A.G.); (M.O.)
| | - Michel Ovize
- Univ-Lyon, CarMeN Laboratory, INSERM 1060, INRA 1397, Université Claude Bernard Lyon1, INSA Lyon, Oullins, France, IHU OPERA, Groupement Hospitalier EST, Bâtiment B13, 59 boulevard Pinel, F-69500 Bron, France; (M.R.A.); (Z.H.); (C.C.D.S.); (D.B.B.); (S.B.); (E.L.); (J.R.); (A.D.); (R.H.); (A.G.); (M.O.)
| | - Gabriel Bidaux
- Univ-Lyon, CarMeN Laboratory, INSERM 1060, INRA 1397, Université Claude Bernard Lyon1, INSA Lyon, Oullins, France, IHU OPERA, Groupement Hospitalier EST, Bâtiment B13, 59 boulevard Pinel, F-69500 Bron, France; (M.R.A.); (Z.H.); (C.C.D.S.); (D.B.B.); (S.B.); (E.L.); (J.R.); (A.D.); (R.H.); (A.G.); (M.O.)
- Correspondence: (Y.G.); (G.B.)
| |
Collapse
|
30
|
Lam HYP, Chen CC, Chen TTW, Chang KC, Wu WJ, Yang TH, Liang TR, Cheng PC, Peng SY. Mitochondrial dynamics in Angiostrongylus cantonensis-infected mouse brain. Parasitol Int 2020; 80:102231. [PMID: 33147498 DOI: 10.1016/j.parint.2020.102231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 11/15/2022]
Abstract
Angiostrongylus cantonensis is one of the most widespread parasites causing central nervous system (CNS) diseases in mammals. Since the mitochondrion is an essential cell organelle responsible for both physiological and pathological processes, its dysfunction might lead to inflammation and multiple disorders. In this study we aimed to investigate the changes in mitochondrial dynamics that occur in the mouse brain upon infection with A. cantonensis, using molecular biology techniques such as polymerase chain reaction (PCR), western blot analysis, transmission electron microscopy (TEM), and different staining methods. Here, we show that mouse brain infected with A. cantonensis exhibits altered mitochondrial dynamics, including fission, fusion, and biogenesis. Additionally, we demonstrate that caspases and B-cell lymphoma 2 (BCL-2) were significantly upregulated in A. cantonensis-infected brain. These results are indicative of the occurrence of apoptosis during A. cantonensis infection, which was further confirmed by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. These findings suggest the change in mitochondrial dynamics in A. cantonensis-infected brain, providing another point of view on the pathogenesis of meningoencephalitis caused by A. cantonensis infection.
Collapse
Affiliation(s)
- Ho Yin Pekkle Lam
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan; Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan
| | - Cheng-Chi Chen
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, Taiwan; Department of Laboratory Medicine, Hualien Hospital, Ministry of Health and Welfare, Hualien, Taiwan
| | - Tina Tu-Wen Chen
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Kai-Chih Chang
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wen-Jui Wu
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ting-Hua Yang
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ting-Ruei Liang
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Po-Ching Cheng
- Department of Molecular Parasitology and Tropical Diseases, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Shih-Yi Peng
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan; Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan.
| |
Collapse
|
31
|
Wang J, Zhang B, Liu H, Wu Q, Gao P, Zou Y, Lan Y, Zhang Q. Hyperplasia suppressor gene inhibits the proliferation and metastasis of glioma cells by targeting rho family proteins. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:1349-1360. [PMID: 32661470 PMCID: PMC7344015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
AIM To investigate the effect of the hyperplasia suppressor gene (HSG) on human glioma cell invasion and its possible mechanism. METHODS Human glioma U251 cells were infected with recombinant viral vectors carrying the HSG gene sequence (HSG overexpression group) and HSG interference sequence (HSG suppression group). The negative control group with no-load virus transcription and a blank control group with only PBS treatment were set up. CCK-8 assay, cell scratch healing test, transwell migration, and invasion test were used to detect the effect of HSG expression on proliferation, migration and invasion of U251 glioma cells. Cell immunofluorescence and cell adhesion test were used to analyze the effect of HSG expression on cytoskeleton formation and adhesion ability of U251 cells. Gene chip technology was employed to preliminarily explore the effect of HSG expression change on the inherent gene expression in U251 cells. The expression of Rho family key molecule mRNA and protein was detected by light quantitative PCR and western blot. RESULTS After 24 h of transcription with the recombinant virus vector, the cells showed a green color under an inverted fluorescence microscope. HSG expression increased in the HSG overexpression group (P < 0.01), and decreased in the HSG inhibition group (P < 0.01). Compared with the two control groups, the proliferation, scratch healing rate, migrating cell number, invasive cell number and adhesion cell number in the HSG overexpression group were markedly lower. After HSG overexpression, the morphology of U251 cells changed; filamentous pseudopods shortened and partially flaked. However, after HSG inhibition, the pseudopods grew toward both ends and were arranged axially. The overexpression of HSG inhibited the expression of rho family proteins (RhoA, Rock1, Rock2, Rac1, and Cdc42). CONCLUSION The overexpression of HSG inhibits the progression of glioma U251 cells by regulating the expression of rho family proteins.
Collapse
Affiliation(s)
- Juncheng Wang
- Department of Neurosurgery, People’s Hospital of Ningxia Hui Autonomous RegionYinchuan 750001, Ningxia, China
| | - Bin Zhang
- Department of Neurosurgery, General Hospital of Ningxia Medical UniversityYinchuan 750001, Ningxia, China
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical UniversityYinchuan 750001, Ningxia, China
| | - Haibo Liu
- Department of Neurosurgery, General Hospital of Ningxia Medical UniversityYinchuan 750001, Ningxia, China
| | - Qiao Wu
- Department of Neurosurgery, Fuzhou First People’s HospitalFuzhoou 350000, Fujian, China
| | - Peng Gao
- Department of Neurosurgery, People’s Hospital of Ningxia Hui Autonomous RegionYinchuan 750001, Ningxia, China
- Department of Neurosurgery, General Hospital of Ningxia Medical UniversityYinchuan 750001, Ningxia, China
| | - Yourui Zou
- Department of Neurosurgery, General Hospital of Ningxia Medical UniversityYinchuan 750001, Ningxia, China
| | - Yanping Lan
- Department of Neurosurgery, People’s Hospital of Ningxia Hui Autonomous RegionYinchuan 750001, Ningxia, China
| | - Qinghua Zhang
- Department of Neurosurgery, Xiehe Shenzhen Hospital of Huazhong University of Science and Technology (Nanshan Hospital)Shenzhen 518000, Guangdong, China
| |
Collapse
|
32
|
Tang T, Tao X, Bao X, Chen J, Dai J, Ye J, Yan Y. Mitofusin-2 (Mfn-2) Might Have Anti-Cancer Effect through Interaction with Transcriptional Factor SP1 and Consequent Regulation on Phosphatidylinositol Transfer Protein 3 (PITPNM3) Expression. Med Sci Monit 2020; 26:e918599. [PMID: 31955176 PMCID: PMC6988473 DOI: 10.12659/msm.918599] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/16/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The aim of this study was to explore the influence of mitofusin-2 (Mfn-2) on phosphatidylinositol transfer protein 3 (PITPNM3) and tumor growth and the potential mechanism behind the regulation of Mfn-2 on PITPNM3 in hepatic carcinoma cell line SMMC-7721. MATERIAL AND METHODS We obtained promoter sequence of PITPNM3 gene from University of Santa Cruz (UCSC) genomic database, and we predict transcriptional factor of PITPNM3 genes by JASPAR database. Target transcription factor was determined by comparison of binding sites number for promoter. SMMC-7721 cells were transfected with expression plasmid containing Mfn-2, transcription factor gene and PITPNM3. The cells transfected with empty vector were used as control. Real-time polymerase chain reaction was used to determine the mRNA level of target genes. Co-immunoprecipitation (Co-IP) assay was used to determine the interaction between Mfn-2 and target transcription factor. Chromatin immunoprecipitation assay (ChIP) assay was used to determine the binding of transcription factor with PITPNM3 promoter. Tumorigenicity assay was used to compare the effect of Mfn-2, SP1, and PITPNM3 on tumor development. RESULTS SP1 was selected as the target transcriptional factor. In the Co-IP assay, Mfn-2 was shown to interact with SP1. In the ChIP assay Mfn-2 transfection resulted in decreased binding number of SP1 with PITPNM3 promoter. Furthermore, PITPNM3 mRNA levels were significantly increased in SMMC-7721 cells transfected with SP1 but were decreased after transfection with Mfn-2. In nude mice, PITPNM3 and SP1 upregulation lead to larger tumor lump and conversely Mfn-2 upregulation lead to smaller tumor lump. CONCLUSIONS Mfn-2 could suppress expression of PITPNM3 through interaction with transcription factor SP1; Mfn-2 may have anti-tumor activity; SP1 and PITPNM3 may promote tumor development.
Collapse
|
33
|
Xue R, Zhu X, Jia L, Wu J, Yang J, Zhu Y, Meng Q. Mitofusin2, a rising star in acute-on-chronic liver failure, triggers macroautophagy via the mTOR signalling pathway. J Cell Mol Med 2019; 23:7810-7818. [PMID: 31557386 PMCID: PMC6815802 DOI: 10.1111/jcmm.14658] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/22/2019] [Accepted: 08/11/2019] [Indexed: 02/06/2023] Open
Abstract
Acute-on-chronic liver failure (ACLF) is a life-threatening syndrome with poor prognosis. Several studies have begun to prove that mitochondria play a crucial role in liver failure. Mitofusin2 (Mfn2) plays a key role in maintaining the integrity of mitochondrial morphology and function. However, the role and underlying mechanisms of Mfn2 on cell autophagy of ACLF remain unclear. Our aim was to explore the effect of Mfn2 on several biological functions involving cell autophagy in ACLF. In this study, we constructed an ACLF animal model and a hepatocyte autophagy model, using adenovirus and lentivirus to deliver Mfn2 to liver cells, in order to assess the effect of Mfn2 on autophagy and apoptosis in ACLF. Furthermore, we explored the biological mechanism of Mfn2-induced autophagy of ACLF using Western blotting, RT-PCR and electron microscopy. We found that Mfn2 significantly attenuated ACLF, characterized by ameliorated gross appearance and microscopic histopathology of liver, and reduced serum AST, ALT, and TBIL levels. Mfn2 improved the expressions of LC3-II, Atg5 and Bcl-2 and down-regulated the expression of P62 and Bax in ACLF. Like rapamycin, Mfn2 also significantly inhibited the expressions of p-PI3K, p-Akt and p-mTOR in ACLF. In conclusion, our findings suggest that Mfn2 influences multiple biological functions of ACLF via the PI3K/Akt/mTOR signalling pathway. This study will provide a reliable theoretical basis for the application of Mfn2 as an effective target for ACLF treatment, reversing or delaying the process of ACLF.
Collapse
Affiliation(s)
- Ran Xue
- Department of Critical Care Medicine of Liver DiseaseBeijing You‐An HospitalCapital Medical UniversityBeijingChina
| | - Xuemin Zhu
- Department of Critical Care Medicine of Liver DiseaseBeijing You‐An HospitalCapital Medical UniversityBeijingChina
| | - Lin Jia
- Department of Critical Care Medicine of Liver DiseaseBeijing You‐An HospitalCapital Medical UniversityBeijingChina
| | - Jing Wu
- Department of Critical Care Medicine of Liver DiseaseBeijing You‐An HospitalCapital Medical UniversityBeijingChina
| | - Jing Yang
- Department of Critical Care Medicine of Liver DiseaseBeijing You‐An HospitalCapital Medical UniversityBeijingChina
| | - Yueke Zhu
- Department of Critical Care Medicine of Liver DiseaseBeijing You‐An HospitalCapital Medical UniversityBeijingChina
| | - Qinghua Meng
- Department of Critical Care Medicine of Liver DiseaseBeijing You‐An HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
34
|
What sustains the multidrug resistance phenotype beyond ABC efflux transporters? Looking beyond the tip of the iceberg. Drug Resist Updat 2019; 46:100643. [PMID: 31493711 DOI: 10.1016/j.drup.2019.100643] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/18/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022]
Abstract
Identification of multidrug (MDR) efflux transporters that belong to the ATP-Binding Cassette (ABC) superfamily, represented an important breakthrough for understanding cancer multidrug resistance (MDR) and its possible overcoming. However, recent data indicate that drug resistant cells have a complex intracellular physiology that involves constant changes in energetic and oxidative-reductive metabolic pathways, as well as in the molecular circuitries connecting mitochondria, endoplasmic reticulum (ER) and lysosomes. The aim of this review is to discuss the key molecular mechanisms of cellular reprogramming that induce and maintain MDR, beyond the presence of MDR efflux transporters. We specifically highlight how cancer cells characterized by high metabolic plasticity - i.e. cells able to shift the energy metabolism between glycolysis and oxidative phosphorylation, to survive both the normoxic and hypoxic conditions, to modify the cytosolic and mitochondrial oxidative-reductive metabolism, are more prone to adapt to exogenous stressors such as anti-cancer drugs and acquire a MDR phenotype. Similarly, we discuss how changes in mitochondria dynamics and mitophagy rates, changes in proteome stability ensuring non-oncogenic proteostatic mechanisms, changes in ubiquitin/proteasome- and autophagy/lysosome-related pathways, promote the cellular survival under stress conditions, along with the acquisition or maintenance of MDR. After dissecting the complex intracellular crosstalk that takes place during the development of MDR, we suggest that mapping the specific adaptation pathways underlying cell survival in response to stress and targeting these pathways with potent pharmacologic agents may be a new approach to enhance therapeutic efficacy against MDR tumors.
Collapse
|
35
|
Breast cancer invasion and progression by MMP-9 through Ets-1 transcription factor. Gene 2019; 711:143952. [DOI: 10.1016/j.gene.2019.143952] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 01/08/2023]
|
36
|
Pang G, Xie Q, Yao J. Mitofusin 2 inhibits bladder cancer cell proliferation and invasion via the Wnt/β-catenin pathway. Oncol Lett 2019; 18:2434-2442. [PMID: 31402945 PMCID: PMC6676712 DOI: 10.3892/ol.2019.10570] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 04/12/2019] [Indexed: 12/15/2022] Open
Abstract
The present study aimed to investigate the biological role of the mitochondrial GTPase mitofusin-2 (MFN2) in bladder cancer. MFN2 mRNA expression in tumor and paired adjacent non-tumor tissues from 8 patients was investigated using reverse transcription-quantitative polymerase chain reaction analysis. Immunohistochemistry was used to investigate MFN2 expression in 117 bladder cancer specimens. The associations of MFN2 expression with clinicopathological parameters were evaluated statistically. In addition, the biological role of MFN2 in the proliferation, migration and invasion of bladder cancer cells was examined. It was identified that MFN2 expression was significantly downregulated in bladder cancer tissues compared with normal tissues. MFN2 expression was associated with tumor stage, tumor grade and lymph node status. Furthermore, patients with low MFN2 expression demonstrated a shorter overall survival time (P=0.025). MFN2 knockdown by small interfering RNA promoted cancer cell proliferation, migration and invasion in vitro, and enhanced tumor progression in vivo. Mechanistically, MFN2 was revealed to be involved in Wnt/β-catenin signaling. In conclusion, MFN2 may serve as a potential therapeutic target in the treatment of bladder cancer, and the progress of bladder cancer may be delayed by regulating MFN2 expression.
Collapse
Affiliation(s)
- Guofu Pang
- Department of Urology, Zhuhai People's Hospital, Zhuhai, Guangdong 519000, P.R. China
| | - Qun Xie
- Department of Urology, Zhuhai People's Hospital, Zhuhai, Guangdong 519000, P.R. China
| | - Juanjuan Yao
- Department of Urology, Zhuhai People's Hospital, Zhuhai, Guangdong 519000, P.R. China
| |
Collapse
|
37
|
Jagust P, de Luxán-Delgado B, Parejo-Alonso B, Sancho P. Metabolism-Based Therapeutic Strategies Targeting Cancer Stem Cells. Front Pharmacol 2019; 10:203. [PMID: 30967773 PMCID: PMC6438930 DOI: 10.3389/fphar.2019.00203] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/18/2019] [Indexed: 02/02/2023] Open
Abstract
Cancer heterogeneity constitutes the major source of disease progression and therapy failure. Tumors comprise functionally diverse subpopulations, with cancer stem cells (CSCs) as the source of this heterogeneity. Since these cells bear in vivo tumorigenicity and metastatic potential, survive chemotherapy and drive relapse, its elimination may be the only way to achieve long-term survival in patients. Thanks to the great advances in the field over the last few years, we know now that cellular metabolism and stemness are highly intertwined in normal development and cancer. Indeed, CSCs show distinct metabolic features as compared with their more differentiated progenies, though their dominant metabolic phenotype varies across tumor entities, patients and even subclones within a tumor. Following initial works focused on glucose metabolism, current studies have unveiled particularities of CSC metabolism in terms of redox state, lipid metabolism and use of alternative fuels, such as amino acids or ketone bodies. In this review, we describe the different metabolic phenotypes attributed to CSCs with special focus on metabolism-based therapeutic strategies tested in preclinical and clinical settings.
Collapse
Affiliation(s)
- Petra Jagust
- Centre for Stem Cells in Cancer and Ageing, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Beatriz de Luxán-Delgado
- Centre for Stem Cells in Cancer and Ageing, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Beatriz Parejo-Alonso
- Traslational Research Unit, Hospital Universitario Miguel Servet, Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain
| | - Patricia Sancho
- Centre for Stem Cells in Cancer and Ageing, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.,Traslational Research Unit, Hospital Universitario Miguel Servet, Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain
| |
Collapse
|
38
|
Braganza A, Quesnelle K, Bickta J, Reyes C, Wang Y, Jessup M, St Croix C, Arlotti J, Singh SV, Shiva S. Myoglobin induces mitochondrial fusion, thereby inhibiting breast cancer cell proliferation. J Biol Chem 2019; 294:7269-7282. [PMID: 30872402 DOI: 10.1074/jbc.ra118.006673] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/21/2019] [Indexed: 01/11/2023] Open
Abstract
Myoglobin is a monomeric heme protein expressed ubiquitously in skeletal and cardiac muscle and is traditionally considered to function as an oxygen reservoir for mitochondria during hypoxia. It is now well established that low concentrations of myoglobin are aberrantly expressed in a significant proportion of breast cancer tumors. Despite being expressed only at low levels in these tumors, myoglobin is associated with attenuated tumor growth and a better prognosis in breast cancer patients, but the mechanism of this myoglobin-mediated protection against further cancer growth remains unclear. Herein, we report a signaling pathway by which myoglobin regulates mitochondrial dynamics and thereby decreases cell proliferation. We demonstrate in vitro that expression of human myoglobin in MDA-MB-231, MDA-MB-468, and MCF7 breast cancer cells induces mitochondrial hyperfusion by up-regulating mitofusins 1 and 2, the predominant catalysts of mitochondrial fusion. This hyperfusion causes cell cycle arrest and subsequent inhibition of cell proliferation. Mechanistically, increased mitofusin expression was due to myoglobin-dependent free-radical production, leading to the oxidation and degradation of the E3 ubiquitin ligase parkin. We recapitulated this pathway in a murine model in which myoglobin-expressing xenografts exhibited decreased tumor volume with increased mitofusin, markers of cell cycle arrest, and decreased parkin expression. Furthermore, in human triple-negative breast tumor tissues, mitofusin and myoglobin levels were positively correlated. Collectively, these results elucidate a new function for myoglobin as a modulator of mitochondrial dynamics and reveal a novel pathway by which myoglobin decreases breast cancer cell proliferation and tumor growth by up-regulating mitofusin levels.
Collapse
Affiliation(s)
| | | | - Janelle Bickta
- the Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pennsylvania 15261
| | - Christopher Reyes
- the Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pennsylvania 15261
| | - Yinna Wang
- From the Vascular Medicine Institute and
| | | | | | - Julie Arlotti
- Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, and.,University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15232
| | - Shivendra V Singh
- Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, and.,University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15232
| | - Sruti Shiva
- From the Vascular Medicine Institute and .,Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, and.,Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
39
|
Dai W, Jiang L. Dysregulated Mitochondrial Dynamics and Metabolism in Obesity, Diabetes, and Cancer. Front Endocrinol (Lausanne) 2019; 10:570. [PMID: 31551926 PMCID: PMC6734166 DOI: 10.3389/fendo.2019.00570] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 08/05/2019] [Indexed: 12/21/2022] Open
Abstract
Metabolism describes the life-sustaining chemical reactions in organisms that provide both energy and building blocks for cellular survival and proliferation. Dysregulated metabolism leads to many life-threatening diseases including obesity, diabetes, and cancer. Mitochondria, subcellular organelles, contain the central energy-producing metabolic pathway, the tricarboxylic acid (TCA) cycle. Also, mitochondria exist in a dynamic network orchestrated by extracellular nutrient levels and intracellular energy needs. Upon stimulation, mitochondria undergo consistent interchange through fusion (small to big) and fission (big to small) processes. Mitochondrial fusion is primarily controlled by three GTPases, mitofusin 1 (Mfn1), Mfn2, and optic atrophy 1 (Opa1), while mitochondrial fission is primarily regulated by GTPase dynamin-related protein 1 (Drp1). Dysregulated activity of these GTPases results in disrupted mitochondrial dynamics and cellular metabolism. This review will update the metabolic roles of these GTPases in obesity, diabetes, and cancer.
Collapse
Affiliation(s)
- Wenting Dai
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute, Duarte, CA, United States
| | - Lei Jiang
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute, Duarte, CA, United States
- Comprehensive Cancer Center, City of Hope Medical Center, Duarte, CA, United States
- *Correspondence: Lei Jiang
| |
Collapse
|
40
|
Allegra A, Innao V, Allegra AG, Musolino C. Relationship between mitofusin 2 and cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 116:209-236. [PMID: 31036292 DOI: 10.1016/bs.apcsb.2018.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mitochondria are dynamic organelles whose actions are fundamental for cell viability. Within the cell, the mitochondrial system is incessantly modified via the balance between fusion and fission processes. Among other proteins, mitofusin 2 is a central protagonist in all these mitochondrial events (fusion, trafficking, contacts with other organelles), the balance of which causes the correct mitochondrial action, shape, and distribution within the cell. Here we examine the structural and functional characteristics of mitofusin 2, underlining its essential role in numerous intracellular pathways, as well as in the pathogenesis of cancer.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Messina, Italy.
| | - Vanessa Innao
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Messina, Italy
| | - Andrea Gaetano Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Messina, Italy
| | - Caterina Musolino
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Messina, Italy
| |
Collapse
|
41
|
Wang X, Liu Y, Sun J, Gong W, Sun P, Kong X, Yang M, Zhang W. Mitofusin-2 acts as biomarker for predicting poor prognosis in hepatitis B virus related hepatocellular carcinoma. Infect Agent Cancer 2018; 13:36. [PMID: 30498519 PMCID: PMC6258311 DOI: 10.1186/s13027-018-0212-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/15/2018] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE To investigate the expression of Mitofusin-2 (MFN2) in HCC tissues and its role in the development of HCC. METHODS A total of 107 HCC specimens were collected for tissue microarray analysis and immunohistochemistry (IHC) analysis. The relationship between MFN2 expression and clinical features of patients with HCC was analyzed. RESULTS Expression level of MFN2 in HCC tissues was 0.92 ± 0.78, significantly lower than that of matched paracancerous liver tissues (1.25 ± 0.75). Patients with low expression of MFN2 had significantly higher rates of cirrhosis than those with high expression of MFN2 (P = 0.049). Kaplan-Meier survival analysis showed that HCC patients with low expression of MFN2 had a worse prognosis in overall survival than HCC patients with high expression of MFN2 (P = 0.027). Patients with high expression of MFN2 had a better prognosis in disease-free survival compared with HCC patients with low expression of MFN2 (P = 0.047). Vascular invasion and MFN2 expression were shown to be prognostic variables for overall survival in patients with HCC. Multivariate analysis showed that vascular invasion (P < 0.001) and MFN2 expression (P = 0.045) were independent prognostic factors for overall survival. Vascular invasion (P < 0.001) and MFN2 expression (P = 0.042) were independent risk factors associated with disease-free survival. CONCLUSION Our data revealed that MFN2 expression was decreased in HCC samples. High MFN2 expression was correlated with longer survival times in patients with HCC and served as an independent factor for better outcomes. Our study therefore provides a promising biomarker for the prognostic prediction of HCC and a potential therapeutic target for the disease.
Collapse
Affiliation(s)
- Xiumei Wang
- Department of Oncology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000 People’s Republic of China
| | - Youde Liu
- Department of Hepatology, Infectious Disease Hospital of Yantai City, Yantai, Shandong 264001 People’s Republic of China
| | - Jing Sun
- Department of Hepatology, Infectious Disease Hospital of Yantai City, Yantai, Shandong 264001 People’s Republic of China
| | - Wenjing Gong
- Department of Oncology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000 People’s Republic of China
| | - Ping Sun
- Department of Oncology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000 People’s Republic of China
| | - Xiangshuo Kong
- Department of Oncology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000 People’s Republic of China
| | - Miaomiao Yang
- Department of Oncology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000 People’s Republic of China
| | - Weiwei Zhang
- Department of Oncology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000 People’s Republic of China
| |
Collapse
|
42
|
Shenqi Fuzheng Injection Reverses Cisplatin Resistance through Mitofusin-2-Mediated Cell Cycle Arrest and Apoptosis in A549/DDP Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:8258246. [PMID: 30410558 PMCID: PMC6206574 DOI: 10.1155/2018/8258246] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 09/03/2018] [Accepted: 09/20/2018] [Indexed: 02/07/2023]
Abstract
The goal of this evaluation was to examine the mechanisms of Shenqi Fuzheng injection (SFI), an extract made from the plants Radix Astragali and Radix Codonopsis, in the process of chemotherapy sensitivity in non-small-cell lung cancer (NSCLC) cells. We investigated the expression of mitofusin-2 (Mfn2), a mitochondrial GTPase that may be related to chemoresistance, and found that Mfn2 expression was lower in human cisplatin-resistant lung carcinoma A549/DDP cells than in cisplatin-susceptible A549 cells. Chemosensitivity to cisplatin was restored in A549/DDP cells following supplementation in conjunction with SFI treatment, the effect of which we evaluated via cell cycle, apoptosis, and cell signaling analysis. We found that the combined use of A549/DDP cells with SFI and cisplatin enhanced cell cycle arrested in the G2/M phase, which was accompanied by upregulation of p53 and p21 protein expression and induced mitochondrial apoptosis in conjunction with the upregulation of Bax and the downregulation of Bcl-2 protein expression. Moreover, cell cycle arrest and mitochondrial apoptosis coincided with the upregulation of Mfn2 expression, which, in turn, was related to the increased mitochondrial membrane permeabilization and elevated reactive oxygen species. In summary, our findings suggest that the effect of SFI in increasing chemotherapy sensitivity in cisplatin resistance of NSCLCs occurs through cell cycle arrest and the initiation of mitochondrial apoptosis involved in the upregulation of Mfn2 expression.
Collapse
|
43
|
Positive feedback loop between mitochondrial fission and Notch signaling promotes survivin-mediated survival of TNBC cells. Cell Death Dis 2018; 9:1050. [PMID: 30323195 PMCID: PMC6189045 DOI: 10.1038/s41419-018-1083-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 07/31/2018] [Accepted: 08/20/2018] [Indexed: 12/20/2022]
Abstract
Mitochondrial morphology is remodeled by continuous dynamic cycles of fission and fusion. Emerging data have shown that the disturbance of balance between mitochondrial fission and fusion is involved in the progression of several types of neoplasms. However, the status of mitochondrial dynamics and its potential biological roles in breast cancer (BC), particularly in triple negative BC (TNBC) are not fully clear. Here, we reported that the mitochondrial fission was significantly increased in BC tissues, especially in the TNBC tissues, when compared with that in the corresponding peritumor tissues. Meanwhile, our data showed that Drp1 was upregulated, while Mfn1 was downregulated in TNBC. Moreover, elevated mitochondrial fission was associated with poorer prognosis in TNBC patients. Mitochondrial fission promoted the survival of TNBC cells both in vitro and in vivo. Furthermore, we identified a positive feedback loop between mitochondrial fission and Notch signaling pathway in TNBC cells, as proved by the experimental evidence that the activation of Notch signaling enhanced Drp1-mediated mitochondrial fission and Drp1-mediated mitochondrial fission in turn promoted the activation of Notch signaling, which ultimately promoted the cell survival of TNBC via increasing survivin expression level. Inhibition of either Notch1 or Drp1 significantly impaired the activation of the other, leading to the suppression of TNBC cell survival and proliferation. Collectively, our data reveal a novel mechanism that the positive feedback loop between mitochondrial fission and Notch signaling promotes the survival, proliferation and apoptotic resistance of TNBC cells via increasing survivin expression and thus favors cancer progression.
Collapse
|
44
|
In vivo and in vitro effects of hyperplasia suppressor gene on the proliferation and apoptosis of lung adenocarcinoma A549 cells. Biosci Rep 2018; 38:BSR20180391. [PMID: 30061179 PMCID: PMC6167497 DOI: 10.1042/bsr20180391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/28/2018] [Accepted: 07/30/2018] [Indexed: 01/28/2023] Open
Abstract
Lung adenocarcinoma is the most common subtype of non-small cell lung cancer (NSCLC). Hyperplasia suppressor gene (HSG) has been reported to inhibit cell proliferation, migration, and remodeling in cardiovascular diseases. However, there lacks systematic researches on the effect of HSG on the apoptosis and proliferation of lung adenocarcinoma A549 cells and data of in vivo experiments. The present study aims to investigate the effects of HSG gene silencing on proliferation and apoptosis of lung adenocarcinoma A549 cells. The human lung adenocarcinoma A549 cell was selected to construct adenovirus vector. Reverse transcription-quantitative PCR (RT-qPCR) and Western blot analysis were conducted to detect expressions of HSG and apoptosis related-proteins. Cell Counting Kit (CCK)-8 assay was performed to assess A549 cell proliferation and flow cytometry to analyze cell cycle and apoptosis rate. The BALB/C nude mice were collected to establish xenograft model. Silenced HSG showed decreased mRNA and protein expressions of HSG, and elevated A549 cell survival rates at the time point of 24, 48, and 72 h. The ratio of cells at G0/G1 phase and apoptosis rate decreased and the ratio of cells at S- and G2/M phases increased following the silencing of HSG. There were decreases of B cell lymphoma-2 (Bcl-2)-associated X protein (Bax), Caspase-3, and Caspase-8 expressions but increases in Bcl-2 induced by silenced HSG. As for the xenograft in nude mice, tumor volume increased, and apoptosis index (AI) decreased after HSG silencing. These results indicate that HSG gene silencing may promote the proliferation of A549 cells and inhibit the apoptosis. HSG may be a promising target for the treatment of lung adenocarcinoma.
Collapse
|
45
|
Lee YS, Jung YY, Park MH, Yeo IJ, Im HS, Nam KT, Kim HD, Kang SK, Song JK, Kim YR, Choi DY, Park PH, Han SB, Yun JS, Hong JT. Deficiency of parkin suppresses melanoma tumor development and metastasis through inhibition of MFN2 ubiquitination. Cancer Lett 2018; 433:156-164. [DOI: 10.1016/j.canlet.2018.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 06/30/2018] [Accepted: 07/03/2018] [Indexed: 12/31/2022]
|
46
|
Yu F, Xu T, Wang M, Chang W, Li P, Wang J. Function and regulation of mitofusin 2 in cardiovascular physiology and pathology. Eur J Cell Biol 2018; 97:474-482. [DOI: 10.1016/j.ejcb.2018.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/06/2018] [Accepted: 07/17/2018] [Indexed: 02/03/2023] Open
|
47
|
Mitofusin2 Induces Cell Autophagy of Pancreatic Cancer through Inhibiting the PI3K/Akt/mTOR Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2798070. [PMID: 30046371 PMCID: PMC6038474 DOI: 10.1155/2018/2798070] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 03/30/2018] [Accepted: 04/15/2018] [Indexed: 12/31/2022]
Abstract
Aim Pancreatic cancer is one of the most quickly fatal cancers around the world. Burgeoning researches have begun to prove that mitochondria play a crucial role in cancer treatment. Mitofusin2 (Mfn2) plays an indispensable role in mitochondrial fusion and adjusting function. However, the role and underlying mechanisms of Mfn2 on cell autophagy of pancreatic cancer is still unclear. Our aim was to explore the effect of Mfn2 on multiple biological functions involving cell autophagy in pancreatic cancer. Methods Pancreatic cancer cell line, Aspc-1, was treated with Ad-Mfn2 overexpression. Western blotting, caspase-3 activity measurement, and CCK-8 and reactive oxygen species (ROS) assay were used to examine the effects of Mfn2 on pancreatic cancer autophagy, apoptosis, cell proliferation, oxidative stress, and PI3K/Akt/mTOR signaling. The expression of tissue Mfn2 was detected by immunohistochemical staining. Survival analysis of Mfn2 was evaluated by OncoLnc. Results Mfn2 improved the expression of LC3-II and Bax and downregulated the expression of P62 and Bcl-2 in pancreatic cancer cells. Meanwhile, Mfn2 also significantly inhibited the expression of p-PI3K, p-Akt, and p-mTOR proteins in pancreatic cancer cells. In addition, Mfn2 inhibited pancreatic cancer cell proliferation and ROS production. Assessment of Kaplan-Meier curves showed that Mfn2− pancreatic cancer has a worse prognosis than Mfn2+ pancreatic cancer has. Conclusions Our finding suggests that Mfn2 induces cell autophagy of pancreatic cancer through inhibiting the PI3K/Akt/mTOR signaling pathway. Meanwhile, Mfn2 also influences multiple biological functions of pancreatic cancer cells. Mfn2 may act as a therapeutic target in pancreatic cancer treatment.
Collapse
|
48
|
Li Y, Dong W, Shan X, Hong H, Liu Y, Liu Y, Liu X, Zhang X, Zhang J. The anti-tumor effects of Mfn2 in breast cancer are dependent on promoter DNA methylation, the P21 Ras motif and PKA phosphorylation site. Oncol Lett 2018; 15:8011-8018. [PMID: 29731912 DOI: 10.3892/ol.2018.8314] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 02/08/2018] [Indexed: 12/20/2022] Open
Abstract
Mitofusin 2 (Mfn2) is expressed in numerous human tissues and serves a pivotal role in cell proliferation. However, Mfn2 is considered as an anti-tumor gene, and is silenced in human malignant tumors, including those of breast cancer. However, the mechanisms contributing to Mfn2 silencing and the mechanism of its anti-tumor function in breast cancer remain unclear. In the present study, hypoexpression of Mfn2, and hypermethylation of its promoter, was confirmed in human breast cancer cells and in breast cancer tissues by reverse transcription-quantitative polymerase chain reaction (PCR) and methylation specific PCR, respectively. Chemical demethylation treatment with 5-aza-2'-deoxycytidine upregulated the mRNA expression level of Mfn2 in MCF-7 cells in a dose-dependent manner. In addition, overexpression of Mfn2 repressed the proliferation, migration and invasion of MCF-7 cells, mediated by inhibition of the Ras-extracellular signal-regulated kinase (ERK)1/2 signaling pathway. However, overexpression of Mfn2 with deletion of the p21Ras motif (Mfn2ΔRas) and protein kinase A (PKA) phosphorylation site (Mfn2ΔPKA) partially reduced the anti-tumor function of Mfn2, and inhibited the Ras-ERK1/2 signaling pathway. Taken together, the present study confirmed the anti-tumor effects of Mfn2 in human breast cancer and clarified that the mechanism of its anti-tumor functions includes promoter DNA methylation, the P21Ras binding site and PKA phosphorylation.
Collapse
Affiliation(s)
- Yufeng Li
- The Cancer Institute, Affiliated Tangshan People's Hospital of North China University of Science and Technology, Tangshan, Hebei 063001, P.R. China
| | - Wenyue Dong
- Department of Anesthesiology, Affiliated Tangshan People's Hospital of North China University of Science and Technology, Tangshan, Hebei 063001, P.R. China
| | - Xijin Shan
- Department of Surgery, Rizhao Port Hospital, Rizhao, Shandong 276800, P.R. China
| | - Hui Hong
- Department of Head, Neck and Breast Surgery, Shangrao People's Hospital, Shangrao, Jiangxi 334000, P.R. China
| | - Yan Liu
- Department of Bioengineering, College of Life Sciences, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Yankun Liu
- The Cancer Institute, Affiliated Tangshan People's Hospital of North China University of Science and Technology, Tangshan, Hebei 063001, P.R. China
| | - Xiaohui Liu
- Department of Thoracic Surgery, Affiliated Tangshan People's Hospital of North China University of Science and Technology, Tangshan, Hebei 063001, P.R. China
| | - Xiaojun Zhang
- Department of Internal Medicine, Affiliated Zunhua People's Hospital of North China University of Science and Technology, Zunhua, Hebei 064200, P.R. China
| | - Jinghua Zhang
- The Cancer Institute, Affiliated Tangshan People's Hospital of North China University of Science and Technology, Tangshan, Hebei 063001, P.R. China
| |
Collapse
|
49
|
Deng N, Li L, Gao J, Zhou J, Wang Y, Wang C, Liu Y. Hsa_circ_0009910 promotes carcinogenesis by promoting the expression of miR-449a target IL6R in osteosarcoma. Biochem Biophys Res Commun 2018; 495:189-196. [DOI: 10.1016/j.bbrc.2017.11.028] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 11/04/2017] [Indexed: 01/22/2023]
|
50
|
The mitochondrial dynamics in cancer and immune-surveillance. Semin Cancer Biol 2017; 47:29-42. [DOI: 10.1016/j.semcancer.2017.06.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 06/09/2017] [Accepted: 06/15/2017] [Indexed: 12/15/2022]
|