1
|
Gharibkandi NA, Wawrowicz K, Walczak R, Majkowska-Pilip A, Wierzbicki M, Bilewicz A. 109Pd/ 109mAg in-vivo generator in the form of nanoparticles for combined β - - Auger electron therapy of hepatocellular carcinoma. EJNMMI Radiopharm Chem 2024; 9:59. [PMID: 39136900 PMCID: PMC11322470 DOI: 10.1186/s41181-024-00293-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/06/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Convenient therapeutic protocols for hepatocellular carcinoma (HCC) are often ineffective due to late diagnosis and high tumor heterogeneity, leading to poor long-term outcomes. However, recently performed studies suggest that using nanostructures in liver cancer treatment may improve therapeutic effects. Inorganic nanoparticles represent a unique material that tend to accumulate in the liver when introduced in-vivo. Typically, this is a major drawback that prevents the therapeutic use of nanoparticles in medicine. However, in HCC tumours, this may be advantageous because nanoparticles may accumulate in the target organ, where the leaky vasculature of HCC causes their accumulation in tumour cells via the EPR effect. On the other hand, recent studies have shown that combining low- and high-LET radiation emitted from the same radionuclide, such as 161Tb, can increase the effectiveness of radionuclide therapy. Therefore, to improve the efficacy of radionuclide therapy for hepatocellular carcinoma, we suggest utilizing radioactive palladium nanoparticles in the form of 109Pd/109mAg in-vivo generator that simultaneously emits β- particles and Auger electrons. RESULTS Palladium nanoparticles with a size of 5 nm were synthesized using 109Pd produced through neutron irradiation of natural palladium or enriched 108Pd. Unlike the 109Pd-cyclam complex, where the daughter radionuclide diffuses away from the molecules, 109mAg remains within the nanoparticles after the decay of 109Pd. In vitro cell studies using radioactive 109Pd nanoparticles revealed that the nanoparticles accumulated inside cells, reaching around 50% total uptake. The 109Pd-PEG nanoparticles exhibited high cytotoxicity, even at low levels of radioactivity (6.25 MBq/mL), resulting in almost complete cell death at 25 MBq/mL. This cytotoxic effect was significantly greater than that of PdNPs labeled with β- (131I) and Auger electron emitters (125I). The metabolic viability of HCC cells was found to be correlated with cell DNA DSBs. Also, successful radioconjugate anticancer activity was observed in three-dimensional tumor spheroids, resulting in a significant treatment response. CONCLUSION The results indicate that nanoparticles labeled with 109Pd can be effectively used for combined β- - Auger electron-targeted radionuclide therapy of HCC. Due to the decay of both components (β- and Auger electrons), the 109Pd/109mAg in-vivo generator presents a unique potential in this field.
Collapse
Affiliation(s)
- Nasrin Abbasi Gharibkandi
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16 St, Warsaw, 03-195, Poland
| | - Kamil Wawrowicz
- Department of Medical Physics, M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Rafał Walczak
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16 St, Warsaw, 03-195, Poland
| | - Agnieszka Majkowska-Pilip
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16 St, Warsaw, 03-195, Poland.
- Department of Nuclear Medicine, National Medical Institute of the Ministry of the Interior and Administration, Wołoska 137 St, Warsaw, 02-507, Poland.
| | - Mateusz Wierzbicki
- Institute of Biology, Warsaw University of Life Sciences, Ciszewskiego 8 St, Warsaw, 02-786, Poland
| | - Aleksander Bilewicz
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16 St, Warsaw, 03-195, Poland.
| |
Collapse
|
2
|
Meng X, Wen K, Zhao J, Han Y, Ghandhi SA, Kaur SP, Brenner DJ, Turner HC, Amundson SA, Lin Q. Microfluidic measurement of intracellular mRNA with a molecular beacon probe towards point-of-care radiation triage. SENSORS & DIAGNOSTICS 2024; 3:1344-1352. [PMID: 39129862 PMCID: PMC11308381 DOI: 10.1039/d4sd00079j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/26/2024] [Indexed: 08/13/2024]
Abstract
In large-scale radiation exposure events, the ability to triage potential victims by the received radiation dosage is crucial. This can be evaluated by radiation-induced biological changes. Radiation-responsive mRNA is a class of biomarkers that has been explored for dose-dependency with methods such as RT-qPCR. However, these methods are challenging to implement for point-of-care devices. We have designed and used molecular beacons as probes for the measurement of radiation-induced changes of intracellular mRNA in a microfluidic device towards determining radiation dosage. Our experiments, in which fixed TK6 cells labeled with a molecular beacon specific to BAX mRNA exhibited dose-dependent fluorescence in a manner consistent with RT-qPCR analysis, demonstrate that such intracellular molecular probes can potentially be used in point-of-care radiation biodosimetry. This proof of concept could readily be extended to any RNA-based test to provide direct measurements at the bedside.
Collapse
Affiliation(s)
- Xin Meng
- Department of Mechanical Engineering, Columbia University New York NY 10027 USA
| | - Kechun Wen
- Department of Mechanical Engineering, Columbia University New York NY 10027 USA
| | - Jingyang Zhao
- Department of Mechanical Engineering, Columbia University New York NY 10027 USA
| | - Yaru Han
- Department of Mechanical Engineering, Columbia University New York NY 10027 USA
| | - Shanaz A Ghandhi
- Center for Radiological Research, Columbia University Irving Medical Center New York New York 10032 USA
| | - Salan P Kaur
- Center for Radiological Research, Columbia University Irving Medical Center New York New York 10032 USA
| | - David J Brenner
- Center for Radiological Research, Columbia University Irving Medical Center New York New York 10032 USA
| | - Helen C Turner
- Center for Radiological Research, Columbia University Irving Medical Center New York New York 10032 USA
| | - Sally A Amundson
- Center for Radiological Research, Columbia University Irving Medical Center New York New York 10032 USA
| | - Qiao Lin
- Department of Mechanical Engineering, Columbia University New York NY 10027 USA
| |
Collapse
|
3
|
Gomes AR, Tavares-da-Silva EJ, Costa SC, Varela CL, Abrantes AM, Gonçalves AC, Alves R, Botelho MF, Roleira FMF, Pires AS. Steroidal epoxides as anticancer agents in lung, prostate and breast cancers: The case of 1,2-epoxysteroids. Biochem Pharmacol 2024; 225:116266. [PMID: 38710333 DOI: 10.1016/j.bcp.2024.116266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Cancer continues to be a serious threat to human health worldwide. Lung, prostate and triple-negative breast cancers are amongst the most incident and deadliest cancers. Steroidal compounds are one of the most diversified therapeutic classes of compounds and they were proven to be efficient against several types of cancer. The epoxide function has been frequently associated with anticancer activity, particularly the 1,2-epoxide function. For this reason, three 1,2-epoxysteroid derivatives previously synthesised (EP1, EP2 and EP3) and one synthesised for the first time (oxysteride) were evaluated against H1299 (lung), PC3 (prostate) and HCC1806 (triple-negative breast) cancer cell lines. A human non-tumour cell line, MRC-5 (normal lung cell line) was also used. EP2 was the most active compound in all cell lines with IC50 values of 2.50, 3.67 and 1.95 µM, followed by EP3 with IC50 values of 12.65, 15.10 and 14.16 µM in H1299, PC3 and HCC1806 cells, respectively. Additional studies demonstrated that EP2 and EP3 induced cell death by apoptosis at lower doses and apoptosis/necrosis at higher doses, proving that their effects were dose-dependent. Both compounds also exerted their cytotoxicity by ROS production and by inducing double-strand breaks. Furthermore, EP2 and EP3 proved to be much less toxic against a normal lung cell line, MRC5, indicating that both compounds might be selective, and they also demonstrated suitable in silico ADME and toxicity parameters. Finally, none of the compounds induced haemoglobin release. Altogether, these results point out the extreme relevance of both compounds, especially EP2, in the potential treatment of these types of cancer.
Collapse
Affiliation(s)
- Ana R Gomes
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, Coimbra, Portugal; Univ Coimbra, CERES, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
| | - Elisiário J Tavares-da-Silva
- Univ Coimbra, CERES, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, Coimbra, Portugal.
| | - Saúl C Costa
- Univ Coimbra, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, Coimbra, Portugal
| | - Carla L Varela
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, Coimbra, Portugal; Univ Coimbra, CERES, Department of Chemical Engineering, 3030-790 Coimbra, Portugal
| | - Ana M Abrantes
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Praceta Professor Mota Pinto, Coimbra, Portugal
| | - Ana C Gonçalves
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Praceta Professor Mota Pinto, Coimbra, Portugal; Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Laboratory of Oncobiology and Hematology and University Clinics of Hematology and Oncology, Faculty of Medicine, Portugal
| | - Raquel Alves
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Praceta Professor Mota Pinto, Coimbra, Portugal; Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Laboratory of Oncobiology and Hematology and University Clinics of Hematology and Oncology, Faculty of Medicine, Portugal
| | - Maria F Botelho
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Praceta Professor Mota Pinto, Coimbra, Portugal
| | - Fernanda M F Roleira
- Univ Coimbra, CERES, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, Coimbra, Portugal
| | - Ana S Pires
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Praceta Professor Mota Pinto, Coimbra, Portugal.
| |
Collapse
|
4
|
Zanni V, Papakonstantinou D, Kalospyros SA, Karaoulanis D, Biz GM, Manti L, Adamopoulos A, Pavlopoulou A, Georgakilas AG. RadPhysBio: A Radiobiological Database for the Prediction of Cell Survival upon Exposure to Ionizing Radiation. Int J Mol Sci 2024; 25:4729. [PMID: 38731948 PMCID: PMC11083482 DOI: 10.3390/ijms25094729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Based on the need for radiobiological databases, in this work, we mined experimental ionizing radiation data of human cells treated with X-rays, γ-rays, carbon ions, protons and α-particles, by manually searching the relevant literature in PubMed from 1980 until 2024. In order to calculate normal and tumor cell survival α and β coefficients of the linear quadratic (LQ) established model, as well as the initial values of the double-strand breaks (DSBs) in DNA, we used WebPlotDigitizer and Python programming language. We also produced complex DNA damage results through the fast Monte Carlo code MCDS in order to complete any missing data. The calculated α/β values are in good agreement with those valued reported in the literature, where α shows a relatively good association with linear energy transfer (LET), but not β. In general, a positive correlation between DSBs and LET was observed as far as the experimental values are concerned. Furthermore, we developed a biophysical prediction model by using machine learning, which showed a good performance for α, while it underscored LET as the most important feature for its prediction. In this study, we designed and developed the novel radiobiological 'RadPhysBio' database for the prediction of irradiated cell survival (α and β coefficients of the LQ model). The incorporation of machine learning and repair models increases the applicability of our results and the spectrum of potential users.
Collapse
Affiliation(s)
- Vassiliki Zanni
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou Campous, 15780 Athens, Greece; (V.Z.); (S.A.K.); (G.M.B.)
| | | | - Spyridon A. Kalospyros
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou Campous, 15780 Athens, Greece; (V.Z.); (S.A.K.); (G.M.B.)
| | - Dimitris Karaoulanis
- School of Electrical and Computer Engineering, National Technical University of Athens, 15780 Athens, Greece;
| | - Gökay Mehmet Biz
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou Campous, 15780 Athens, Greece; (V.Z.); (S.A.K.); (G.M.B.)
| | - Lorenzo Manti
- Naples Italy and Radiation Biophysics Laboratory, National Institute of Nuclear Physics (INFN), Section of Naples, Department of Physics “E. Pancini”, University of Naples Federico II, 80138 Naples, Italy;
| | - Adam Adamopoulos
- Department of Medicine, Medical Physics Laboratory, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Athanasia Pavlopoulou
- Izmir Biomedicine and Genome Center (IBG), 35340 Balcova, Izmir, Turkey;
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 Balcova, Izmir, Turkey
| | - Alexandros G. Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou Campous, 15780 Athens, Greece; (V.Z.); (S.A.K.); (G.M.B.)
| |
Collapse
|
5
|
Wang X, Inman P, Bible A, Davern SM, Agasthya G. Unsupervised Deep Learning Image Segmentation for DNA Double Strand Breaks and Nuclei in Fluorescence Microscopy Images. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1103-1105. [PMID: 37613296 DOI: 10.1093/micmic/ozad067.568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- Xiao Wang
- Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Paul Inman
- Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Amber Bible
- Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | | | | |
Collapse
|
6
|
Vorobjev IA, Bekbayev S, Temirgaliyev A, Tlegenova M, Barteneva NS. Imaging Flow Cytometry of Multi-Nuclearity. Methods Mol Biol 2023; 2635:87-101. [PMID: 37074658 DOI: 10.1007/978-1-0716-3020-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Multi-nuclearity is a common feature for cells in different cancers. Also, analysis of multi-nuclearity in cultured cells is widely used for evaluating the toxicity of different drugs. Multi-nuclear cells in cancer and under drug treatments form from aberrations in cell division and/or cytokinesis. These cells are a hallmark of cancer progression, and the abundance of multi-nucleated cells often correlates with poor prognosis.The use of standard bright field or fluorescent microscopy to analyze multi-nuclearity at the quantitative level is laborious and can suffer from user bias. Automated slide-scanning microscopy can eliminate scorer bias and improve data collection. However, this method has limitations, such as insufficient visibility of multiple nuclei in the cells attached to the substrate at low magnification.Since quantification of multi-nuclear cells using microscopic methods might be difficult, imaging flow cytometry (IFC) is a method of choice for this. We describe the experimental protocol for the preparation of the samples of multi-nucleated cells from the attached cultures and the algorithm for the analysis of these cells by IFC. Images of multi-nucleated cells obtained after mitotic arrest induced by taxol, as well as cells obtained after cytokinesis blockade by cytochalasin D treatment, can be acquired at a maximal resolution of IFC. We suggest two algorithms for the discrimination of single-nucleus and multi-nucleated cells. The advantages and disadvantages of IFC analysis of multi-nuclear cells in comparison with microscopy are discussed.
Collapse
Affiliation(s)
- Ivan A Vorobjev
- School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan.
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan.
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation.
- Biological Faculty, Lomonosov Moscow State University, Moscow, Russian Federation.
| | - Sultan Bekbayev
- School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | - Adil Temirgaliyev
- School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | - Madina Tlegenova
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Natasha S Barteneva
- School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
- Brigham Women's Hospital, Harvard University, Boston, MA, USA
| |
Collapse
|
7
|
Factors to Consider for the Correct Use of γH2AX in the Evaluation of DNA Double-Strand Breaks Damage Caused by Ionizing Radiation. Cancers (Basel) 2022; 14:cancers14246204. [PMID: 36551689 PMCID: PMC9776434 DOI: 10.3390/cancers14246204] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
People exposed to ionizing radiation (IR) both for diagnostic and therapeutic purposes is constantly increasing. Since the use of IR involves a risk of harmful effects, such as the DNA DSB induction, an accurate determination of this induced DNA damage and a correct evaluation of the risk-benefit ratio in the clinical field are of key relevance. γH2AX (the phosphorylated form of the histone variant H2AX) is a very early marker of DSBs that can be induced both in physiological conditions, such as in the absence of specific external agents, and by external factors such as smoking, heat, background environmental radiation, and drugs. All these internal and external conditions result in a basal level of γH2AX which must be considered for the correct assessment of the DSBs after IR exposure. In this review we analyze the most common conditions that induce H2AX phosphorylation, including specific exogenous stimuli, cellular states, basic environmental factors, and lifestyles. Moreover, we discuss the most widely used methods for γH2AX determination and describe the principal applications of γH2AX scoring, paying particular attention to clinical studies. This knowledge will help us optimize the use of available methods in order to discern the specific γH2AX following IR-induced DSBs from the basal level of γH2AX in the cells.
Collapse
|
8
|
Nautiyal A, Mondal T, Manii M, Kaushik A, Goel A, Dey SK, Mitra D. Significant reduction of radiation dose and DNA damage in 18F- FDG whole-body PET/CT study without compromising diagnostic image quality. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2021. [DOI: 10.1080/16878507.2021.1969197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Amit Nautiyal
- Institute of Nuclear Medicine & Molecular Imaging, Amri Hospitals, Dhakuria, Kolkata
- Amity Institute of Nuclear Science & Technology, Amity University Uttar Pradesh, Noida
| | - Tanmoy Mondal
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Salt Lake, Kolkata
| | - Manu Manii
- Department of Nuclear Medicine, Quadra Medical Services Private Limited, Kolkata
| | - Aruna Kaushik
- Institute of Nuclear Medicine & Allied Sciences, Timarpur, Delhi
| | - Alpana Goel
- Amity Institute of Nuclear Science & Technology, Amity University Uttar Pradesh, Noida
| | - Subrata Kumar Dey
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Salt Lake, Kolkata
| | - Deepanjan Mitra
- Institute of Nuclear Medicine & Molecular Imaging, Amri Hospitals, Dhakuria, Kolkata
| |
Collapse
|
9
|
Pires AS, Varela CL, Marques IA, Abrantes AM, Gonçalves C, Rodrigues T, Matafome P, Botelho MF, Roleira FMF, Tavares-da-Silva E. Oxymestane, a cytostatic steroid derivative of exemestane with greater antitumor activity in non-estrogen-dependent cell lines. J Steroid Biochem Mol Biol 2021; 212:105950. [PMID: 34271024 DOI: 10.1016/j.jsbmb.2021.105950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/29/2021] [Accepted: 07/11/2021] [Indexed: 02/06/2023]
Abstract
A new promising steroid derivative of Exemestane (Exe), the drug used for the treatment of estrogen-dependent breast cancer, was synthesized and evaluated against a set of human cancer cell lines. The new compound (Oxymestane-D1, Oxy) was tested comparatively with Exe against colon (C2BBe1, WiDr), liver (HepG2, HuH-7), lung (A549, H1299) and prostate (LNCaP, PC3) human cancer cell lines. Likewise, its effect on human colon normal cells (CCD-841 CoN) and human normal fibroblast cells (HFF-1) was studied. The cytostatic activity of Oxy was also compared with that of the reference cytostatic drugs used in chemotherapy protocols, namely carboplatin, cisplatin, doxorubicin, epirubicin, etoposide, flutamide, 5-fluorouracil, irinotecan, oxaliplatin and sorafenib. In all cell lines tested, Oxy proved to be more powerful cytostatic than Exe. Additionally, the IC50 at 72 h showed a three-fold activity greater than 5-fluorouracil in the WiDr cell line, twice as high as cisplatin for cell line A549 and five times higher than cisplatin for cell line H1299. Also, Oxy surprisingly revealed to induce DNA damage and inhibit the DNA damage response (DDR) proteins ATM, ATR, CHK1 and CHK2. The results obtained allow concluding that Oxy can be a promising anticancer agent to be used in chemotherapy protocols. Furthermore, its ability to inhibit crucial components of DDR can also be useful for the monotherapy or for combination with chemo and/or radiotherapy of cancer.
Collapse
Affiliation(s)
- Ana S Pires
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, Coimbra, 3000-548, Portugal; Clinical Academic Center of Coimbra, Praceta Prof. Mota Pinto, Coimbra, 3004-561, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, Coimbra, 3000-548, Portugal.
| | - Carla L Varela
- University of Coimbra, CIEPQPF, FFUC, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, Coimbra, 3000-548, Portugal.
| | - Inês A Marques
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, Coimbra, 3000-548, Portugal; Clinical Academic Center of Coimbra, Praceta Prof. Mota Pinto, Coimbra, 3004-561, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, Coimbra, 3000-548, Portugal; University of Coimbra, Faculty of Pharmacy, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, Coimbra, 3000-548, Portugal.
| | - Ana M Abrantes
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, Coimbra, 3000-548, Portugal; Clinical Academic Center of Coimbra, Praceta Prof. Mota Pinto, Coimbra, 3004-561, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, Coimbra, 3000-548, Portugal.
| | - Cristina Gonçalves
- Clinical Academic Center of Coimbra, Praceta Prof. Mota Pinto, Coimbra, 3004-561, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, Coimbra, 3000-548, Portugal; University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Laboratory of Oncobiology and Hematology and University Clinic of Hematology of Faculty of Medicine, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, Coimbra, 3000-548, Portugal.
| | - Tiago Rodrigues
- Clinical Academic Center of Coimbra, Praceta Prof. Mota Pinto, Coimbra, 3004-561, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, Coimbra, 3000-548, Portugal; University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Laboratory of Physiology of Faculty of Medicine, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, Coimbra, 3000-548, Portugal.
| | - Paulo Matafome
- Clinical Academic Center of Coimbra, Praceta Prof. Mota Pinto, Coimbra, 3004-561, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, Coimbra, 3000-548, Portugal; University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Laboratory of Physiology of Faculty of Medicine, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, Coimbra, 3000-548, Portugal.
| | - Maria F Botelho
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, Coimbra, 3000-548, Portugal; Clinical Academic Center of Coimbra, Praceta Prof. Mota Pinto, Coimbra, 3004-561, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, Coimbra, 3000-548, Portugal.
| | - Fernanda M F Roleira
- University of Coimbra, CIEPQPF, FFUC, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, Coimbra, 3000-548, Portugal.
| | - Elisiário Tavares-da-Silva
- University of Coimbra, CIEPQPF, FFUC, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, Coimbra, 3000-548, Portugal.
| |
Collapse
|
10
|
Chilimoniuk J, Gosiewska A, Słowik J, Weiss R, Deckert PM, Rödiger S, Burdukiewicz M. countfitteR: efficient selection of count distributions to assess DNA damage. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:528. [PMID: 33987226 DOI: 10.21037/atm-20-6363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background DNA double-strand breaks can be counted as discrete foci by imaging techniques. In personalized medicine and pharmacology, the analysis of counting data is relevant for numerous applications, e.g., for cancer and aging research and the evaluation of drug efficacy. By default, it is assumed to follow the Poisson distribution. This assumption, however, may lead to biased results and faulty conclusions in datasets with excess zero values (zero-inflation), a variance larger than the mean (overdispersion), or both. In such cases, the assumption of a Poisson distribution would skew the estimation of mean and variance, and other models like the negative binomial (NB), zero-inflated Poisson or zero-inflated NB distributions should be employed. The model chosen has an influence on the parameter estimation (mean value and confidence interval). Yet the choice of the suitable distribution model is not trivial. Methods To support, simplify and objectify this process, we have developed the countfitteR software as an R package. We used a Bayesian approach for distribution model selection and the shiny web application framework for interactive data analysis. Results We show the application of our software based on examples of DNA double-strand break count data from phenotypic imaging by multiplex fluorescence microscopy. In analyzing numerous datasets of molecular pharmacological markers (phosphorylated histone H2AX and p53 binding protein), countfitteR demonstrated an equal or superior statistical performance compared to the usually employed two-step procedure, with an overall power of up to 98%. In addition, it still gave information in cases with no result at all from the two-step procedure. In our data sample we found that the NB distribution was the most frequent, with the Poisson distribution taking second place. Conclusions countfitteR can perform an automated distribution model selection and thus support the data analysis and lead to objective statistically verifiable estimated values. Originally designed for the analysis of foci in biomedical image data, countfitteR can be used in a variety of areas where non-Poisson distributed counting data is prevalent.
Collapse
Affiliation(s)
- Jarosław Chilimoniuk
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland.,Faculty of Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Alicja Gosiewska
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Jadwiga Słowik
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Romano Weiss
- Faculty of Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - P Markus Deckert
- Faculty of Medicine and Psychology, Brandenburg Medical School Theodor Fontane, and Faculty of Health Sciences Brandenburg, Brandenburg Medical School Theodor Fontane, Brandenburg, Germany
| | - Stefan Rödiger
- Faculty of Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany.,Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Michał Burdukiewicz
- Faculty of Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany.,Medical University of Białystok, Białystok, Poland
| |
Collapse
|
11
|
Zhang JQJ, Saravanabavan S, Chandra AN, Munt A, Wong ATY, Harris PC, Harris DCH, McKenzie P, Wang Y, Rangan GK. Up-Regulation of DNA Damage Response Signaling in Autosomal Dominant Polycystic Kidney Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:902-920. [PMID: 33549515 DOI: 10.1016/j.ajpath.2021.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 01/05/2021] [Accepted: 01/14/2021] [Indexed: 12/19/2022]
Abstract
DNA damage and alterations in DNA damage response (DDR) signaling could be one of the molecular mechanisms mediating focal kidney cyst formation in autosomal dominant polycystic kidney disease (ADPKD). The aim of this study was to test the hypothesis that markers of DNA damage and DDR signaling are increased in human and experimental ADPKD. In the human ADPKD transcriptome, the number of up-regulated DDR-related genes was increased by 16.6-fold compared with that in normal kidney, and by 2.5-fold in cystic compared with that in minimally cystic tissue (P < 0.0001). In end-stage human ADPKD tissue, γ-H2A histone family member X (H2AX), phosphorylated ataxia telangiectasia and radiation-sensitive mutant 3 (Rad3)-related (pATR), and phosphorylated ataxia telangiectasia mutated (pATM) localized to cystic kidney epithelial cells. In vitro, pATR and pATM were also constitutively increased in human ADPKD tubular cells (WT 9-7 and 9-12) compared with control (HK-2). In addition, extrinsic oxidative DNA damage by hydrogen peroxide augmented γ-H2AX and cell survival in human ADPKD cells, and exacerbated cyst growth in the three-dimensional Madin-Darby canine kidney cyst model. In contrast, DDR-related gene expression was only transiently increased on postnatal day 0 in Pkd1RC/RC mice, and not altered at later time points up to 12 months of age. In conclusion, DDR signaling is dysregulated in human ADPKD and during the early phases of murine ADPKD. The constitutive expression of the DDR pathway in ADPKD may promote survival of PKD1-mutated cells and contribute to kidney cyst growth.
Collapse
Affiliation(s)
- Jennifer Q J Zhang
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Sayanthooran Saravanabavan
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Ashley N Chandra
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Alexandra Munt
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Annette T Y Wong
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Peter C Harris
- Mayo Translational Polycystic Kidney Disease Center, Mayo Clinic, Rochester, Minnesota
| | - David C H Harris
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Paul McKenzie
- Department of Tissue Pathology, NSW Health Pathology, Royal Prince Alfred Hospital, The University of Sydney, Sydney, New South Wales, Australia
| | - Yiping Wang
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Gopala K Rangan
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia.
| |
Collapse
|
12
|
γH2AX in the S Phase after UV Irradiation Corresponds to DNA Replication and Does Not Report on the Extent of DNA Damage. Mol Cell Biol 2020; 40:MCB.00328-20. [PMID: 32778572 DOI: 10.1128/mcb.00328-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/02/2020] [Indexed: 01/13/2023] Open
Abstract
Ultraviolet (UV) radiation is a major environmental mutagen. Exposure to UV leads to a sharp peak of γH2AX, the phosphorylated form of the histone variant H2AX, in the S phase within an asynchronous population of cells. γH2AX is often considered a definitive marker of DNA damage inside a cell. In this report, we show that γH2AX in the S-phase cells after UV irradiation reports neither on the extent of primary DNA damage in the form of cyclobutane pyrimidine dimers nor on the extent of its secondary manifestations in the form of DNA double-strand breaks or in the inhibition of global transcription. Instead, γH2AX in the S phase corresponds to the sites of active replication at the time of UV irradiation. This accumulation of γH2AX at replication sites slows down the replication. However, the cells do complete the replication of their genomes and arrest within the G2 phase. Our study suggests that it is not DNA damage, but the response elicited, which peaks in the S phase upon UV irradiation.
Collapse
|
13
|
Chen X, Xun D, Zheng R, Zhao L, Lu Y, Huang J, Wang R, Wang Y. Deep-Learning-Assisted Assessment of DNA Damage Based on Foci Images and Its Application in High-Content Screening of Lead Compounds. Anal Chem 2020; 92:14267-14277. [DOI: 10.1021/acs.analchem.0c03741] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Xuechun Chen
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Dejin Xun
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ruzhang Zheng
- State Key Lab of CAD&CG, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lu Zhao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yuqing Lu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jun Huang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Rui Wang
- State Key Lab of CAD&CG, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
14
|
|
15
|
Bucher M, Duchrow L, Endesfelder D, Roessler U, Gomolka M. Comparison of inexperienced operators and experts in γH2A.X and 53BP1 foci assay for high-throughput biodosimetry approaches in a mass casualty incident. Int J Radiat Biol 2020; 96:1263-1273. [PMID: 32673132 DOI: 10.1080/09553002.2020.1793024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE In case of population exposure by ionizing radiation, a fast and reliable dose assessment of exposed and non-exposed individuals is crucial important. In initial triage, physicians have to take fast decisions whom to treat with adequate medical care. In addition, worries about significant exposure can be taken away from hundreds to thousands non- or low exposed individuals. Studies have shown that the γH2A.X radiation-induced foci assay is a promising test for fast triage decisions. However, in a large-scale scenario most biodosimetry laboratories will quickly reach their capacity limit. The aim of this study was to evaluate the benefit of inexperienced experimenters to speed up the foci assay and manual foci scoring. MATERIALS AND METHODS The participants of two training courses performed the radiation-induced foci assay (γH2A.X) under the guidance of experts and scored foci (γH2A.X and 53BP1) on sham-irradiated and irradiated blood samples (0.05-1.5 Gy). The outcome of laboratory experiments and manual foci scoring by 26 operators with basic experience in laboratory work was statistically analyzed in comparison to the results from experts. RESULTS Inexperienced operators prepared slides with significant dose-effects (0, 0.1 and 1.0 Gy) for semi-automatic microscopic analyses. Manual foci scoring by inexperienced scorer resulted in a dose-effect curve for γH2A.X, 53BP1 and co-localized foci. In addition, inexperienced scorers were able to distinguish low irradiation doses from unirradiated cells. While 53BP1 foci scoring was in accordance to the expert counting, differences between beginners and expert increased for γH2A.X or co-localized foci. CONCLUSIONS In case of a large-scale radiation event, inexperienced staff is useful to support laboratories in slide preparation for semi-automatic foci counting as well as γH2A.X and 53BP1 manual foci scoring for triage-mode biodosimetry. Slides can be clearly classified in the non-, low- or high-exposed category.
Collapse
Affiliation(s)
- Martin Bucher
- Department of Effects and Risks of Ionising and Non-Ionising Radiation, Federal Office for Radiation Protection, Neuherberg, Germany
| | - Lukas Duchrow
- Department of Effects and Risks of Ionising and Non-Ionising Radiation, Federal Office for Radiation Protection, Neuherberg, Germany
| | - David Endesfelder
- Department of Effects and Risks of Ionising and Non-Ionising Radiation, Federal Office for Radiation Protection, Neuherberg, Germany
| | - Ute Roessler
- Department of Effects and Risks of Ionising and Non-Ionising Radiation, Federal Office for Radiation Protection, Neuherberg, Germany
| | - Maria Gomolka
- Department of Effects and Risks of Ionising and Non-Ionising Radiation, Federal Office for Radiation Protection, Neuherberg, Germany
| |
Collapse
|
16
|
Anglada T, Repullés J, Espinal A, LaBarge MA, Stampfer MR, Genescà A, Martín M. Delayed γH2AX foci disappearance in mammary epithelial cells from aged women reveals an age-associated DNA repair defect. Aging (Albany NY) 2020; 11:1510-1523. [PMID: 30875333 PMCID: PMC6428106 DOI: 10.18632/aging.101849] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 03/09/2019] [Indexed: 01/15/2023]
Abstract
Aging is a degenerative process in which genome instability plays a crucial role. To gain insight into the link between organismal aging and DNA repair capacity, we analyzed DNA double-strand break (DSB) resolution efficiency in human mammary epithelial cells from 12 healthy donors of young and old ages. The frequency of DSBs was measured by quantifying the number of γH2AX foci before and after 1Gy of γ-rays and it was higher in cells from aged donors (ADs) at all times analyzed. At 24 hours after irradiation, ADs retained a significantly higher frequency of residual DSBs than young donors (YDs), which had already reached values close to basal levels. The kinetics of DSB induction and disappearance showed that cells from ADs and YDs repair DSBs with similar speed, although analysis of early times after irradiation indicate that a repair defect may lie within the firing of the DNA repair machinery in AD cells. Indeed, using a mathematical model we calculated a constant factor of delay affecting aged human epithelial cells repair kinetics. This defect manifests with the accumulation of DSBs that might eventually undergo illegitimate repair, thus posing a relevant threat to the maintenance of genome integrity in older individuals.
Collapse
Affiliation(s)
- Teresa Anglada
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Joan Repullés
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,Microscopy Platform, Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, 08041, Spain
| | - Anna Espinal
- Servei d'Estadística Aplicada, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Mark A LaBarge
- Department of Population Sciences, and Center for Cancer and Aging, Beckman Research Institute at City of Hope, Duarte, CA, 91010, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Martha R Stampfer
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Anna Genescà
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Marta Martín
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
17
|
Shen R, Li Y, Yu L, Wu H, Cui R, Liu S, Song Y, Wang D. Ex vivo detection of cadmium-induced renal damage by using confocal Raman spectroscopy. JOURNAL OF BIOPHOTONICS 2019; 12:e201900157. [PMID: 31407491 DOI: 10.1002/jbio.201900157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
Cadmium (Cd) is a toxic heavy metal which is harmful to environment and organisms. The reabsorption of Cd in kidney leads it to be the main damaged organ in animals under the Cd exposure. In this work, we applied confocal Raman spectroscopy to map the pathological changes in situ in normal and Cd-exposed mice kidney. The renal tissue from Cd-exposed group displayed a remarkable decreasing in the intensity of typical peaks related to mitochondria, DNA, proteins and lipids. On the contrary, the peaks of collagen in Cd-exposed group elevated significantly. The components in each tissue were identified and distinguished by principal component analysis. Furthermore, all the biological investigations in this study were consistent with the Raman spectrum detection, which revealed the progression and degree of lesion induced by Cd. The confocal Raman spectroscopy provides a new perspective for in situ monitoring of substances changes in tissues, which exhibits more comprehensive understanding of the pathogenic mechanisms of heavy metals in molecular toxicology.
Collapse
Affiliation(s)
- Rong Shen
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Yuee Li
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Linghui Yu
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Haining Wu
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Rong Cui
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Sha Liu
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Yanfeng Song
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Degui Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
18
|
Mondal T, Nautiyal A, Agrawal M, Mitra D, Goel A, Kumar Dey S. 18F-FDG-induced DNA damage, chromosomal aberrations, and toxicity in V79 lung fibroblast cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 847:503105. [PMID: 31699341 DOI: 10.1016/j.mrgentox.2019.503105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 12/20/2022]
Abstract
18F-FDG PET/CT imaging is used in the diagnosis of diseases, including cancers. The principal photons used for imaging are 511 ke V gamma photons resulting from positron annihilation. The absorbed dose varies among body organs, depending on administered radioactivity and biological clearance. We have attempted to evaluate DNA double-strand breaks (DSB) and toxicity induced in V79 lung fibroblast cells in vitro by 18F-FDG, at doses which might result from PET procedures. Cells were irradiated by 18F-FDG at doses (14.51 and 26.86 mGy), comparable to absorbed doses received by critical organs during PET procedures. The biological endpoints measured were formation of γ-H2AX foci, mitochondrial stress, chromosomal aberrations, and cell cycle perturbation. Irradiation induced DSB (γH2AX assay), mitochondrial depolarization, and both chromosome and chromatid types of aberrations. At higher radiation doses, increased aneuploidy and reduced mitotic activity were also seen. Thus, significant biological effects were observed at the doses delivered by the 18F-FDG exposure and the effects increased with dose.
Collapse
Affiliation(s)
- Tanmoy Mondal
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, BF-142, Sector-I, Salt Lake, Kolkata, 700 064, West Bengal, India
| | - Amit Nautiyal
- Institute of Nuclear Medicine & Molecular Imaging, Advance Medicare & Research Institute, P-4&5, Gariahat Road Block-A, Scheme-L11, Dhakuria, Kolkata, 700029, West Bengal, India
| | - Milee Agrawal
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, BF-142, Sector-I, Salt Lake, Kolkata, 700 064, West Bengal, India
| | - Deepanjan Mitra
- Institute of Nuclear Medicine & Molecular Imaging, Advance Medicare & Research Institute, P-4&5, Gariahat Road Block-A, Scheme-L11, Dhakuria, Kolkata, 700029, West Bengal, India
| | - Alpana Goel
- Amity Institute of Nuclear Science & Technology, Amity University, Noida, Delhi, India
| | - Subrata Kumar Dey
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, BF-142, Sector-I, Salt Lake, Kolkata, 700 064, West Bengal, India.
| |
Collapse
|
19
|
Sak A, Groneberg M, Stuschke M. DNA-dependent protein kinase: effect on DSB repair, G2/M checkpoint and mode of cell death in NSCLC cell lines. Int J Radiat Biol 2019; 95:1205-1219. [PMID: 31287365 DOI: 10.1080/09553002.2019.1642536] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Purpose: To evaluate the effect of NU7026, a specific inhibitor of DNA-PKcs, on DNA-double strand break (DSB) repair in a cell cycle specific manner, on the G2/M checkpoint, mitotic progression, apoptosis and clonogenic survival in non-small-cell lung carcinoma (NSCLC) cell lines with different p53 status. Material and methods: Cell cycle progression, and hyperploidy were evaluated using flow cytometry. Polynucleation as a measure for mitotic catastrophe (MC) was evaluated by fluorescence microscopy. DSB induction and repair were measured by constant-gel electrophoresis and γH2AX assay. The efficiency of DSB rejoining during the cell cycle was assessed by distinguishing G1 and G2/M phase cells on the basis of the DNA content in flow cytometry. The overall effect on cell death was determined by apoptosis and the surviving fraction after irradiation with 2 Gy (SF2) assessed by clonogenic survival. Results: DSB signaling upon treatment with NU7026, as measured by γH2AX signaling, was differently affected in G1 and G2/M cells. The background level of γH2AX was significantly higher in G2/M compared to G1 cells, whereas NU7026 had no effect on the background level. The steepness of the initial dose effect relation at 1 h after irradiation was less pronounced in G2/M compared to G1 cells. NU7026 had no significant effect on the initial dose-effect relation of γH2AX signaling. In comparison, NU7026 significantly slowed down the repair kinetics and increased the residual γH2AX signal at 24 h after irradiation in the G1 phase of all cell lines, but was less effective in G2/M cells. NU7026 significantly increased the fraction of G2/M phase cells upon irradiation. Moreover, NU7026 significantly increased mitotic catastrophe and hyperploidy, as a measure for mitotic failure after low irradiation doses of about 4 Gy, but decreased both at higher doses of 20 Gy. In addition, radiation induced apoptosis increased in A549, H520 and H460 but decreased in H661 upon NU7026 treatment, with a significant reduction of SF2 in all NSCLC cell lines. Conclusion: Overall, NU7026 significantly influences the cell cycle progression through the G2- and M-phases and thereby determines the fate of cells. The impairment of DNA-PK upon treatment with NU7026 affects the efficiency of the NHEJ system in a cell cycle dependent manner, which may be of relevance for a clinical application of DNA-PK inhibitors in tumor therapy.
Collapse
Affiliation(s)
- Ali Sak
- Department of Radiotherapy, University Hospital Essen , Essen , Germany
| | - Michael Groneberg
- Department of Radiotherapy, University Hospital Essen , Essen , Germany
| | - Martin Stuschke
- Department of Radiotherapy, University Hospital Essen , Essen , Germany
| |
Collapse
|
20
|
Wang Z, Sugie C, Nakashima M, Kondo T, Iwata H, Tsuchiya T, Shibamoto Y. Changes in the Proliferation Rate, Clonogenicity, and Radiosensitivity of Cultured Cells During and After Continuous Low-Dose-Rate Irradiation. Dose Response 2019; 17:1559325819842733. [PMID: 31040760 PMCID: PMC6477768 DOI: 10.1177/1559325819842733] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/04/2019] [Accepted: 03/17/2019] [Indexed: 01/28/2023] Open
Abstract
We investigated the effects of continuous low-dose radiation on proliferation,
clonogenicity, radiosensitivity, and repair of DNA double-strand breaks (DSBs)
in human salivary gland (HSG) tumor cells. Human salivary gland cells were
cultured on acrylic boards above very-low-dose (4.3 μSv/h) or low-dose (27
μSv/h) radiation-emitting sheets or without sheets. Total cell numbers and
plating efficiencies were compared among the 3 groups every 1 or 2 weeks until 6
weeks after starting culture. At 2, 4, and 6 weeks, surviving fractions of HSG
cells after irradiation at 2 to 8 Gy cultured on the very-low-dose or low-dose
sheets were compared to those of the control. At 4 weeks, HSG cells irradiated
at 2 Gy were assessed for phosphorylated histone (γH2AX) foci formation, and
DSBs were evaluated. No significant differences were observed in total cell
number or plating efficiencies with or without low-dose-emitting sheets. The
surviving fractions after irradiation of the very-low-dose group at 2 to 6 weeks
and those of the low-dose group at 2 to 4 weeks were higher than those of the
control (P < .01). Thus, a radioadaptive response was
clearly demonstrated. From the γH2AX foci quantification, the adaptive responses
were considered to be associated with the efficient repair of DSB, especially
slow repair, in this cell line.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Chikao Sugie
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Masahiro Nakashima
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takuhito Kondo
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiromitsu Iwata
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Nagoya, Japan
| | | | - Yuta Shibamoto
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
21
|
Sakaguchi K, Shiraishi K, Kodama S. High susceptibility of mouse newborns to delayed appearance of DNA double-strand breaks in neural stem/progenitor cells exposed to ionizing radiation. JOURNAL OF RADIATION RESEARCH 2018; 59:685-691. [PMID: 30165446 PMCID: PMC6251430 DOI: 10.1093/jrr/rry069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/18/2018] [Indexed: 06/08/2023]
Abstract
Fetal brains are known to be extremely sensitive to ionizing radiation, which can induce structural and functional defects in the developing brain. However, there is less data on the effects of radiation on newborn brains. To determine the radiation sensitivity in newborn brains, we determined the number of DNA double-strand breaks (DSBs) appearing at later stage post-irradiation in neural stem/progenitor cells (NSPCs) of mouse newborns <3 days old, and compared it with the numbers of DSBs of fetal, 1-week-neonate, 2-week-neonate, and adult mice. DSBs in the nucleus were quantified by counting the number of foci of phosphorylated histone H2AX (γ-H2AX) in NPSCs using a newly developed computer program. Then, we irradiated 14-day fetuses, newborns <3 days old, 1-week-old neonates, 2-week-old neonates, and 12-week-old adult mice with 2 Gy of X-rays. At 6-7 weeks post-irradiation, the brain tissues isolated from the mice were incubated, and DSBs in the growing neurospheres were counted using a focus-counting program. The delayed appearance of DSBs by X-irradiation was evident in NSPCs derived from newborns <3 days old, as well as in 1-week-old neonates, 2-week-old neonates and adult mice, but not 14-day fetuses, at 6-7 weeks post-irradiation. It was of particular interest that the NSPCs of newborns were 2.5-fold more susceptible than those of adults to radiation-induced delayed appearance of DSBs, indicating that newborns <3 days old are the most vulnerable to the delayed effects of radiation among the mouse groups examined.
Collapse
Affiliation(s)
- Kenta Sakaguchi
- Laboratory of Radiation Biology, Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1–2 Gakuen-cho, Naka-ku, Sakai, Osaka, Japan
- Department of Radiology, Kindai University Hospital, 377-2 Ohnohigashi, Osakasayama, Osaka, Japan
| | - Kazunori Shiraishi
- Laboratory of Radiation Biology, Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1–2 Gakuen-cho, Naka-ku, Sakai, Osaka, Japan
| | - Seiji Kodama
- Laboratory of Radiation Biology, Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1–2 Gakuen-cho, Naka-ku, Sakai, Osaka, Japan
| |
Collapse
|
22
|
Khan K, Tewari S, Awasthi NP, Mishra SP, Agarwal GR, Rastogi M, Husain N. Flow cytometric detection of gamma-H2AX to evaluate DNA damage by low dose diagnostic irradiation. Med Hypotheses 2018; 115:22-28. [DOI: 10.1016/j.mehy.2018.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/14/2018] [Accepted: 03/25/2018] [Indexed: 01/25/2023]
|
23
|
Zarghami N, Murrell DH, Jensen MD, Dick FA, Chambers AF, Foster PJ, Wong E. Half brain irradiation in a murine model of breast cancer brain metastasis: magnetic resonance imaging and histological assessments of dose-response. Radiat Oncol 2018; 13:104. [PMID: 29859114 PMCID: PMC5984731 DOI: 10.1186/s13014-018-1028-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/13/2018] [Indexed: 01/09/2023] Open
Abstract
Background Brain metastasis is becoming increasingly prevalent in breast cancer due to improved extra-cranial disease control. With emerging availability of modern image-guided radiation platforms, mouse models of brain metastases and small animal magnetic resonance imaging (MRI), we examined brain metastases’ responses from radiotherapy in the pre-clinical setting. In this study, we employed half brain irradiation to reduce inter-subject variability in metastases dose-response evaluations. Methods Half brain irradiation was performed on a micro-CT/RT system in a human breast cancer (MDA-MB-231-BR) brain metastasis mouse model. Radiation induced DNA double stranded breaks in tumors and normal mouse brain tissue were quantified using γ-H2AX immunohistochemistry at 30 min (acute) and 11 days (longitudinal) after half-brain treatment for doses of 8, 16 and 24 Gy. In addition, tumor responses were assessed volumetrically with in-vivo longitudinal MRI and histologically for tumor cell density and nuclear size. Results In the acute setting, γ-H2AX staining in tumors saturated at higher doses while normal mouse brain tissue continued to increase linearly in the phosphorylation of H2AX. While γ-H2AX fluorescence intensities returned to the background level in the brain 11 days after treatment, the residual γ-H2AX phosphorylation in the radiated tumors remained elevated compared to un-irradiated contralateral tumors. With radiation, MRI-derived relative tumor growth was significantly reduced compared to the un-irradiated side. While there was no difference in MRI tumor volume growth between 16 and 24 Gy, there was a significant reduction in tumor cell density from histology with increasing dose. In the longitudinal study, nuclear size in the residual tumor cells increased significantly as the radiation dose was increased. Conclusions Radiation damages to the DNAs in the normal brain parenchyma are resolved over time, but remain unrepaired in the treated tumors. Furthermore, there is a radiation dose response in nuclear size of surviving tumor cells. Increase in nuclear size together with unrepaired DNA damage indicated that the surviving tumor cells post radiation had continued to progress in the cell cycle with DNA replication, but failed cytokinesis. Half brain irradiation provides efficient evaluation of dose-response for cancer cell lines, a pre-requisite to perform experiments to understand radio-resistance in brain metastases.
Collapse
Affiliation(s)
- Niloufar Zarghami
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Donna H Murrell
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada.,Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada
| | - Michael D Jensen
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Frederick A Dick
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada.,London Regional Cancer Program, University of Western Ontario, London, Ontario, Canada.,Department of Oncology, University of Western Ontario, London, Ontario, Canada
| | - Ann F Chambers
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada.,London Regional Cancer Program, University of Western Ontario, London, Ontario, Canada.,Department of Oncology, University of Western Ontario, London, Ontario, Canada
| | - Paula J Foster
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada.,Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada
| | - Eugene Wong
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada. .,London Regional Cancer Program, University of Western Ontario, London, Ontario, Canada. .,Department of Oncology, University of Western Ontario, London, Ontario, Canada. .,Department of Physics and Astronomy, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
24
|
Shen R, Liu D, Hou C, Liu D, Zhao L, Cheng J, Wang D, Bai D. Protective effect of Potentilla anserina polysaccharide on cadmium-induced nephrotoxicity in vitro and in vivo. Food Funct 2018; 8:3636-3646. [PMID: 28905953 DOI: 10.1039/c7fo00495h] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The aim of this research was to investigate the antioxidant and anti-apoptotic activities of Potentilla anserina polysaccharide (PAP) on kidney damage induced by cadmium (Cd) in vitro and in vivo. PAP has been suggested to have anti-oxidation, anti-apoptosis, immunoregulation, antimicrobial, antitussive, and expectorant abilities. In this study, PAP was extracted and the major components of PAP were analyzed. It was shown that PAP pretreatment remarkably improved redox homeostasis, both in human embryonic kidney 293 (HEK293) cells and in BALB/c mice. Administration of PAP attenuated the mitochondrial dysfunction, degeneration, and fibrosis of kidney induced by Cd. Furthermore, PAP exhibited anti-apoptotic activity, which involved regulating both the mitochondria-mediated intrinsic apoptotic pathway and the death receptor-initiated extrinsic pathway. These results suggest that PAP is a potential therapeutic agent for Cd-induced nephrotoxicity.
Collapse
Affiliation(s)
- Rong Shen
- Institute of Integrated Traditional Chinese and Western Medicine, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Pustovalova M, Astrelina ТA, Grekhova A, Vorobyeva N, Tsvetkova A, Blokhina T, Nikitina V, Suchkova Y, Usupzhanova D, Brunchukov V, Kobzeva I, Karaseva Т, Ozerov IV, Samoylov A, Bushmanov A, Leonov S, Izumchenko E, Zhavoronkov A, Klokov D, Osipov AN. Residual γH2AX foci induced by low dose x-ray radiation in bone marrow mesenchymal stem cells do not cause accelerated senescence in the progeny of irradiated cells. Aging (Albany NY) 2018; 9:2397-2410. [PMID: 29165316 PMCID: PMC5723693 DOI: 10.18632/aging.101327] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/11/2017] [Indexed: 01/09/2023]
Abstract
Mechanisms underlying the effects of low-dose ionizing radiation (IR) exposure (10-100 mGy) remain unknown. Here we present a comparative study of early (less than 24h) and delayed (up to 11 post-irradiation passages) radiation effects caused by low (80 mGy) vs intermediate (1000 mGy) dose X-ray exposure in cultured human bone marrow mesenchymal stem cells (MSCs). We show that γН2АХ foci induced by an intermediate dose returned back to the control value by 24 h post-irradiation. In contrast, low-dose irradiation resulted in residual γН2АХ foci still present at 24 h. Notably, these low dose induced residual γН2АХ foci were not co-localized with рАТМ foci and were observed predominantly in the proliferating Кi67 positive (Кi67+) cells. The number of γН2АХ foci and the fraction of nonproliferating (Кi67-) and senescent (SA-β-gal+) cells measured at passage 11 were increased in cultures exposed to an intermediate dose compared to unirradiated controls. These delayed effects were not seen in the progeny of cells that were irradiated with low-dose X-rays, although such exposure resulted in residual γН2АХ foci in directly irradiated cells. Taken together, our results support the hypothesis that the low-dose IR induced residual γH2AХ foci do not play a role in delayed irradiation consequences, associated with cellular senescence in cultured MSCs.
Collapse
Affiliation(s)
- Margarita Pustovalova
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow 123098, Russia.,Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Тatiana A Astrelina
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow 123098, Russia
| | - Anna Grekhova
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow 123098, Russia.,Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia.,Emanuel Institute for Biochemical Physics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Natalia Vorobyeva
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow 123098, Russia.,Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Anastasia Tsvetkova
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow 123098, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700, Russia
| | - Taisia Blokhina
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow 123098, Russia.,Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Victoria Nikitina
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow 123098, Russia
| | - Yulia Suchkova
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow 123098, Russia
| | - Daria Usupzhanova
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow 123098, Russia
| | - Vitalyi Brunchukov
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow 123098, Russia
| | - Irina Kobzeva
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow 123098, Russia
| | - Тatiana Karaseva
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow 123098, Russia
| | - Ivan V Ozerov
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow 123098, Russia.,Insilico Medicine, Inc, ETC, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Aleksandr Samoylov
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow 123098, Russia
| | - Andrey Bushmanov
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow 123098, Russia
| | - Sergey Leonov
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700, Russia.,Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Evgeny Izumchenko
- Department of Otolaryngology-Head and Neck Cancer Research, Johns Hopkins University, School of Medicine, Baltimore, MD 21218, USA
| | - Alex Zhavoronkov
- Insilico Medicine, Inc, ETC, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Dmitry Klokov
- Canadian Nuclear Laboratories, Chalk River, Ontario K0J1P0, Canada.,University of Ottawa, Ottawa, Ontario K1N6N5, Canada
| | - Andreyan N Osipov
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow 123098, Russia.,Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700, Russia.,Insilico Medicine, Inc, ETC, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
26
|
Koosha F, Neshasteh-Riz A, Takavar A, Eyvazzadeh N, Mazaheri Z, Eynali S, Mousavi M. The combination of A-966492 and Topotecan for effective radiosensitization on glioblastoma spheroids. Biochem Biophys Res Commun 2017; 491:1092-1097. [PMID: 28797568 DOI: 10.1016/j.bbrc.2017.08.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 08/04/2017] [Indexed: 11/18/2022]
Abstract
Radiotherapy is one of the modalities in the treatment of glioblastoma patients, but glioma tumors are resistant to radiation and also chemotherapy drugs. Thus, researchers are investigating drugs which have radiosensitization capabilities in order to improve radiotherapy. PARP enzymes and topoisomerase I enzymes have a critical role in repairing DNA damage in tumor cells. Thus, inhibiting activity of these enzymes helps stop DNA damage repair and increase DSB lethal damages. In the current study, we investigated the combination of TPT as a topoisomerase I inhibitor, and A-966492 as a novel PARP inhibitor for further radiosensitization. U87MG cells (a human glioblastoma cell line) were cultured in Poly-Hema coated flasks to reach 300 μm-diameter spheroids. Treatments were accomplished by using non-toxic concentrations of A-966492 and Topotecan. The surviving fraction of treated cells was determined by clonogenic assay after treatment with drugs and 6 MV X-ray. The γ-H2AX expression was measured by an immunofluorescence staining method to examine the influence of A-966492, TPT and radiation on the induction of double stranded DNA breaks. Treatments using the A-966492 drug were conducted in concentration of 1 μM. Combining A-966492 and TPT with radiation yielded enhanced cell killing, as demonstrated by a sensitizer enhancement ratio at 50% survival (SER50) 1.39 and 1.16 respectively. Radio- and chemo-sensitization was further enhanced when A-966492 was combined with both X-ray and TPT, with SER50 of 1.53. Also γ-H2AX expression was higher in the group treated with a combination of drugs and radiation. A-966492 is an effective PARP inhibitor and has significant radio-sensitivity on U87MG spheroids. By accumulating cells in the S phase and by inhibiting the DNA damage repair, TPT enhanced radio-sensitivity. A-966492 combined with TPT as a topoisomerase I inhibitor had additive radio-sensitizing effects. As a result, applying PARP and topoisomerase I inhibitors can be a suitable strategy for improving radiotherapy in clinics.
Collapse
Affiliation(s)
- Fereshteh Koosha
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Neshasteh-Riz
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Radiation Sciences, School of Para Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Abbas Takavar
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Nazila Eyvazzadeh
- Radiation Research Center, Faculty of Para Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Zohreh Mazaheri
- Department of Anatomical Sciences, Medical Sciences Faculty, Tarbiat Modares University, Tehran, Iran
| | - Samira Eynali
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mousavi
- School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| |
Collapse
|
27
|
Wang D, Chen Q, Tan Y, Liu B, Liu C. Ellagic acid inhibits human glioblastoma growth in vitro and in vivo. Oncol Rep 2016; 37:1084-1092. [PMID: 28035411 DOI: 10.3892/or.2016.5331] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/23/2016] [Indexed: 11/06/2022] Open
Abstract
Ellagic acid (EA) is present in various fruits and plants and has recently been found to possess anticarcinogenic effects. The objective of this study was to investigate the anti‑glioblastoma effect of EA and its mechanisms in vitro and in vivo. We first studied the anticancer activity of EA in U87 and U118 human glioblastoma cell lines. The cell viability and cell proliferation were examined by Cell Counting Kit-8 (CCK-8) assay and 5-ethynyl-2'-deoxyuridine staining respectively. The cell cycle was detected with propidium iodide staining method by flow cytometry and the DNA damage of the cells caused by EA exposure was evaluated by detection of γ-H2AX foci. Then we examined the effect of EA on tumor growth in glioblastoma xenografted mice, and expression of Akt and Notch signaling and their target gene products were detected by immunohistochemistry and western blot analysis. As a result, we found that the cell viability and proliferation of glioblastoma cells treated with EA were significantly suppressed compared with the control; EA significantly increased the proportion of cells in the S phase accompanied by a decrease in the population in the G1 and G2/M phase in both cell lines. Meanwhile, the level of DNA damage in the EA-treated group was significantly higher than that of the control. Treatment of glioblastoma in xenografted mice by EA led to a significant suppression in tumor growth. EA upregulated the expression of E-cadherin and inhibited the expression of Snail, matrix metalloproteinase (MMP)-2 and MMP-9. EA also inhibited the expression of Bcl-2, cyclin D1, cyclin-dependent kinase (CDK)2 and CDK6 in U87 xenograft tissues. In addition, significant suppression of Akt and Notch was found in the xenografts of the tumor-bearing mice treated with EA. These data indicate that EA can suppress glioblastoma proliferation and invasion by inhibiting the Akt and Notch signaling pathways, which suggests that EA may be beneficial for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Dongliang Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yinqiu Tan
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Baohui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Chao Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
28
|
STAT3 modulates β-cell cycling in injured mouse pancreas and protects against DNA damage. Cell Death Dis 2016; 7:e2272. [PMID: 27336716 PMCID: PMC5143397 DOI: 10.1038/cddis.2016.171] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 12/22/2022]
Abstract
Partial pancreatic duct ligation (PDL) of mouse pancreas induces a doubling of the β-cell mass mainly through proliferation of pre-existing and newly formed β-cells. The molecular mechanism governing this process is still largely unknown. Given the inflammatory nature of PDL and inflammation-induced signaling via the signal transducer and activator of transcription 3 (STAT3), the activation and the role of STAT3 in PDL-induced β-cell proliferation were investigated. Duct ligation stimulates the expression of several cytokines that can act as ligands inducing STAT3 signaling and phosphorylation in β-cells. β-Cell cycling increased by conditional β-cell-specific Stat3 knockout and decreased by STAT3 activation through administration of interleukin-6. In addition, the level of DNA damage in β-cells of PDL pancreas increased after deletion of Stat3. These data indicate a role for STAT3 in maintaining a steady state in the β-cell, by modulating its cell cycle and protection from DNA damage.
Collapse
|
29
|
Zhou Q, Hu W, Fei X, Huang X, Chen X, Zhao D, Huang J, Jiang L, Wang G. Recombinant human neuregulin-1β is protective against radiation-induced myocardial cell injury. Mol Med Rep 2016; 14:325-30. [PMID: 27150576 DOI: 10.3892/mmr.2016.5207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 04/05/2016] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the role of recombinant human neuregulin-1β (rhNRG-1β) in the repair of the radiation-induced damage of myocardial cells and the underlying mechanism. Rats were divided into the radiotherapy alone group, the rhNRG-1β group (radiotherapy with rhNRG‑1β treatment) and the Herceptin group (radiotherapy with Herceptin treatment), and their myocardial cells were analyzed. The morphology of the myocardial cells was observed under an optical microscope, and the expression of γ‑H2AX and p53 was analyzed using immunohistochemistry and western blot analysis. Damage to the myocardial cells was identified in the three groups following radiation treatment, which was identified by cell swelling and altered morphology. The integrated optical density values of γ‑H2AX in the radiotherapy alone, rhNRG‑1β and Herceptin groups were 50.96±5.548, 27.63±10.61 and 76.12±2.084, respectively. The OD of the radiotherapy alone group was significantly higher than that of the rhNRG‑1β treated group (P<0.0001), and the value of the Herceptin group was significantly higher than that of the radiotherapy alone group (P<0.0001). The p53 level in the rhNRG‑1β group was less than that of the radiotherapy alone group (P<0.001), and was higher in the Herceptin group compared with the radiotherapy alone group (P<0.0001). Thus, rhNRG‑1β can ameliorate radiotherapy-induced myocardial cell injury, predominantly by enhancing myocardial cell DNA repair, inhibiting cell apoptosis and improving myocardial function. The results of this study in myocardial cells suggest that patients with thoracic cancer may benefit from treatment with rhNRG‑1β for the repair of the radiation-induced damage of myocardial cells.
Collapse
Affiliation(s)
- Qiang Zhou
- Department of Medical Oncology, Huangshi Central Hospital, Huangshi, Hubei 435000, P.R. China
| | - Wenbing Hu
- Department of Medical Oncology, Huangshi Central Hospital, Huangshi, Hubei 435000, P.R. China
| | - Xinxiong Fei
- Department of Medical Oncology, Huangshi Central Hospital, Huangshi, Hubei 435000, P.R. China
| | - Xuqun Huang
- Department of Medical Oncology, Huangshi Central Hospital, Huangshi, Hubei 435000, P.R. China
| | - Xi Chen
- Department of Medical Oncology, Huangshi Central Hospital, Huangshi, Hubei 435000, P.R. China
| | - Deqing Zhao
- Department of Medical Oncology, Huangshi Central Hospital, Huangshi, Hubei 435000, P.R. China
| | - Jun Huang
- Department of Medical Oncology, Huangshi Central Hospital, Huangshi, Hubei 435000, P.R. China
| | - Lan Jiang
- Department of Medical Oncology, Huangshi Central Hospital, Huangshi, Hubei 435000, P.R. China
| | - Gangsheng Wang
- Department of Medical Oncology, Huangshi Central Hospital, Huangshi, Hubei 435000, P.R. China
| |
Collapse
|
30
|
Lapytsko A, Kollarovic G, Ivanova L, Studencka M, Schaber J. FoCo: a simple and robust quantification algorithm of nuclear foci. BMC Bioinformatics 2015; 16:392. [PMID: 26589438 PMCID: PMC4654864 DOI: 10.1186/s12859-015-0816-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/07/2015] [Indexed: 12/11/2022] Open
Abstract
Background The number of γH2AX foci per nucleus is an accepted measure of the number of DNA double-strand breaks in single cells. One of the experimental techniques for γH2AX detection in cultured cells is immunofluorescent labelling of γH2AX and nuclei followed by microscopy imaging and analysis. Results In this study, we present the algorithm FoCo for reliable and robust automatic nuclear foci counting in single cell images. FoCo has the following advantages with respect to other software packages: i) the ability to reliably quantify even densely distributed foci, e.g., on images of cells subjected to radiation doses up to 10 Gy, ii) robustness of foci quantification in the sense of suppressing out-of-focus background signal, and iii) its simplicity. FoCo requires only 5 parameters that have to be adjusted by the user. Conclusions FoCo is an open-source user-friendly software with GUI for individual foci counting, which is able to produce reliable and robust foci quantifications even for low signal/noise ratios and densely distributed foci. Electronic supplementary material The online version of this article (doi:10.1186/s12859-015-0816-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anastasiya Lapytsko
- Medical Faculty, Institute for Experimental Internal Medicine, Otto von Guericke University, Pfälzer Platz 2, 39106, Magdeburg, Germany.
| | - Gabriel Kollarovic
- Medical Faculty, Institute for Experimental Internal Medicine, Otto von Guericke University, Pfälzer Platz 2, 39106, Magdeburg, Germany. .,Cancer Research Institute, Slovak Academy of Sciences, Vlarska 7, 83391, Bratislava, Slovakia.
| | - Lyubomira Ivanova
- Medical Faculty, Institute for Experimental Internal Medicine, Otto von Guericke University, Pfälzer Platz 2, 39106, Magdeburg, Germany.
| | - Maja Studencka
- Medical Faculty, Institute for Experimental Internal Medicine, Otto von Guericke University, Pfälzer Platz 2, 39106, Magdeburg, Germany.
| | - Jörg Schaber
- Medical Faculty, Institute for Experimental Internal Medicine, Otto von Guericke University, Pfälzer Platz 2, 39106, Magdeburg, Germany.
| |
Collapse
|
31
|
Borràs M, Armengol G, De Cabo M, Barquinero JF, Barrios L. Comparison of methods to quantify histone H2AX phosphorylation and its usefulness for prediction of radiosensitivity. Int J Radiat Biol 2015; 91:915-24. [DOI: 10.3109/09553002.2015.1101501] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Oeck S, Malewicz NM, Hurst S, Rudner J, Jendrossek V. The Focinator - a new open-source tool for high-throughput foci evaluation of DNA damage. Radiat Oncol 2015; 10:163. [PMID: 26238507 PMCID: PMC4554354 DOI: 10.1186/s13014-015-0453-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 07/05/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The quantitative analysis of foci plays an important role in many cell biological methods such as counting of colonies or cells, organelles or vesicles, or the number of protein complexes. In radiation biology and molecular radiation oncology, DNA damage and DNA repair kinetics upon ionizing radiation (IR) are evaluated by counting protein clusters or accumulations of phosphorylated proteins recruited to DNA damage sites. Consistency in counting and interpretation of foci remains challenging. Many current software solutions describe instructions for time-consuming and error-prone manual analysis, provide incomplete algorithms for analysis or are expensive. Therefore, we aimed to develop a tool for costless, automated, quantitative and qualitative analysis of foci. METHODS For this purpose we integrated a user-friendly interface into ImageJ and selected parameters to allow automated selection of regions of interest (ROIs) depending on their size and circularity. We added different export options and a batch analysis. The use of the Focinator was tested by analyzing γ-H2.AX foci in murine prostate adenocarcinoma cells (TRAMP-C1) at different time points after IR with 0.5 to 3 Gray (Gy). Additionally, measurements were performed by users with different backgrounds and experience. RESULTS The Focinator turned out to be an easily adjustable tool for automation of foci counting. It significantly reduced the analysis time of radiation-induced DNA-damage foci. Furthermore, different user groups were able to achieve a similar counting velocity. Importantly, there was no difference in nuclei detection between the Focinator and ImageJ alone. CONCLUSIONS The Focinator is a costless, user-friendly tool for fast high-throughput evaluation of DNA repair foci. The macro allows improved foci evaluation regarding accuracy, reproducibility and analysis speed compared to manual analysis. As innovative option, the macro offers a combination of multichannel evaluation including colocalization analysis and the possibility to run all analyses in a batch mode.
Collapse
Affiliation(s)
- Sebastian Oeck
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Virchowstrasse 173, 45122, Essen, Germany.
| | - Nathalie M Malewicz
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Virchowstrasse 173, 45122, Essen, Germany.
| | - Sebastian Hurst
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Virchowstrasse 173, 45122, Essen, Germany.
| | - Justine Rudner
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Virchowstrasse 173, 45122, Essen, Germany.
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Virchowstrasse 173, 45122, Essen, Germany.
| |
Collapse
|
33
|
Garolla A, Cosci I, Bertoldo A, Sartini B, Boudjema E, Foresta C. DNA double strand breaks in human spermatozoa can be predictive for assisted reproductive outcome. Reprod Biomed Online 2015; 31:100-7. [DOI: 10.1016/j.rbmo.2015.03.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 03/21/2015] [Accepted: 03/26/2015] [Indexed: 10/23/2022]
|
34
|
Wojewodzka M, Sommer S, Kruszewski M, Sikorska K, Lewicki M, Lisowska H, Wegierek-Ciuk A, Kowalska M, Lankoff A. Defining Blood Processing Parameters for Optimal Detection of γ-H2AX Foci: A Small Blood Volume Method. Radiat Res 2015; 184:95-104. [PMID: 26121226 DOI: 10.1667/rr13897.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Biodosimetric methods used to measure the effects of radiation are critical for estimating the health risks to irradiated individuals or populations. The direct measurement of radiation-induced γ-H2AX foci in peripheral blood lymphocytes is one approach that provides a useful end point for triage. Despite the documented advantages of the γ-H2AX assay, there is considerable variation among laboratories regarding foci formation in the same exposure conditions and cell lines. Taking this into account, the goal of our study was to evaluate the influence of different blood processing parameters on the frequency of γ-H2AX foci and optimize a small blood volume protocol for the γ-H2AX assay, which simulates the finger prick blood collection method. We found that the type of fixative, temperature and blood processing time markedly affect the results of the γ-H2AX assay. In addition, we propose a protocol for the γ-H2AX assay that may serve as a potential guideline in the event of large-scale radiation incidents.
Collapse
Affiliation(s)
- Maria Wojewodzka
- a Institute of Nuclear Chemistry and Technology, Centre for Radiobiology and Biological Dosimetry, Warsaw, Poland
| | - Sylwester Sommer
- a Institute of Nuclear Chemistry and Technology, Centre for Radiobiology and Biological Dosimetry, Warsaw, Poland
| | - Marcin Kruszewski
- a Institute of Nuclear Chemistry and Technology, Centre for Radiobiology and Biological Dosimetry, Warsaw, Poland;,b Faculty of Medicine, University of Information Technology and Management in Rzeszow, 35-225 Rzeszow, Poland
| | - Katarzyna Sikorska
- a Institute of Nuclear Chemistry and Technology, Centre for Radiobiology and Biological Dosimetry, Warsaw, Poland
| | - Maciej Lewicki
- c Faculty of Physics and Astronomy, University of Wroclaw, 0-204 Wroclaw, Poland; and
| | - Halina Lisowska
- d Jan Kochanowski University, Institute of Biology, Department of Radiobiology and Immunology, 25-406 Kielce, Poland
| | - Aneta Wegierek-Ciuk
- d Jan Kochanowski University, Institute of Biology, Department of Radiobiology and Immunology, 25-406 Kielce, Poland
| | - Magdalena Kowalska
- d Jan Kochanowski University, Institute of Biology, Department of Radiobiology and Immunology, 25-406 Kielce, Poland
| | - Anna Lankoff
- a Institute of Nuclear Chemistry and Technology, Centre for Radiobiology and Biological Dosimetry, Warsaw, Poland;,d Jan Kochanowski University, Institute of Biology, Department of Radiobiology and Immunology, 25-406 Kielce, Poland
| |
Collapse
|
35
|
Yang JA, Li JQ, Shao LM, Yang Q, Liu BH, Wu TF, Wu P, Yi W, Chen QX. Puerarin inhibits proliferation and induces apoptosis in human glioblastoma cell lines. Int J Clin Exp Med 2015; 8:10132-10142. [PMID: 26309712 PMCID: PMC4538072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/10/2015] [Indexed: 06/04/2023]
Abstract
Puerarin has been widely used in clinical treatment and experiment research and is considered to exert an anticancer effect recently. The present study investigated the anticancer activity of puerarin in U251 and U87 human glioblastoma cells. The cells were treated with puerarin at various concentrations for different times. Cell viability and cell proliferation were detected by cell counting kit-8 (CCK-8) assay and 5-ethynyl-2'-deoxyuridine (EdU) staining respectively. Cell cycle and apoptosis were measured separately with PI staining and Annexin V-FITC/PI double staining method by flow cytometry. DNA damage of glioblastoma cells caused by puerarin exposure was evaluated by γ-H2AX foci detection, and the expressions of p-AKT, caspase-3 and apoptosis-related proteins were detected by Western blotting after puerarin treatment. Cell viability and proliferation of glioblastoma cells treated with puerarin were significantly lower than that of the control group; the apoptosis rate increased obviously compared to the control group. Puerarin significantly decreased the proportion at G1 phase of cell cycling accompanied by increased populations at the S and G2/M phases in both cell lines. At the same time, DNA damage level of puerarin treated cells was significantly higher than that in the control cells. Moreover, puerarin treatment suppressed the expression of p-Akt and Bcl-2 and promoted the expression of Bax and cleaved caspase-3 in U251 cells. These findings indicate that puerarin exerts antitumor effects both in U251 and U87 cells.
Collapse
Affiliation(s)
- Ji-An Yang
- Department of Neurosurgery, Renmin Hospital of Wuhan UniversityWuhan 430060, Hubei, P. R. China
| | - Ji-Qiang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan UniversityWuhan 430060, Hubei, P. R. China
| | - Ling-Min Shao
- Department of Neurosurgery, Renmin Hospital of Wuhan UniversityWuhan 430060, Hubei, P. R. China
| | - Qian Yang
- Department of Nephrology, Renmin Hospital of Wuhan UniversityWuhan 430060, Hubei, P. R. China
| | - Bao-Hui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan UniversityWuhan 430060, Hubei, P. R. China
| | - Ting-Feng Wu
- Department of Neurosurgery, Renmin Hospital of Wuhan UniversityWuhan 430060, Hubei, P. R. China
| | - Peng Wu
- Department of Neurosurgery, Renmin Hospital of Wuhan UniversityWuhan 430060, Hubei, P. R. China
| | - Wei Yi
- Department of Neurosurgery, Renmin Hospital of Wuhan UniversityWuhan 430060, Hubei, P. R. China
| | - Qian-Xue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan UniversityWuhan 430060, Hubei, P. R. China
| |
Collapse
|
36
|
Nikolova T, Dvorak M, Jung F, Adam I, Krämer E, Gerhold-Ay A, Kaina B. The γH2AX Assay for Genotoxic and Nongenotoxic Agents: Comparison of H2AX Phosphorylation with Cell Death Response. Toxicol Sci 2014; 140:103-17. [DOI: 10.1093/toxsci/kfu066] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|