1
|
Silva GB, Velasco-Tamariz V, Mitsunaga K, Ortiz-Romero PL. Hair repigmentation in Sézary syndrome. J Eur Acad Dermatol Venereol 2024; 38:e794-e795. [PMID: 38400643 DOI: 10.1111/jdv.19895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/09/2024] [Indexed: 02/25/2024]
Affiliation(s)
- G B Silva
- Department of Dermatology, Hospital Universitario 12 de Octubre, i+12 Research Institute, Medical School, Universidad Complutense, Madrid, Spain
| | - V Velasco-Tamariz
- Department of Dermatology, Hospital Universitario 12 de Octubre, i+12 Research Institute, Medical School, Universidad Complutense, Madrid, Spain
| | - K Mitsunaga
- Department of Dermatology, Hospital Universitario 12 de Octubre, i+12 Research Institute, Medical School, Universidad Complutense, Madrid, Spain
| | - P L Ortiz-Romero
- Department of Dermatology, Hospital Universitario 12 de Octubre, i+12 Research Institute, Medical School, Universidad Complutense, Madrid, Spain
| |
Collapse
|
2
|
Mueller A, Lam I, Kishor K, Lee RK, Bhattacharya S. Secondary glaucoma: Toward interventions based on molecular underpinnings. WIREs Mech Dis 2024; 16:e1628. [PMID: 37669762 DOI: 10.1002/wsbm.1628] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 09/07/2023]
Abstract
Glaucoma is a heterogeneous group of progressive diseases that leads to irreversible blindness. Secondary glaucoma refers to glaucoma caused by a known underlying condition. Pseudoexfoliation and pigment dispersion syndromes are common causes of secondary glaucoma. Their respective deposits may obstruct the trabecular meshwork, leading to aqueous humor outflow resistance, ocular hypertension, and optic neuropathy. There are no disease-specific interventions available for either. Pseudoexfoliation syndrome is characterized by fibrillar deposits (pseudoexfoliative material) on anterior segment structures. Over a decade of multiomics analyses taken together with the current knowledge on pseudoexfoliative glaucoma warrant a re-think of mechanistic possibilities. We propose that the presence of nucleation centers (e.g., vitamin D binding protein), crosslinking enzymes (e.g., transglutaminase 2), aberrant extracellular matrix, flawed endocytosis, and abnormal aqueous-blood barrier contribute to the formation of proteolytically resistant pseudoexfoliative material. Pigment dispersion syndrome is characterized by abnormal iridolenticular contact that disrupts iris pigment epithelium and liberates melanin granules. Iris melanogenesis is aberrant in this condition. Cytotoxic melanogenesis intermediates leak out of melanosomes and cause iris melanocyte and pigment epithelium cell death. Targeting melanogenesis can likely decrease the risk of pigmentary glaucoma. Skin and melanoma research provides insights into potential therapeutics. We propose that specific prostanoid agonists and fenofibrates may reduce melanogenesis by inhibiting cholesterol internalization and de novo synthesis. Additionally, melatonin is a potent melanogenesis suppressor, antioxidant, and hypotensive agent, rendering it a valuable agent for pigmentary glaucoma. In pseudoexfoliative glaucoma, where environmental insults drive pseudoexfoliative material formation, melatonin's antioxidant and hypotensive properties may offer adjunct therapeutic benefits. This article is categorized under: Neurological Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Anna Mueller
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Isabel Lam
- Idaho College of Osteopathic Medicine, Meridian, Idaho, USA
| | - Krishna Kishor
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
- Miami Integrative Metabolomics Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Richard K Lee
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
- Miami Integrative Metabolomics Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Sanjoy Bhattacharya
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
- Miami Integrative Metabolomics Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
3
|
The Surprising Effect of Phenformin on Cutaneous Darkening and Characterization of Its Underlying Mechanism by a Forward Chemical Genetics Approach. Int J Mol Sci 2020; 21:ijms21041451. [PMID: 32093380 PMCID: PMC7073119 DOI: 10.3390/ijms21041451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 01/08/2023] Open
Abstract
Melanin in the epidermis is known to ultimately regulate human skin pigmentation. Recently, we exploited a phenotypic-based screening system composed of ex vivo human skin cultures to search for effective materials to regulate skin pigmentation. Since a previous study reported the potent inhibitory effect of metformin on melanogenesis, we evaluated several biguanide compounds. The unexpected effect of phenformin, once used as an oral anti-diabetic drug, on cutaneous darkening motivated us to investigate its underlying mechanism utilizing a chemical genetics approach, and especially to identify alternatives to phenformin because of its risk of severe lactic acidosis. Chemical pull-down assays with phenformin-immobilized beads were performed on lysates of human epidermal keratinocytes, and subsequent mass spectrometry identified 7-dehydrocholesterol reductase (DHCR7). Consistent with this, AY9944, an inhibitor of DHCR7, was found to decrease autophagic melanosome degradation in keratinocytes and to intensely darken skin in ex vivo cultures, suggesting the involvement of cholesterol biosynthesis in the metabolism of melanosomes. Thus, our results validated the combined utilization of the phenotypic screening system and chemical genetics as a new approach to develop promising materials for brightening/lightening and/or tanning technologies.
Collapse
|
4
|
Pillaiyar T, Manickam M, Jung SH. Recent development of signaling pathways inhibitors of melanogenesis. Cell Signal 2017; 40:99-115. [PMID: 28911859 DOI: 10.1016/j.cellsig.2017.09.004] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 09/10/2017] [Accepted: 09/10/2017] [Indexed: 02/08/2023]
Abstract
Human skin, eye and hair color rely on the production of melanin, depending on its quantity, quality, and distribution, Melanin plays a monumental role in protecting the skin against the harmful effect of ultraviolet radiation and oxidative stress from various environmental pollutants. However, an excessive production of melanin causes serious dermatological problems such as freckles, solar lentigo (age spots), melasma, as well as cancer. Hence, the regulation of melanin production is important for controlling the hyper-pigmentation. Melanogenesis, a biosynthetic pathway to produce melanin pigment in melanocyte, involves a series of intricate enzymatic and chemical catalyzed reactions. Several extrinsic factors include ultraviolet radiation and chemical drugs, and intrinsic factors include molecules secreted by surrounding keratinocytes or melanocytes, and fibroblasts, all of which regulate melanogenesis. This article reviews recent advances in the development of melanogenesis inhibitors that directly/indirectly target melanogenesis-related signaling pathways. Efforts have been made to provide a description of the mechanism of action of inhibitors on various melanogenesis signaling pathways.
Collapse
Affiliation(s)
- Thanigaimalai Pillaiyar
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany.
| | - Manoj Manickam
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National, University, Daejeon 34134, Republic of Korea
| | - Sang-Hun Jung
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National, University, Daejeon 34134, Republic of Korea
| |
Collapse
|
5
|
Lee HJ, Jo SY, Hwang JS, Chang SE. Mevastatin suppresses melanogenesis by lowering the levels of cyclic adenosine monophosphate and cholesterol. Exp Dermatol 2016; 25:820-2. [PMID: 27119271 DOI: 10.1111/exd.13056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Heun Joo Lee
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Soo Youn Jo
- Asan Institute for Life Science, Seoul, Korea
| | - Jae Sung Hwang
- Department of Genetic Engineering, College of Life Sciences, Kyung Hee University, Yongin, Korea.
| | - Sung Eun Chang
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|