1
|
Deng Q, Yao X, Fang S, Sun Y, Liu L, Li C, Li G, Guo Y, Liu J. Mast cell-mediated microRNA functioning in immune regulation and disease pathophysiology. Clin Exp Med 2025; 25:38. [PMID: 39812911 PMCID: PMC11735496 DOI: 10.1007/s10238-024-01554-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/28/2024] [Indexed: 01/16/2025]
Abstract
Upon stimulation and activation, mast cells (MCs) release soluble mediators, including histamine, proteases, and cytokines. These mediators are often stored within cytoplasmic granules in MCs and may be released in a granulated form. The secretion of cytokines and chemokines occurs within hours following activation, with the potential to result in chronic inflammation. In addition to their role in allergic inflammation, MCs are components of the tumor microenvironment (TME). MicroRNAs (miRNAs) are small RNA molecules that do not encode proteins, but regulate post-transcriptional gene expression by binding to the 3' non-coding regions of mRNAs. This plays a crucial role in the function of MC, including the key processes of MC proliferation, maturation, apoptosis, and activation. It has been demonstrated that miRNAs are also present in extracellular vesicles (EVs) secreted by MCs. EVs derived from MCs mediate intercellular communication by carrying miRNAs, affecting various diseases including allergic diseases, intestinal disorders, neuroinflammation, and tumors. These findings provide important insights into the therapeutic mechanisms and targets of miRNAs in MCs that affect diseases. This review discusses the relevance of miRNA production by MCs in regulating their own activity and the effect of miRNAs putatively produced by other cells in the control of MC activity and their participation in selected pathologies.
Collapse
Affiliation(s)
- Qiuping Deng
- Department of Clinical Laboratory, Chengdu Jinjiang Hospital for Women's and Children's Health, Chengdu, 610016, Sichuan, China
| | - Xiuju Yao
- Department of Clinical Laboratory, 363 Hospital, Chengdu, 610016, Sichuan, China
| | - Siyun Fang
- Department of Clinical Laboratory, Chengdu Jinjiang Hospital for Women's and Children's Health, Chengdu, 610016, Sichuan, China
| | - Yueshan Sun
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, China
| | - Lei Liu
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, China
| | - Chao Li
- Department of Clinical Laboratory, Chengdu Jinjiang Hospital for Women's and Children's Health, Chengdu, 610016, Sichuan, China
| | - Guangquan Li
- Department of Clinical Laboratory, 363 Hospital, Chengdu, 610016, Sichuan, China
| | - Yuanbiao Guo
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, China.
| | - Jinbo Liu
- The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
2
|
Xu M, Ren M, Zhang X, Peng W, Li H, Liao W, Xie J, Zhang X. Mesenchymal stem cell-derived small extracellular vesicles restored nasal barrier function in allergic rhinitis via miR-143-GSK3B in human nasal epithelial cells. J Allergy Clin Immunol 2024:S0091-6749(24)01185-0. [PMID: 39542141 DOI: 10.1016/j.jaci.2024.10.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 08/05/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND The nasal epithelial barrier is the first line of defense against the deep entry of pathogens or aeroallergens and is more critical in allergic rhinitis (AR). Restoring epithelial barrier dysfunction might be a promising strategy for AR. Recent studies reported that mesenchymal stem cell-derived small extracellular vesicles (MSC-sEV) potentially inhibit the inflammation response and promote tissue regeneration. However, their effect on nasal epithelial cells remains unknown. OBJECTIVES This study sought to describe the therapeutic effect of MSC-sEV on AR, particularly focusing their effect on nasal epithelial cells and underlying molecular mechanisms. METHODS We utilized an ovalbumin-induced mouse model to study AR. Both primary and immortalized human nasal epithelial cells (HNEpC) were used to further validate the therapeutic effects of MSC-sEV on epithelial cell function. Then we constructed microRNA (miR)-143 overexpressing and low-expressing HNEpC and MSC-sEV to elucidate molecular mechanisms. Transcriptome analysis was performed to identify the downstream pathways involved. RESULTS MSC-sEV successfully maintained nasal barrier integrity in AR mouse model. The MSC-sEV therapeutic effect on the nasal barrier was substantiated in HNEpC. Mechanistically, miR-143 was a candidate mediator of the above effects. Subsequently, transfecting HNEpC with miR-143 partially mimicked the restoring effect of MSC-sEV. MSC-sEV overexpressing miR-143 exerted more therapeutic effects on tight junctions and barrier integrity. Moreover, miR-143 regulated the glycogen synthase kinase-3β (GSK3B) pathway. CONCLUSIONS Our results indicated that MSC-sEV mitigated AR and restored nasal epithelial barrier dysfunction through the miR-143-GSK3B axis, which suggested that MSC-sEV have the remarkable ability to treat AR.
Collapse
Affiliation(s)
- Meiqian Xu
- The State Key Laboratory of Respiratory Disease, Department of Otolaryngology, Head and Neck Surgery, Laboratory of Otolaryngology-Head and Neck Surgery, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Innovation and Transformation Platform of Upper Airway Disease in Guangdong Province, Guangzhou, China
| | - Mei Ren
- The State Key Laboratory of Respiratory Disease, Department of Otolaryngology, Head and Neck Surgery, Laboratory of Otolaryngology-Head and Neck Surgery, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Innovation and Transformation Platform of Upper Airway Disease in Guangdong Province, Guangzhou, China
| | - Xinyin Zhang
- The State Key Laboratory of Respiratory Disease, Department of Otolaryngology, Head and Neck Surgery, Laboratory of Otolaryngology-Head and Neck Surgery, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Innovation and Transformation Platform of Upper Airway Disease in Guangdong Province, Guangzhou, China
| | - Wenxu Peng
- The State Key Laboratory of Respiratory Disease, Department of Otolaryngology, Head and Neck Surgery, Laboratory of Otolaryngology-Head and Neck Surgery, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Innovation and Transformation Platform of Upper Airway Disease in Guangdong Province, Guangzhou, China
| | - Hao Li
- The State Key Laboratory of Respiratory Disease, Department of Otolaryngology, Head and Neck Surgery, Laboratory of Otolaryngology-Head and Neck Surgery, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Innovation and Transformation Platform of Upper Airway Disease in Guangdong Province, Guangzhou, China
| | - Wenjing Liao
- The State Key Laboratory of Respiratory Disease, Department of Otolaryngology, Head and Neck Surgery, Laboratory of Otolaryngology-Head and Neck Surgery, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Innovation and Transformation Platform of Upper Airway Disease in Guangdong Province, Guangzhou, China.
| | - Jianlei Xie
- The State Key Laboratory of Respiratory Disease, Department of Otolaryngology, Head and Neck Surgery, Laboratory of Otolaryngology-Head and Neck Surgery, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Innovation and Transformation Platform of Upper Airway Disease in Guangdong Province, Guangzhou, China.
| | - Xiaowen Zhang
- The State Key Laboratory of Respiratory Disease, Department of Otolaryngology, Head and Neck Surgery, Laboratory of Otolaryngology-Head and Neck Surgery, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Innovation and Transformation Platform of Upper Airway Disease in Guangdong Province, Guangzhou, China.
| |
Collapse
|
3
|
Matsuda M, Shimizu S, Kitatani K, Nabe T. Extracellular Vesicles Derived from Allergen Immunotherapy-Treated Mice Suppressed IL-5 Production from Group 2 Innate Lymphoid Cells. Pathogens 2022; 11:1373. [PMID: 36422624 PMCID: PMC9693437 DOI: 10.3390/pathogens11111373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 07/28/2024] Open
Abstract
Allergen immunotherapy (AIT), such as subcutaneous immunotherapy (SCIT), is a treatment targeting the causes of allergic diseases. The roles of extracellular vesicles (EVs), bilayer lipid membrane blebs released from all types of cells, in AIT have not been clarified. To examine the roles of EVs in SCIT, it was analyzed whether (1) EVs are phenotypically changed by treatment with SCIT, and (2) EVs derived from SCIT treatment suppress the function of group 2 innate lymphoid cells (ILC2s), which are major cells contributing to type 2 allergic inflammation. As a result, (1) expression of CD9, a canonical EV marker, was highly up-regulated by SCIT in a murine model of asthma; and (2) IL-5 production from ILC2s in vitro was significantly decreased by the addition of serum EVs derived from SCIT-treated but not non-SCIT-treated mice. In conclusion, it was indicated that EVs were transformed by SCIT, changing to a suppressive phenotype of type 2 allergic inflammation.
Collapse
Affiliation(s)
| | | | | | - Takeshi Nabe
- Laboratory of Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge cho, Hirakata 573-0101, Japan
| |
Collapse
|
4
|
Jakwerth CA, Kitzberger H, Pogorelov D, Müller A, Blank S, Schmidt-Weber CB, Zissler UM. Role of microRNAs in type 2 diseases and allergen-specific immunotherapy. FRONTIERS IN ALLERGY 2022; 3:993937. [PMID: 36172292 PMCID: PMC9512106 DOI: 10.3389/falgy.2022.993937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/11/2022] [Indexed: 12/07/2022] Open
Abstract
MicroRNAs (miRs) have gained scientific attention due to their importance in the pathophysiology of allergic diseases as well as their potential as biomarkers in allergen-specific treatment options. Their function as post-transcriptional regulators, controlling various cellular processes, is of high importance since any single miR can target multiple mRNAs, often within the same signalling pathway. MiRs can alter dysregulated expression of certain cellular responses and contribute to or cause, but in some cases prevent or repress, the development of various diseases. In this review article, we describe current research on the role of specific miRs in regulating immune responses in epithelial cells and specialized immune cells in response to various stimuli, in allergic diseases, and regulation in the therapeutic approach of allergen-specific immunotherapy (AIT). Despite the fact that AIT has been used successfully as a causative treatment option since more than a century, very little is known about the mechanisms of regulation and its connections with microRNAs. In order to fill this gap, this review aims to provide an overview of the current knowledge.
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW MicroRNAs (miRNAs) are small noncoding RNA molecules that are considered one of the fundamental regulatory mechanisms of gene expression. They are involved in many biologic processes, such as signal transduction, cell proliferation and differentiation, apoptosis and stress responses. The purpose of this review is to present recent knowledge about the role of miRNAs in asthma and outline possible applications of miRNAs. RECENT FINDINGS A core set of miRNAs involved in asthma includes downregulated let-7 family, miR-193b, miR-375 as well as upregulated miR-21, miR-223, miR-146a, miR-142-5p, miR-142-3p, miR-146b and miR-155. Recently it has been shown that most of the involved miRNAs increase secretion of Th2 cytokines, decrease secretion of Th1 cytokines, promote differentiation of T cells towards Th2 or play a role in hyperplasia and hypertrophy of bronchial smooth muscle cells. The profiles of miRNAs correlate with clinical characteristics, including lung function, phenotype and severity of asthma. SUMMARY Recent publications confirmed crucial regulatory role of miRNAs in the pathomechanism of asthma. Some single miRNAs or their sets hold the promise for their use as asthma biomarkers facilitating diagnosis or prediction of treatment outcomes. They are also possible target of future therapies. The studies in this field are lacking though.
Collapse
|
6
|
Zu Y, Chen XF, Li Q, Zhang ST. CYT387, a Novel JAK2 Inhibitor, Suppresses IL-13-Induced Epidermal Barrier Dysfunction Via miR-143 Targeting IL-13Rα1 and STAT3. Biochem Genet 2020; 59:531-546. [PMID: 33190168 DOI: 10.1007/s10528-020-10003-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 09/18/2020] [Indexed: 11/24/2022]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease influencing not only children but also adults. It is well-known that AD has a complex pathogenesis without effective therapy. Herein, we explored the function and mechanism of CYT387, a novel JAK2 inhibitor, on epidermal barrier damage. HaCaT cells exposed with high-concentration Ca2+ (1.8 mM) for 14 days were recruited for the model of keratinocytes (KC). The cell model of skin barrier damage was induced by IL-13, and KC markers such as filaggrin (FLG), loricrin (LOR), and involucrin (IVL) were detected to judge the success of the model. In this study, we found that miR-143 was lowly expressed whereas IL-13Rα1 was highly expressed in blood cells of patients with AD, indicating their negative correlation. Moreover, IL-13 treatment down-regulated miR-143 and up-regulated activated JAK2 and STAT3 phosphorylation, which was reversed by CYT387 administration. The dual-luciferase reporter assay verified that miR-143 could directly bind to 3'-UTR of IL-13Rα1, as well as STAT3. Furthermore, the function of CYT387 in the skin barrier damage induced by IL-13 was abolished by miR-143 inhibitor. Thus, CYT387 might alleviate IL-13-induced epidermal barrier damage via targeting IL-13Rα1 and STAT3 by miR-143 to repress inflammation. These findings revealed that the protective effects and the underlying mechanisms of CYT387 in AD, which provided evidence that miR-143 may be a novel therapeutic target for AD.
Collapse
Affiliation(s)
- Yan Zu
- School of Mechanical and Material Engineering, North China University of Technology, No. 5 Jinyuanzhuang Road, Shijingshan District, Beijing, 100144, People's Republic of China.
| | - Xiao-Fei Chen
- Beijing Institute of Astronautical System Engineering, Beijing, 10076, People's Republic of China
| | - Qiang Li
- School of Mechanical and Material Engineering, North China University of Technology, No. 5 Jinyuanzhuang Road, Shijingshan District, Beijing, 100144, People's Republic of China
| | - Shu-Ting Zhang
- School of Mechanical and Material Engineering, North China University of Technology, No. 5 Jinyuanzhuang Road, Shijingshan District, Beijing, 100144, People's Republic of China
| |
Collapse
|
7
|
Abstract
Mast cells are innate immune cells that intersect with the adaptive immunity and play a crucial role in the initiation of allergic reactions and the host defense against certain parasites and venoms. When activated in an allergen- and immunoglobulin E (IgE)-dependent manner, these cells secrete a large variety of allergenic mediators that are pre-stored in secretory granules or
de novo–synthesized. Traditionally, studies have predominantly focused on understanding this mechanism of mast cell activation and regulation. Along this line of study, recent studies have shed light on what structural features are required for allergens and how IgE, particularly anaphylactic IgE, is produced. However, the last few years have seen a flurry of new studies on IgE-independent mast cell activation, particularly via Mrgprb2 (mouse) and MRGPRX2 (human). These studies have greatly advanced our understanding of how mast cells exert non-histaminergic itch, pain, and drug-induced pseudoallergy by interacting with sensory neurons. Recent studies have also characterized mast cell activation and regulation by interleukin-33 (IL-33) and other cytokines and by non-coding RNAs. These newly identified mechanisms for mast cell activation and regulation will further stimulate the allergy/immunology community to develop novel therapeutic strategies for treatment of allergic and non-allergic diseases.
Collapse
Affiliation(s)
- Hwan Soo Kim
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, California, 92037, USA.,Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Yu Kawakami
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, California, 92037, USA
| | - Kazumi Kasakura
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, California, 92037, USA
| | - Toshiaki Kawakami
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, California, 92037, USA.,Department of Dermatlogy, University of California San Diego, School of Medicine, La Jolla, CA, 92093, USA
| |
Collapse
|
8
|
Huang Y, Guo ZQ, Zhang RX, Zhao RW, Dong WY, Wang H, Deng CR, Zhuang GS. Effect of PM2.5 on MicroRNA Expression and Function in Nasal Mucosa of Rats With Allergic Rhinitis. Am J Rhinol Allergy 2020; 34:543-553. [PMID: 32192351 DOI: 10.1177/1945892420912367] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Particulate matter 2.5 (PM2.5) refers to particulate matter with aerodynamic equivalent diameter less than or equal to 2.5 µm, which is an important component of air pollution. PM2.5 aggravates allergic rhinitis (AR) and promotes AR nasal mucosa inflammation. Therefore, the influence of PM2.5 inhalation exposure on microRNA (miRNA) expression profiles and function in the nasal mucosa of AR rats was investigated. METHODS Female Sprague Dawley rats were distributed randomly to 2 groups: AR model PM2.5 exposure group (ARE group) and AR model PM2.5-unexposed control group (ARC group). The rats of ARE group were made to inhale PM2.5 at a concentration of 200 µg/m3, 3 h/day, for 30 days. miRNA expression profiles of the nasal mucosa from both groups were determined using an miRNA gene chip and were verified by quantitative real-time PCR (qRT-PCR). Gene function enrichment analysis was performed using bioinformatics analysis. RESULTS The ARE group revealed 20 significantly differentially expressed miRNAs, including 4 upregulated and 16 downregulated miRNAs (fold change > 1.5 or < 0.66, P < .05). Of these, 9 selected miRNAs were verified by qRT-PCR, and the results of 8 miRNAs were in accordance with the miRNA gene chip results, with highly positive correlation (r = .8583, P = .0031). Numerous target genes of differentially expressed miRNAs were functionally enriched in high-affinity immunoglobulin E receptor signaling, ErbB signaling, mucin O-glycans biosynthesis, transforming growth factor β signaling, mitogen-activated protein kinase signal transduction, phosphatidylinositol signaling, mucopolysaccharide biosynthesis, mammalian target of rapamycin signaling, T cell receptor signaling, Wnt signaling, chemokine signal transduction, and natural killer cell-mediated cytotoxicity pathways. CONCLUSIONS PM2.5 causes significant changes in miRNA expression in the nasal mucosa of AR rats. miRNA plays an important role in regulating PM2.5 effects in AR rat biological behavior and mucosal inflammation. This study provides a theoretical basis for the prevention and treatment of AR from the effects of environmental pollution on the gene regulation mechanism.
Collapse
Affiliation(s)
- Yu Huang
- Department of Otorhinolaryngology, Head and Neck Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Zhi-Qiang Guo
- Department of Otorhinolaryngology, Head and Neck Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Ru-Xin Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Ren-Wu Zhao
- Department of Otorhinolaryngology, Head and Neck Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Wei-Yang Dong
- Department of Environmental Science and Engineering, Center for Atmospheric Chemistry Study, Fudan University, Shanghai, China
| | - Hong Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Cong-Rui Deng
- Department of Environmental Science and Engineering, Center for Atmospheric Chemistry Study, Fudan University, Shanghai, China
| | - Guo-Shun Zhuang
- Department of Environmental Science and Engineering, Center for Atmospheric Chemistry Study, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Jia QN, Zeng YP. Rapamycin blocks the IL-13-induced deficiency of Epidermal Barrier Related Proteins via upregulation of miR-143 in HaCaT Keratinocytes. Int J Med Sci 2020; 17:2087-2094. [PMID: 32922169 PMCID: PMC7484670 DOI: 10.7150/ijms.45765] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 07/17/2020] [Indexed: 12/25/2022] Open
Abstract
Interleukin (IL)-13 plays a key role in the pathogenesis of atopic dermatitis (AD). Our preliminary study demonstrated that forced expression of miR-143 could block IL-13-induced down-regulation of epidermal barrier related proteins in epidermal keratinocytes. As previous studies suggested that miR-143 expression was regulated by mammalian target of rapamycin (mTOR) signaling pathway, we investigated the mechanism of mTOR signaling pathway in the epidermal barrier dysfunction of AD. The HaCaT cells were stimulated by IL-13 and subsequently treated with rapamycin. The expression levels of miR-143, IL-13 receptor α1 (IL-13Rα1), p-mTOR, p-S6K1, p-Akt, and epidermal barrier related proteins were analyzed through RT-qPCR and/or western blotting. The current study showed that IL-13 increased the expression levels of p-mTOR, p-S6K1, and p-Akt, and that rapamycin blocked IL-13-induced down-regulation of miR-143, suppressed the IL-13Rα1 expression and up-regulated the expressions of filaggrin, loricrin, and involucrin in HaCaT cells. This study proposed that IL-13 could activate the mTOR signaling pathway, and confirmed the vital role of mTOR-miR-143 signaling axis in the pathogenesis of AD. It provided solid evidences regarding rapamycin as a potential effective therapeutic option in the management of AD.
Collapse
Affiliation(s)
- Qian-Nan Jia
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College.,National Clinical Research Center for Dermatologic and Immunologic diseases, Beijing, China
| | - Yue-Ping Zeng
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College.,National Clinical Research Center for Dermatologic and Immunologic diseases, Beijing, China
| |
Collapse
|
10
|
Specjalski K, Jassem E. MicroRNAs: Potential Biomarkers and Targets of Therapy in Allergic Diseases? Arch Immunol Ther Exp (Warsz) 2019; 67:213-223. [PMID: 31139837 PMCID: PMC6597590 DOI: 10.1007/s00005-019-00547-4] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 05/13/2019] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that are 18-22 nucleotides long and highly conserved throughout evolution. Currently, they are considered one of the fundamental regulatory mechanisms of genes expression. It has been demonstrated that miRNAs are involved in many biologic processes, such as signal transduction, cell proliferation and differentiation, apoptosis and stress responses. More recently, the role of miRNA has also been revealed in numerous immunological and inflammatory disorders, including allergic inflammation. Specific miRNA profiles were demonstrated in asthma, allergic rhinitis and atopic dermatitis. A core set of miRNAs involved in atopic diseases include upregulated miR-21, miR-223, miR-146a, miR-142-5p, miR-142-3p, miR-146b, miR-155 and downregulated let-7 family, miR-193b and miR-375. Most of the involved miRNAs increase secretion of Th2 cytokines (miR-1248, miR-146b), decrease secretion of Th1 cytokines (miR-513-5p, miR-625-5p) or promote differentiation of T cells towards Th2 (miR-21, miR-19a). In asthma miR-140-3p, miR-708 and miR-142-3p play a role in hyperplasia and hypertrophy of bronchial smooth muscle cells. Some single miRNAs or, more probably, their sets hold the promise for their use as biomarkers of atopic diseases. They are also promising target of future therapies.
Collapse
Affiliation(s)
- Krzysztof Specjalski
- Department of Allergology, Medical University of Gdańsk, Dębinki 7, 80-210, Gdańsk, Poland.
| | - Ewa Jassem
- Department of Allergology, Medical University of Gdańsk, Dębinki 7, 80-210, Gdańsk, Poland
| |
Collapse
|
11
|
Specjalski K, Maciejewska A, Pawłowski R, Zieliński M, Trzonkowski P, Pikuła M, Jassem E. Changing microRNA Expression during Three-Month Wasp Venom Immunotherapy. Immunol Invest 2019; 48:835-843. [DOI: 10.1080/08820139.2019.1617303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | - Agnieszka Maciejewska
- Laboratory of Forensic Genetics, Department of Forensic Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Ryszard Pawłowski
- Laboratory of Forensic Genetics, Department of Forensic Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Maciej Zieliński
- Department of Medical Immunology, Medical University of Gdansk, Gdansk, Poland
| | - Piotr Trzonkowski
- Department of Medical Immunology, Medical University of Gdansk, Gdansk, Poland
| | - Michał Pikuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdansk, Gdansk, Poland
| | - Ewa Jassem
- Department of Allergology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
12
|
MicroRNA Involvement in Allergic and Non-Allergic Mast Cell Activation. Int J Mol Sci 2019; 20:ijms20092145. [PMID: 31052286 PMCID: PMC6539777 DOI: 10.3390/ijms20092145] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/28/2019] [Accepted: 04/29/2019] [Indexed: 01/01/2023] Open
Abstract
Allergic inflammation is accompanied by the coordinated expression of numerous genes and proteins that initiate, sustain, and propagate immune responses and tissue remodeling. MicroRNAs (miRNAs) are a large class of small regulatory molecules that are able to control the translation of target mRNAs and consequently regulate various biological processes at the posttranscriptional level. MiRNA profiles have been identified in multiple allergic inflammatory diseases and in the tumor microenvironment. Mast cells have been found to co-localize within the above conditions. More specifically, in addition to being essential in initiating the allergic response, mast cells play a key role in both innate and adaptive immunity as well as in modulating tumor growth. This review summarizes the possible role of various miRNAs in the above-mentioned processes wherein mast cells have been found to be involved. Understanding the role of miRNAs in mast cell activation and function may serve as an important tool in developing diagnostic as well as therapeutic approaches in mast cell-dependent pathological conditions.
Collapse
|
13
|
Li Y, Liu J, Zhang J, Zhang W, Wu Z. Characterization of microRNA profile in IgE-mediated mouse BMMCs degranulation. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2018; 53:550-560. [PMID: 30473142 DOI: 10.1016/j.jmii.2018.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 08/28/2018] [Accepted: 10/16/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Mast cells play a central role in innate and adaptive immunity by releasing pre-formed and de novo synthesized mediators, which include microRNAs. Although miRNAs have been confirmed to function in cell proliferation, differentiation, apoptosis, and the immune response, their functions are still limited in mast cells degranulation. METHODS Here, we survey miRNA expression profiles in activated mouse bone marrow-derived mast cells (BMMCs) with a miRNA microarray and compare the profiles to those from resting BMMCs. Partial miRNAs were selected for confirmation by qPCR, and let-7i was selected for function discover in mast cell degranulation process. TargetScan Mouse database were used for target genes prediction, gene ontology (GO) were used for gene molecular function classifications, and Cytoscape software were used to construct gene network of degranulation. RESULTS We found 13 up-regulated miRNAs and 7 down-regulated miRNAs in DNP activated BMMCs by miRNA microarray; and let-7b, let-7c, let-7d, let-7f, let-7i, and miR-652 were up-regulated, and miR-296-3p was down-regulated in DNP-stimulated BMMCs by qPCR. In the function research, let-7i can inhibit mast cell degranulation by suppress Exco8 expression. Overall, the data indicate that miRNAs participate in mast cell activation, especial for mast cell degranulation process.
Collapse
Affiliation(s)
- Yanhong Li
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Jie Liu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Jiaojiao Zhang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Wenjin Zhang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zhengli Wu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; Research Center of Fishery Resource and Environment, Southwest University, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Chongqing 400715, China.
| |
Collapse
|
14
|
Larsen LF, Juel-Berg N, Hansen A, Hansen KS, Mills ENC, van Ree R, Rådinger M, Poulsen LK, Jensen BM. No difference in human mast cells derived from peanut allergic versus non-allergic subjects. IMMUNITY INFLAMMATION AND DISEASE 2018; 6:416-427. [PMID: 29992767 PMCID: PMC6247235 DOI: 10.1002/iid3.226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Mast cells are the primary effector cells of allergy. This study aimed at characterizing human peripheral blood-derived mast cells (PBdMC) from peanut allergic and non-allergic subjects by investigating whether the molecular and stimulus-response profile of PBdMC discriminate between peanut allergic and healthy individuals. METHODS PBdMC were generated from eight peanut allergic and 10 non-allergic subjects. The molecular profile (cell surface receptor expression) was assessed using flow cytometry. The stimulus-response profile (histamine release induced by secretagogues, secretion of cytokines/chemokines and changes in miRNA expression following anti-IgE activation) was carried out with histamine release test, luminex multiplex assay and miRNA arrays. RESULTS Expression of activating receptors (FcϵRI, CD48, CD88, CD117, and C3aR) on PBdMC was not different among peanut allergic and non-allergic subjects. Likewise, inhibitory receptors (CD32, CD200R, CD300a, and siglec-8) displayed comparable levels of expression. Both groups of PBdMC were unresponsive to substance P, compound 48/80 and C5a but released comparable levels of histamine when stimulated with anti-IgE and C3a. Interestingly, among the secreted cytokines/chemokines (IL-8, IL-10, IL-13, IL-23, IL-31, IL-37, MCP-1, VEGF, GM-CSF) PBdMC from peanut allergic subjects showed a different secretion pattern of IL-31 compared to non-allergic subjects. Investigating miRNA expression from resting or activated PBdMC revealed no significantly difference between peanut allergic and non-allergic subjects. CONCLUSION The molecular and stimulus-response profile revealed that PBdMC from peanut allergic subjects differently express IL-31 compared to non-allergic subjects. However, since only one altered parameter was found among 893 investigated, it is still questionable if the pathophysiological mechanisms of peanut allergy are revealed in PBdMC.
Collapse
Affiliation(s)
- Lau F Larsen
- Allergy Clinic, Copenhagen University Hospital Gentofte, Copenhagen, Denmark
| | - Nanna Juel-Berg
- Allergy Clinic, Copenhagen University Hospital Gentofte, Copenhagen, Denmark
| | | | - Kirsten S Hansen
- Allergy Clinic, Copenhagen University Hospital Gentofte, Copenhagen, Denmark
| | - E N Clare Mills
- Division of Infection, Immunity and Respiratory, School of Biological Sciences, Manchester Institute of Biotechnology, Manchester Academic Health Sciences Centre, The University of Manchester, Manchester, UK
| | - Ronald van Ree
- Departments of Experimental Immunology and of Otorhinolaryngology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Madeleine Rådinger
- Department of Internal Medicine and Clinical Nutrition, Krefting Research Centre, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Lars K Poulsen
- Allergy Clinic, Copenhagen University Hospital Gentofte, Copenhagen, Denmark
| | - Bettina M Jensen
- Allergy Clinic, Copenhagen University Hospital Gentofte, Copenhagen, Denmark
| |
Collapse
|
15
|
Steinhoff M, Buddenkotte J, Lerner EA. Role of mast cells and basophils in pruritus. Immunol Rev 2018; 282:248-264. [DOI: 10.1111/imr.12635] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Martin Steinhoff
- Department of Dermatology and Venereology; Hamad Medical Corporation; Doha Qatar
- Translational Research Institute; Hamad Medical Corporation; Doha Qatar
- Weill Cornell Medicine-Qatar; Doha Qatar
- Medical School; Qatar University; Doha Qatar
- Department Of Dermatology and UCD Charles Institute for Translational Dermatology; University College Dublin; Dublin Ireland
| | - Jörg Buddenkotte
- Department of Dermatology and Venereology; Hamad Medical Corporation; Doha Qatar
- Translational Research Institute; Hamad Medical Corporation; Doha Qatar
| | - Ethan A. Lerner
- Cutaneous Biology Research Center; Department of Dermatology; Massachusetts General Hospital/Harvard Medical School; Charlestown MA USA
| |
Collapse
|
16
|
Kreth S, Hübner M, Hinske LC. MicroRNAs as Clinical Biomarkers and Therapeutic Tools in Perioperative Medicine. Anesth Analg 2018; 126:670-681. [DOI: 10.1213/ane.0000000000002444] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
17
|
Takagi K, Yamakuchi M, Matsuyama T, Kondo K, Uchida A, Misono S, Hashiguchi T, Inoue H. IL-13 enhances mesenchymal transition of pulmonary artery endothelial cells via down-regulation of miR-424/503 in vitro. Cell Signal 2017; 42:270-280. [PMID: 29102771 DOI: 10.1016/j.cellsig.2017.10.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/06/2017] [Accepted: 10/23/2017] [Indexed: 12/14/2022]
Abstract
Pulmonary arterial hypertension (PAH) has a major effect on life expectancy with functional degeneracy of the lungs and right heart. Interleukin-13 (IL-13), one of the type 2 cytokines mainly associated with allergic diseases, has recently been reported to be associated with Schistosomiasis-associated PAH which shares pathological features with other forms of PAH, such as idiopathic PAH and connective tissue disease-associated PAH. But a direct pathological role of IL-13 in the development of PAH has not been explored. We examined the effects of recombinant human IL-13 on the function of primary human pulmonary artery endothelial cells (HPAECs) to examine how IL-13 influences exacerbation of PAH. IL-13 increased the expression of Rictor, which is a key molecule of mammalian target of rapamycin complex 2. Treatment of IL-13 induced HPAEC migration via Rictor. Rictor was directly regulated by both miR-424 and 503 (miR-424/503). Therefore, IL-13 increases Rictor level by regulating miR-424/503, causing the increase of HPAEC migration. Since enhancement of HPAEC migration in the lung is thought to be associated with PAH, these data suggest that IL-13 takes some roles in exacerbating PAH.
Collapse
Affiliation(s)
- Koichi Takagi
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima 890-8520, Japan; Department of Laboratory and Vascular Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima 890-8520, Japan
| | - Munekazu Yamakuchi
- Department of Laboratory and Vascular Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima 890-8520, Japan.
| | - Takahiro Matsuyama
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima 890-8520, Japan
| | - Kiyotaka Kondo
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima 890-8520, Japan
| | - Akifumi Uchida
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima 890-8520, Japan
| | - Shunsuke Misono
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima 890-8520, Japan
| | - Teruto Hashiguchi
- Department of Laboratory and Vascular Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima 890-8520, Japan
| | - Hiromasa Inoue
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima 890-8520, Japan
| |
Collapse
|
18
|
Zheng YZ, Chen CF, Jia LY, Yu TG, Sun J, Wang XY. Correlation between microRNA-143 in peripheral blood mononuclear cells and disease severity in patients with psoriasis vulgaris. Oncotarget 2017; 8:51288-51295. [PMID: 28881648 PMCID: PMC5584249 DOI: 10.18632/oncotarget.17260] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/10/2017] [Indexed: 02/02/2023] Open
Abstract
This study aims to explore the correlation between microRNA-143 (miR-143) expression in peripheral blood mononuclear cells (PBMCs) and disease severity in patients with psoriasis vulgaris. From March 2014 to November 2015, 194 patients with psoriasis vulgaris (102 patients in progressive stage and 92 patients in stable stage) were selected as the case group and 175 healthy people as a control group were enrolled in this study. ELISA was used to detect the levels of IL-17 and VEGF in serum. The qRT-PCR assay was performed to detect the relative expression of miR-143 in PBMCs. Disease severity in psoriasis vulgaris patients was graded with Psoriasis Lesions Area and Severity Index (PASI). The value of miR-143 expression in PBMCs for the diagnosis of psoriasis vulgaris was evaluated using receiver operating characteristic (ROC) curve. The correlation between miR-143 expression in PBMCs and PASI scores was measured using Spearman rank correlation analysis. Compared with the control group, serum levels of IL-17 and VEGF were higher and miR-143 expression in PBMCs was lower in the case group. Furthermore, miR-143 expression in PBMCs was lower in patients in progressive stage than that in patients with stable stage. The relative expression of miR-143 in PBMCs was negatively correlated with PASI scores of patients with psoriasis vulgaris. ROC curve showed that miR-143 was a reliable and accurate biomarker of psoriasis vulgaris. Our findings suggest that miR-143 expression in PBMCs is negatively correlated the disease severity in psoriasis vulgaris.
Collapse
Affiliation(s)
- Yi-Zhi Zheng
- Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, P.R. China
| | - Chun-Feng Chen
- Department of Mental Health, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, P.R. China
| | - Li-Ying Jia
- Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, P.R. China
| | - Tu-Gen Yu
- Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, P.R. China
| | - Jie Sun
- Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, P.R. China
| | - Xiao-Yong Wang
- Department of Dermatology, Hangzhou Traditional Chinese Medical Hospital, Hangzhou 310007, P.R. China
| |
Collapse
|
19
|
Hong Z, Guo Z, Zhang R, Xu J, Dong W, Zhuang G, Deng C. Airborne Fine Particulate Matter Induces Oxidative Stress and Inflammation in Human Nasal Epithelial Cells. TOHOKU J EXP MED 2016; 239:117-25. [PMID: 27246665 DOI: 10.1620/tjem.239.117] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Airborne fine particulate matter with an aerodynamic diameter equal to or smaller than 2.5 μm is abbreviated as PM2.5, which is one of the main components in air pollution. Exposure to PM2.5 is associated with increased risk of many human diseases, including chronic and allergic rhinitis, but the underlying molecular mechanism for its toxicity has not been fully elucidated. We have hypothesized that PM2.5 may cause oxidative stress and enhance inflammatory responses in nasal epithelial cells. Accordingly, we used human RPMI 2650 cells, derived from squamous cell carcinoma of the nasal septum, as a model of nasal epithelial cells, and exposed them to PM2.5 that was collected at Fudan University (31.3°N, 121.5°E) in Shanghai, China. PM2.5 exposure decreased the viability of RPMI 2650 cells, suggesting that PM2.5 may impair the barrier function of nasal epithelial cells. Moreover, PM2.5 increased the levels of intracellular reactive oxygen species (ROS) and the nuclear translocation of NF-E2-related factor-2 (Nrf2). Importantly, PM2.5 also decreased the activities of superoxide dismutase, catalase and glutathione peroxidase. Pretreatment with N-Acetyl-L-cysteine (an anti-oxidant) reduced the degree of the PM2.5-induced oxidative stress in RPMI 2650 cells. In addition, PM2.5 increased the production of granulocyte-macrophage colony-stimulating factor, tumor necrosis factor-α, interleukin-13 and eotaxin (C-C motif chemokine ligand 11), each of which initiates and/or augments local inflammation. These results suggest that PM2.5 may induce oxidative stress and inflammatory responses in human nasal epithelial cells, thereby leading to nasal inflammatory diseases. The present study provides insights into cellular injury induced by PM2.5.
Collapse
Affiliation(s)
- Zhicong Hong
- Department of Otolaryngology, Huadong Hospital, Fudan University
| | | | | | | | | | | | | |
Collapse
|
20
|
Zeng YP, Nguyen GH, Jin HZ. MicroRNA-143 inhibits IL-13-induced dysregulation of the epidermal barrier-related proteins in skin keratinocytes via targeting to IL-13Rα1. Mol Cell Biochem 2016; 416:63-70. [PMID: 27048505 DOI: 10.1007/s11010-016-2696-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/25/2016] [Indexed: 01/17/2023]
Abstract
Atopic dermatitis is a chronic inflammatory skin disease characterized by the dysregulation of the epidermal barrier and the immune system. Interleukin (IL)-13, a key T helper 2 cytokine, has been shown to impair the epidermal barrier function via downregulating epidermal barrier proteins. MicroRNAs are small noncoding RNAs of approximately 22 nucleotides that act as negative regulators of gene expression at posttranscriptional levels. MicroRNA-143 is known to be a tumor suppressor in various tumors; however, its role in the regulation of allergic diseases including atopic dermatitis remains elusive. In this study, we investigated whether IL-13Rα1 was a microRNA-143 target to regulate the effects of IL-13 on epidermal barrier function. After the stimulation of IL-13 in human epidermal keratinocytes, the level of microRNA-143 was decreased. The luciferase activity of the vector containing 3'UTR of IL-13Rα1 was decreased in keratinocytes transfected with microRNA-143 mimic compared to those of the corresponding controls. The forced expression of microRNA-143 mimic blocked the IL-13-induced downregulation of filaggrin, loricrin, and involucrin in epidermal keratinocytes. Collectively, these data suggest that microRNA-143 suppresses IL-13 activity and inflammation through targeting of IL-13Rα1 in epidermal keratinocytes. MicroRNA-143 may serve as a potential preventive and therapeutic target in atopic dermatitis.
Collapse
Affiliation(s)
- Yue-Ping Zeng
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Giang Huong Nguyen
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Hong-Zhong Jin
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
21
|
Han NR, Kim HM, Jeong HJ. Tryptanthrin reduces mast cell proliferation promoted by TSLP through modulation of MDM2 and p53. Biomed Pharmacother 2016; 79:71-7. [PMID: 27044814 DOI: 10.1016/j.biopha.2016.01.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/14/2016] [Accepted: 01/15/2016] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND Atopic dermatitis (AD) results from complex interactions between mast cells and inflammatory mediators. An inflammatory mediator, thymic stromal lymphopoietin (TSLP) is known to promote mast cell proliferation through up-regulation of mouse double minute 2 (MDM2, a negative regulator of p53) and aggravate AD. In this study, we investigated whether tryptanthrin (TR, an anti-inflammatory agent) would regulate TSLP-induced mast cell proliferation and TSLP-induced a pro-inflammatory cytokine, tumor necrosis factor (TNF)-α production from mast cells. METHODS Human mast cell line (HMC-1) cells were treated with TR and stimulated with TSLP. Proliferation was measured with a bromodeoxyuridine incorporation assay. And pro- and anti-apoptotic factors were analyzed with quantitative real-time PCR, Western blot analysis, and ELISA. The mRNA expression and production of TNF-α were analyzed with quantitative real-time PCR and ELISA. RESULTS TR significantly inhibited the proliferation of HMC-1 cells promoted by TSLP. TR inhibited MDM2 expression, whereas TR increased the expression of p53, poly ADP-ribose polymerase, and caspase-3 in the TSLP-stimulated HMC-1 cells. TR significantly inhibited Ki67 mRNA expression as well as mRNA expression and production of interleukin (IL)-13 in the TSLP-stimulated HMC-1 cells. Moreover, TR significantly suppressed mRNA expression and production of TNF-α in the TSLP-stimulated HMC-1 cells. Finally, the mRNA expression of IL-7 receptor α chain and TSLP receptor was inhibited by TR in the TSLP-stimulated HMC-1 cells. CONCLUSION Our results suggest that TR determined with new concept has intensive potential for the treatment of mast cell-mediated allergic diseases, such as AD.
Collapse
Affiliation(s)
- Na-Ra Han
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | - Hyung-Min Kim
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Republic of Korea.
| | - Hyun-Ja Jeong
- Department of Food Technology and Inflammatory Disease Research Center, Hoseo University, 20, Hoseo-ro 79 beon-gil, Baebang-eup, Asan, Chungcheongnam-do 336-795, Republic of Korea.
| |
Collapse
|
22
|
Han NR, Kim HM, Jeong HJ. The potential anti-proliferative effect of β-sitosterol on human mast cell line-1 cells. Can J Physiol Pharmacol 2015; 93:979-983. [PMID: 26314340 DOI: 10.1139/cjpp-2015-0166] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Thymic stromal lymphopoietin (TSLP) was reported to induce mast cell proliferation and aggravate allergic reactions through activation of mouse double minute 2 (MDM2). We aimed to ascertain that β-sitosterol (SI), which is one of the several phytosterols found mostly in foods, would regulate TSLP-induced mast cell proliferation. The results showed that SI significantly decreased the proliferation of human mast cell line (HMC-1) cells promoted by TSLP. SI significantly decreased the mRNA expression of Ki-67 in the TSLP-treated HMC-1 cells. SI significantly suppressed the production and mRNA expression of interleukin-13 in the TSLP-treated HMC-1 cells. Furthermore, SI downregulated the expression of MDM2 and phosphorylation of STAT6, whereas it upregulated the expression of p53, activation of caspase-3, and cleavage of poly ADP-ribose polymerase in the TSLP-treated HMC-1 cells. Results of this study suggest that SI may be a potential therapeutic agent for mast cell-mediated allergic diseases.
Collapse
Affiliation(s)
- Na-Ra Han
- a Department of Pharmacology, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | - Hyung-Min Kim
- a Department of Pharmacology, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | - Hyun-Ja Jeong
- b Department of Food Technology and Inflammatory Disease Research Center, Hoseo University, 20, Hoseo-ro 79beon-gil, Baebang-eup, Asan 336-795, Republic of Korea
| |
Collapse
|
23
|
McLeod JJA, Baker B, Ryan JJ. Mast cell production and response to IL-4 and IL-13. Cytokine 2015; 75:57-61. [PMID: 26088754 PMCID: PMC4532630 DOI: 10.1016/j.cyto.2015.05.019] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 05/14/2015] [Accepted: 05/15/2015] [Indexed: 11/24/2022]
Abstract
IL-4 was identified as the first cytokine to be produced by mast cells and is responsible for promoting mast cell IL-13 production. IL-4 and IL-13 play a prominent role in stimulating and maintaining the allergic response. As closely related genes, IL-4 and IL-13 share a common receptor subunit, IL-4Rα, necessary for signaling. Here we summarize the literature on mast cell activation associated with IL-4 and IL-13 production, including downstream signaling. We also describe the positive and negative roles each cytokine plays in mast cell immunity and detail the differences that exist between mouse and human mast cell responses to IL-4 and IL-13.
Collapse
Affiliation(s)
- Jamie J A McLeod
- Department of Biology, Virginia Commonwealth University Richmond, VA 23284, United States.
| | - Bianca Baker
- Department of Biology, Virginia Commonwealth University Richmond, VA 23284, United States
| | - John J Ryan
- Department of Biology, Virginia Commonwealth University Richmond, VA 23284, United States
| |
Collapse
|
24
|
Teng Y, Zhang R, Liu C, Zhou L, Wang H, Zhuang W, Huang Y, Hong Z. miR-143 inhibits interleukin-13-induced inflammatory cytokine and mucus production in nasal epithelial cells from allergic rhinitis patients by targeting IL13Rα1. Biochem Biophys Res Commun 2014; 457:58-64. [PMID: 25529447 DOI: 10.1016/j.bbrc.2014.12.058] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 12/11/2014] [Indexed: 11/15/2022]
Abstract
Allergic rhinitis (AR) is a common chronic inflammatory condition of the nasal mucosal tissue. The interleukin-13 (IL-13) signaling pathway is of great importance in the pathogenesis of AR. However, how the signaling molecules in this pathway are regulated, particularly through microRNAs (miRNAs), remains unclear. In the present study, we investigated the regulatory role and mechanism of miRNA-143 (miR-143) in IL-13-induced inflammatory cytokine and mucus production in nasal epithelial cells (NECs) from AR patients. Our results showed that forced expression of miR-143 significantly decreased the mRNA and protein expression levels of granulocyte-macrophage colony-stimulating factor (GM-CSF), eotaxin and mucin 5AC (MUC5AC) in IL-13-stimulated NECs. Moreover, we confirmed that miR-143 directly targeted and significantly suppressed IL-13 receptor α1 chain (IL13Rα1) gene expression. This study thus suggests that miR-143 regulation of IL-13-induced inflammatory cytokine and mucus production in NECs from AR patients probably partly depends on inhibition of IL13Rα1. Therefore, the IL13Rα1 signaling pathway may be a potential target for the prevention and treatment of AR by miR-143.
Collapse
Affiliation(s)
- Yaoshu Teng
- Department of Otolaryngology, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Ruxin Zhang
- Department of Otolaryngology, Huadong Hospital, Fudan University, Shanghai 200040, China.
| | - Chunhui Liu
- Department of Otolaryngology, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Lingling Zhou
- Department of Otolaryngology, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Hong Wang
- Department of Otolaryngology, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Wenjie Zhuang
- Department of Otolaryngology, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Yu Huang
- Department of Otolaryngology, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Zhicong Hong
- Department of Otolaryngology, Huadong Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
25
|
Delihas N. Editorial on the Special Issue: Regulation by non-coding RNAs. Int J Mol Sci 2013; 14:21960-4. [PMID: 24201126 PMCID: PMC3856044 DOI: 10.3390/ijms141121960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 10/31/2013] [Indexed: 12/13/2022] Open
Abstract
This Special Issue of IJMS is devoted to regulation by non-coding RNAs and contains both original research and review articles. An attempt is made to provide an up-to-date analysis of this very fast moving field and cover regulatory roles of both microRNAs and long non-coding RNAs. Multifaceted functions of these RNAs in normal cellular processes, as well as in disease progression, are highlighted.
Collapse
Affiliation(s)
- Nicholas Delihas
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, NY 11794-5222 USA.
| |
Collapse
|