1
|
Zhang C, Ding Y, Zhou M, Tang Y, Chen R, Chen Y, Wen Y, Wang S. RNAi-mediated CHS-2 silencing affects the synthesis of chitin and the formation of the peritrophic membrane in the midgut of Aedes albopictus larvae. Parasit Vectors 2023; 16:259. [PMID: 37533099 PMCID: PMC10394979 DOI: 10.1186/s13071-023-05865-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/04/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Mosquitoes are an important vector of viral transmission, and due to the complexity of the pathogens they transmit, vector control may be the most effective strategy to control mosquito-borne diseases. Chitin is required for insect growth and development and is absent in higher animals and plants, so regulating the chitin synthesis pathway can serve as a potentially effective means to control vector insects. Most of the current research on the chitin synthase (CHS) gene is focused on chitin synthase-1 (CHS-1), while relatively little is known about chitin synthase-2 (CHS-2). RESULTS The CHS-2 gene of Ae. albopictus is highly conserved and closely related to that of Aedes aegypti. The expression of CHS-2 in the third-instar larvae and pupal stage of Ae. albopictus was relatively high, and CHS-2 expression in adult mosquitoes reached the highest value 24 h after blood-feeding. In the fourth-instar larvae of Ae. albopictus, CHS-2 expression was significantly higher in the midgut than in the epidermis. Silencing CHS-2 in Ae. albopictus larvae had no effect on larval survival and emergence. The expression of four genes related to chitin synthesis enzymes was significantly upregulated, the expression level of three genes was unchanged, and only the expression level of GFAT was significantly downregulated. The expression of chitin metabolism-related genes was also upregulated after silencing. The level of chitin in the midgut of Ae. albopictus larvae was significantly decreased, while the chitinase activity was unchanged. The epithelium of the midgut showed vacuolization, cell invagination and partial cell rupture, and the structure of the peritrophic membrane was destroyed or even absent. METHODS The expression of CHS-2 in different developmental stages and tissues of Aedes albopictus was detected by real-time fluorescence quantitative PCR (qPCR). After silencing CHS-2 of the fourth-instar larvae of Ae. albopictus by RNA interference (RNAi), the expression levels of genes related to chitin metabolism, chitin content and chitinase activity in the larvae were detected. The structure of peritrophic membrane in the midgut of the fourth-instar larvae after silencing was observed by paraffin section and hematoxylin-eosin (HE) staining. CONCLUSION CHS-2 can affect midgut chitin synthesis and breakdown by regulating chitin metabolic pathway-related genes and is involved in the formation of the midgut peritrophic membrane in Ae. albopictus, playing an important role in growth and development. It may be a potential target for enhancing other control methods.
Collapse
Affiliation(s)
- Chen Zhang
- Hangzhou Normal University, Hangzhou, China
| | | | - Min Zhou
- Hangzhou Normal University, Hangzhou, China
| | - Ya Tang
- Hangzhou Normal University, Hangzhou, China
| | - Rufei Chen
- Hangzhou Normal University, Hangzhou, China
| | | | - Yating Wen
- Hangzhou Normal University, Hangzhou, China
| | - Shigui Wang
- Hangzhou Normal University, Hangzhou, China.
| |
Collapse
|
2
|
Chen Q, Sun M, Wang H, Liang X, Yin M, Lin T. Characterization of Chitin Synthase B Gene ( HvChsb) and the Effects on Feeding Behavior in Heortia vitessoides Moore. INSECTS 2023; 14:608. [PMID: 37504614 PMCID: PMC10380562 DOI: 10.3390/insects14070608] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023]
Abstract
The chitin synthase B gene is a key enzyme in the chitin synthesis of insect peritrophic matrix (PM), which affects insects' feeding behavior. The chitin synthase B gene was cloned from the transcription library of Heortia vitessoides Moore. RT-qPCR showed that HvChsb was highly expressed in the larval stage of H. vitessoides, especially on the first day of the pre-pupal stage, as well as in the midgut of larvae and the abdomen of adults. After starvation treatment, HvChsb was found to be significantly inhibited over time. After 48 h of starvation, the feeding experiment showed that HvChsb increased with the prolongation of the re-feeding time. The experimental data showed that feeding affected the expression of HvChsb. HvChsb was effectively silenced via RNA interference; thus, its function was lost, significantly decreasing the survival rate of H. vitessoides. The survival rate from larval-to-pupal stages was only 43.33%, and this rate was accompanied by abnormal phenotypes. It can be seen that HvChsb plays a key role in the average growth and development of H. vitessoides.
Collapse
Affiliation(s)
- Qingling Chen
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Mingxu Sun
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Hanyang Wang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Xiaohan Liang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Mingliang Yin
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Tong Lin
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Li L, Wang YQ, Li GY, Song QS, Stanley D, Wei SJ, Zhu JY. Genomic and transcriptomic analyses of chitin metabolism enzymes in Tenebrio molitor. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 111:e21950. [PMID: 35809232 DOI: 10.1002/arch.21950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Chitin is of great importance in the cuticle and inner cuticular linings of insects. Chitin synthases (CHSs), chitin deacetylases (CDAs), chitinases (CHTs), and β-N-acetylhexosaminidases (HEXs) are important enzymes required for chitin metabolism, and play essential roles in development and metamorphosis. Although chitin metabolism genes have been well characterized in limited insects, the information in the yellow mealworm, Tenebrio molitor, a model insect, is presently still unavailable. With the help of bioinformatics, we identified 54 genes that encode putative chitin metabolism enzymes, including 2 CHSs, 10 CDAs, 32 CHTs, and 10 HEXs in the genome of T. molitor. All these genes have the conserved domains and motifs of their corresponding protein family. Phylogenetic analyses indicated that CHS genes were divided into two groups. CDA genes were clustered into five groups. CHT genes were phylogenetically grouped into 11 clades, among which 1 in the endo-β-N-acetylglucosaminidases group and the others were classified in the glycoside hydrolase family 18 groups. HEX genes were assorted into six groups. Developmental and tissue-specific expression profiling indicated that the identified chitin metabolism genes showed dynamical expression patterns concurrent with specific instar during molting period, suggesting their significant roles in molting and development. They were predominantly expressed in different tissues or body parts, implying their functional specialization and diversity. The results provide important information for further clarifying their biological functions using the yellow mealworm as an ideal experimental insect.
Collapse
Affiliation(s)
- Lu Li
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Yu-Qin Wang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Guang-Ya Li
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Qi-Sheng Song
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, USA
| | - David Stanley
- USDA/ARS Biological Control of Insects Research Laboratory, Columbia, Missouri, USA
| | - Shu-Jun Wei
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jia-Ying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| |
Collapse
|
4
|
Flaven-Pouchon J, Moussian B. Fluorescent Microscopy-Based Detection of Chitin in Intact Drosophila melanogaster. Front Physiol 2022; 13:856369. [PMID: 35557963 PMCID: PMC9086190 DOI: 10.3389/fphys.2022.856369] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Chitin is the major scaffolding component of the insect cuticle. Ultrastructural analyses revealed that chitin adopts a quasi-crystalline structure building sheets of parallel running microfibrils. These sheets called laminae are stacked either helicoidally or with a preferred orientation of the microfibrils. Precise control of chitin synthesis is mandatory to ensure the correct chitin assembly and in turn proper function of cuticular structures. Thus, evaluation of chitin-metabolism deficient phenotypes is a key to our understanding of the function of the proteins and enzymes involved in cuticle architecture and more generally in cuticle biology in insects. Usually, these phenotypes have been assessed using electron microscopy, which is time-consuming and labor intensive. This stresses the need for rapid and straightforward histological methods to visualize chitin at the whole tissue level. Here, we propose a simple method of chitin staining using the common polysaccharide marker Fluorescent brightener 28 (FB28) in whole-mount Drosophila melanogaster. To overcome the physical barrier of FB28 penetration into the cuticle, staining is performed at 65°C without affecting intactness. We quantify FB28 fluorescence in three functionally different cuticular structures namely wings, dorsal abdomens and forelegs by fluorescence microscopy. We find that, as expected, cuticle pigmentation may interfere with FB28 staining. Down-regulation of critical genes involved in chitin metabolism, including those coding for chitin synthase or chitinases, show that FB28 fluorescence reflects chitin content in these organs. We think that this simple method could be easily applied to a large variety of intact insects.
Collapse
Affiliation(s)
- J Flaven-Pouchon
- Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany.,Instituto de Neurociencia, Universidad de Valparaíso, Valparaiso, Chile
| | - B Moussian
- Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany.,INRAE, CNRS, Institut Sophia Agrobiotech, Université Côte d'Azur, Nice, France
| |
Collapse
|
5
|
Ossa Ossa GA, Villegas Estrada B, Valencia Jiménez A. CARACTERIZACIÓN Y DISMINUCIÓN EN LA EXPRESIÓN DE UNA QUITINA SINTASA MEDIADA POR ARNi EN Hypothenemus hampei (CURCULIONIDAE). ACTA BIOLÓGICA COLOMBIANA 2021. [DOI: 10.15446/abc.v27n2.89981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
La broca del café, Hypothenemus hampei, es un insecto plaga que causa daños significativos al grano de café y grandes pérdidas económicas a los productores en todo el mundo. Al igual que otros insectos, la broca de café requiere de quitina sintasas (CHS) para la biosíntesis de la quitina, componente principal del exoesqueleto del insecto, y de vital importancia para su crecimiento y desarrollo. En este estudio, el gen CHS1 de la broca del café (HhCHS1) fue identificado, caracterizado y posteriormente silenciado mediante el uso de ARNi, mecanismo que permite degradar el ARNm e interrumpir la expresión de proteínas de interés en un organismo. Los perfiles de expresión del gen HhCHS1, medidos por RT-qPCR, mostraron niveles de expresión diferencial en las diferentes etapas del desarrollo del insecto. Los niveles más altos de expresión se encontraron en larvas de segundo estadio (L2) y machos adultos. El ARNcd administrado por vía oral, a concentraciones de 2 µg/100 µL, generó un silenciamiento efectivo del gen HhCHS1 (84 %) después de 7 días de tratamiento. Estos resultados sugieren que el gen HhCHS1 desempeña un papel importante en el desarrollo del insecto, y que, por ende, podría usarse como objetivo para desarrollar nuevas estrategias de manejo de este insecto plaga, mediante el uso de ARNi.
Palabras Clave: ARNcd, café, insecto plaga, quitina-sintasa, RT-qPCR.
Collapse
|
6
|
Physiological characterization of chitin synthase A responsible for the biosynthesis of cuticle chitin in Culex pipiens pallens (Diptera: Culicidae). Parasit Vectors 2021; 14:234. [PMID: 33933137 PMCID: PMC8088658 DOI: 10.1186/s13071-021-04741-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/21/2021] [Indexed: 11/10/2022] Open
Abstract
Background The pathogens transmitted by mosquitoes to humans and animals cause several emerging and resurgent infectious diseases. Increasing insecticide resistance requires rational action to control the target vector population. Chitin is indispensable for insect growth and development and absent from vertebrates and higher plants. Chitin synthase A (CHSA) is a crucial enzyme in chitin synthesis; therefore, identifying and characterizing how CHSA determines chitin content may contribute to the development of novel vector control strategies. Results The injection of small interfering RNA targeting CHSA (siCHSA) to knockdown CHSA transcripts in larval, pupal and adult stages of Culex pipiens pallens resulted in the appearance of different lethal phenotypes. When larval and pupal stages were injected with siCHSA, CHSA knockdown prevented larval molting, pupation and adult eclosion, and affected the production of chitin and chitin degradation, which resulted in an ecdysis defect phenotype of mosquitoes. When siCHSA was injected into mosquitoes in the adult stage, CHSA knockdown also affected the laminar organization of the mesoderm and the formation of pseudo-orthogonal patterns of the large fibers of the endoderm. Conclusion We provide a systematic and comprehensive description of the effects of CHSA on morphogenesis and metamorphosis. The results show that CHSA not only affects chitin synthesis during molting, but also might be involved in chitin degradation. Our results further show that CHSA is important for the structural integrity of the adult mosquito cuticle. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04741-2.
Collapse
|
7
|
Nagare M, Ayachit M, Agnihotri A, Schwab W, Joshi R. Glycosyltransferases: the multifaceted enzymatic regulator in insects. INSECT MOLECULAR BIOLOGY 2021; 30:123-137. [PMID: 33263941 DOI: 10.1111/imb.12686] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/26/2019] [Accepted: 11/27/2020] [Indexed: 05/23/2023]
Abstract
Glycosyltransferases (GTs) catalyse the reaction of glyco-conjugation of various biomolecules by transferring the saccharide moieties from an activated nucleotide sugar to nucleophilic glycosyl acceptor. In insects, GTs show diverse temporal and site-specific expression patterns and thus play significant roles in forming the complex biomolecular structures that are necessary for insect survival, growth and development. Several insects exhibit GT-mediated detoxification as a key defence strategy against plant allelochemicals and xenobiotic compounds, as well as a mechanism for pesticide cross-resistance. Also, these enzymes act as crucial effectors and modulators in various developmental processes of insects such as eye development, UV shielding, cuticle formation, epithelial development and other specialized functions. Furthermore, many of the known insect GTs have been shown to play a fundamental role in other physiological processes like body pigmentation, cuticular tanning, chemosensation and stress response. This review provides a detailed overview of the multifaceted functionality of insect GTs and summarizes numerous case studies associated with it.
Collapse
Affiliation(s)
- M Nagare
- Institute of Bioinformatics and Biotechnology (IBB), Savitribai Phule Pune University, Pune, India
| | - M Ayachit
- Institute of Bioinformatics and Biotechnology (IBB), Savitribai Phule Pune University, Pune, India
| | - A Agnihotri
- Institute of Bioinformatics and Biotechnology (IBB), Savitribai Phule Pune University, Pune, India
- School of Veterinary and Life Sciences, Western Australian State Agricultural Biotechnology Centre (SABC), Murdoch University, Perth, Western Australia, Australia
| | - W Schwab
- Biotechnology of Natural Products, Center of Life and Food Science Weihenstephan, Technical University of Munich, Freising, Germany
| | - R Joshi
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
8
|
Harðardóttir HM, Male R, Nilsen F, Dalvin S. Chitin Synthases Are Critical for Reproduction, Molting, and Digestion in the Salmon Louse ( Lepeophtheirus salmonis). Life (Basel) 2021; 11:life11010047. [PMID: 33450932 PMCID: PMC7828418 DOI: 10.3390/life11010047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 11/30/2022] Open
Abstract
Chitin synthase (CHS) is a large transmembrane enzyme that polymerizes Uridine diphosphate N-acetylglucosamine into chitin. The genomes of insects often encode two chitin synthases, CHS1 and CHS2. Their functional roles have been investigated in several insects: CHS1 is mainly responsible for synthesizing chitin in the cuticle and CHS2 in the midgut. Lepeophtheirus salmonis is an ectoparasitic copepod on salmonid fish, which causes significant economic losses in aquaculture. In the present study, the tissue-specific localization, expression, and functional role of L. salmonis chitin synthases, LsCHS1 and LsCHS2, were investigated. The expressions of LsCHS1 and LsCHS2 were found in oocytes, ovaries, intestine, and integument. Wheat germ agglutinin (WGA) chitin staining signals were detected in ovaries, oocytes, intestine, cuticle, and intestine in adult female L. salmonis. The functional roles of the LsCHSs were investigated using RNA interference (RNAi) to silence the expression of LsCHS1 and LsCHS2. Knockdown of LsCHS1 in pre-adult I lice resulted in lethal phenotypes with cuticle deformation and deformation of ovaries and oocytes in adult lice. RNAi knockdown of LsCHS2 in adult female L. salmonis affected digestion, damaged the gut microvilli, reduced muscular tissues around the gut, and affected offspring. The results demonstrate that both LsCHS1 and LsCHS2 are important for the survival and reproduction in L. salmonis.
Collapse
Affiliation(s)
- Hulda María Harðardóttir
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, P.O. Box 7803, N-5020 Bergen, Norway; (R.M.); (F.N.)
- Correspondence:
| | - Rune Male
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, P.O. Box 7803, N-5020 Bergen, Norway; (R.M.); (F.N.)
| | - Frank Nilsen
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, P.O. Box 7803, N-5020 Bergen, Norway; (R.M.); (F.N.)
| | - Sussie Dalvin
- Sea Lice Research Centre, Institute of Marine Research, P.O. Box 1870, Nordnes, N-5817 Bergen, Norway;
| |
Collapse
|
9
|
Henriques BS, Garcia ES, Azambuja P, Genta FA. Determination of Chitin Content in Insects: An Alternate Method Based on Calcofluor Staining. Front Physiol 2020; 11:117. [PMID: 32132935 PMCID: PMC7040371 DOI: 10.3389/fphys.2020.00117] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/31/2020] [Indexed: 11/26/2022] Open
Abstract
Chitin is an aminopolysaccharide present in yeast cells and arthropod cuticle and is one of the most abundant biopolymers. The conventional methods for the quantitation of chitin content in biological samples are based on its hydrolysis (acid or enzymatic), and the assessment of the byproduct, glucosamine. However, previously described methodologies are time-consuming, laborious, low throughput, and not applicable to insect samples in many cases. Here we describe a new approach to chitin content quantitation based on calcofluor fluorescent brightener staining of samples, followed by microplate fluorescence readings. Calcofluor is a specific chitin stain commonly used for topological localization of the polymer. The protocol was tested in three important disease vector species, namely Lutzomyia longipalpis, Aedes aegypti, and Rhodnius prolixus, and then compared to a classic colorimetric chitin assessment method. Results show that chitin content in the tested insects can vary largely in a range of 8–4600 micrograms of chitin per insect, depending on species, sex, and instar. Comparisons between measurements from the previous protocol and calcofluor method showed statistically significant differences in some samples. However, the difference might be due to interference in the classic method from non-chitin sources of glucosamine and reducing agents. Furthermore, chitinase hydrolysis reduces the total chitin mass estimated between 36 and 74%, consolidating the fluorescent measurements as actual stained chitin in the same extent that was observed with the standard protocol. Therefore, the calcofluor staining method revealed to be a fast and reliable technique for chitin quantitation in homogenized insect samples.
Collapse
Affiliation(s)
- Bianca Santos Henriques
- Laboratory of Insect Physiology and Biochemistry, Oswaldo Cruz Institute - Oswaldo Cruz Foundation (IOC-FIOCRUZ), Rio de Janeiro, Brazil
| | - Eloi Souza Garcia
- Laboratory of Insect Physiology and Biochemistry, Oswaldo Cruz Institute - Oswaldo Cruz Foundation (IOC-FIOCRUZ), Rio de Janeiro, Brazil.,National Institute of Science and Technology for Molecular Entomology (INCT-EM), Cidade Universitária, Rio de Janeiro, Brazil
| | - Patricia Azambuja
- Laboratory of Insect Physiology and Biochemistry, Oswaldo Cruz Institute - Oswaldo Cruz Foundation (IOC-FIOCRUZ), Rio de Janeiro, Brazil
| | - Fernando Ariel Genta
- Laboratory of Insect Physiology and Biochemistry, Oswaldo Cruz Institute - Oswaldo Cruz Foundation (IOC-FIOCRUZ), Rio de Janeiro, Brazil.,National Institute of Science and Technology for Molecular Entomology (INCT-EM), Cidade Universitária, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Yang X, Yin Q, Xu Y, Li X, Sun Y, Ma L, Zhou D, Shen B. Molecular and physiological characterization of the chitin synthase B gene isolated from Culex pipiens pallens (Diptera: Culicidae). Parasit Vectors 2019; 12:614. [PMID: 31888727 PMCID: PMC6937787 DOI: 10.1186/s13071-019-3867-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/19/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The growth and development of insects is strictly dependent on the precise regulation of chitin synthase (CHS), which is absent in vertebrates and plants. Therefore, CHS represents an attractive target for insecticides. At present, the research on the CHS gene in mosquitoes, especially its biological functions, remains limited. RESULTS The full-length cDNA of the chitin synthase B gene in Culex pipiens pallens (CpCHSB) was prepared and consists of 5158 nucleotides with an open reading frame (ORF) of 4722 nucleotides encoding a protein of 1573 amino acid residues. Among different tissues, CpCHSB gene is mainly expressed in the midgut tissue with the highest expression in adult mosquitoes. Knockdown of CpCHSB in the larval stage significantly lowered the chitin content (16.5%) decreased body size (reduced by 25.6% in the larval stage and by 25.6% in the adult stage), and diminished reproduction (20%). Injecting siCHSB into adult mosquito mainly decreased reproduction (27%). CONCLUSIONS CpCHSB plays essential roles in growth and development, by severely reducing larval chitin content, midgut permeability, and reducing the number of female mosquito offspring. These results indicate that CHSB may serve as a potential novel target for exploring biosafe insecticides.
Collapse
Affiliation(s)
- Xiaoshan Yang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Qi Yin
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Yang Xu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Xixi Li
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Yan Sun
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Lei Ma
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Dan Zhou
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China.
| | - Bo Shen
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
11
|
Wang Z, Yang H, Zhou C, Yang WJ, Jin DC, Long GY. Molecular cloning, expression, and functional analysis of the chitin synthase 1 gene and its two alternative splicing variants in the white-backed planthopper, Sogatella furcifera (Hemiptera: Delphacidae). Sci Rep 2019; 9:1087. [PMID: 30705372 PMCID: PMC6355952 DOI: 10.1038/s41598-018-37488-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 12/07/2018] [Indexed: 11/29/2022] Open
Abstract
Chitin synthase is responsible for chitin synthesis in the cuticles and cuticular linings of other tissues in insects. We cloned two alternative splicing variants of the chitin synthase 1 gene (SfCHS1) from the white-backed planthopper, Sogatella furcifera. The full-length cDNA of the two variants (SfCHS1a and SfCHS1b) consists of 6408 bp, contains a 4719-bp open reading frame encoding 1572 amino acids, and has 5′ and 3′ non-coding regions of 283 and 1406 bp, respectively. The two splicing variants occur at the same position in the cDNA sequence between base pairs 4115 and 4291, and consist of 177 nucleotides that encode 59 amino acids but show 74.6% identity at the amino acid level. Analysis in different developmental stages showed that expression of SfCHS1 and SfCHS1a were highest just after molting, whereas SfCHS1b reached its highest expression level 2 days after molting. Further, SfCHS1 and SfCHS1a were mainly expressed in the integument, whereas SfCHS1b was predominately expressed in the gut and fat body. RNAi-based gene silencing inhibited transcript levels of the corresponding mRNAs in S. furcifera nymphs injected with double-stranded RNA of SfCHS1, SfCHS1a, and SfCHS1b, resulted in malformed phenotypes, and killed most of the treated nymphs. Our results indicate that SfCHS1 may be a potential target gene for RNAi-based S. furcifera control.
Collapse
Affiliation(s)
- Zhao Wang
- Institute of Entomology, Guizhou University, Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, 550025, P. R. China.,College of Environment and Life Sciences, Kaili University, Kaili, 556011, P. R. China
| | - Hong Yang
- Institute of Entomology, Guizhou University, Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, 550025, P. R. China. .,College of Tobacco Science of Guizhou University, Guiyang, 550025, P. R. China.
| | - Cao Zhou
- Institute of Entomology, Guizhou University, Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, 550025, P. R. China
| | - Wen-Jia Yang
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, 550005, P. R. China
| | - Dao-Chao Jin
- Institute of Entomology, Guizhou University, Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, 550025, P. R. China.
| | - Gui-Yun Long
- Institute of Entomology, Guizhou University, Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, 550025, P. R. China
| |
Collapse
|
12
|
Harðardóttir HM, Male R, Nilsen F, Eichner C, Dondrup M, Dalvin S. Chitin synthesis and degradation in Lepeophtheirus salmonis: Molecular characterization and gene expression profile during synthesis of a new exoskeleton. Comp Biochem Physiol A Mol Integr Physiol 2019; 227:123-133. [DOI: 10.1016/j.cbpa.2018.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023]
|
13
|
Hwang DS, Lee MC, Kyung DH, Kim HS, Han J, Kim IC, Puthumana J, Lee JS. WAFs lead molting retardation of naupliar stages with down-regulated expression profiles of chitin metabolic pathway and related genes in the copepod Tigriopus japonicus. Comp Biochem Physiol C Toxicol Pharmacol 2017; 193:9-17. [PMID: 27939724 DOI: 10.1016/j.cbpc.2016.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/22/2016] [Accepted: 12/02/2016] [Indexed: 01/10/2023]
Abstract
Oil pollution is considered being disastrous to marine organisms and ecosystems. As molting is critical in the developmental process of arthropods in general and copepods, in particular, the impact will be adverse if the target of spilled oil is on molting. Thus, we investigated the harmful effects of water accommodated fractions (WAFs) of crude oil with an emphasis on inhibition of chitin metabolic pathways related genes and developmental retardation in the copepod Tigriopus japonicus. Also, we analysed the ontology and domain of chitin metabolic pathway genes and mRNA expression patterns of developmental stage-specific genes. Further, the developmental retardation followed by transcriptional modulations in nuclear receptor genes (NR) and chitin metabolic pathway-related genes were observed in the WAFs-exposed T. japonicus. As a result, the developmental time was found significantly (P<0.05) delayed in response to 40% WAFs in comparison with that of control. Moreover, the NR gene, HR3 and chitinases (CHT9 and CHT10) were up-regulated in N4-5 stages, while chitin synthase genes (CHS-1, CHS-2-1, and CHS-2-2) down-regulated in response to WAFs. In brief, a high concentration of WAFs repressed nuclear receptor genes but elicited activation of some of the transcription factors at low concentration of WAFs, resulting in suppression of chitin synthesis. Thus, we suggest that WAF can lead molting retardation of naupliar stages in T. japonicus through down-regulations of chitin metabolism. These findings will provide a better understanding of the mode of action of chitin biosynthesis associated with molting mechanism in WAF-exposed T. japonicus.
Collapse
Affiliation(s)
- Dae-Sik Hwang
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Chul Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Do-Hyun Kyung
- Department of Molecular and Environmental Bioscience, Graduate School, Hanyang University, Seoul 04763, South Korea
| | - Hui-Su Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Il-Chan Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, South Korea
| | - Jayesh Puthumana
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
14
|
Macedo L, Antonino de Souza Junior J, Coelho R, Fonseca F, Firmino A, Silva M, Fragoso R, Albuquerque E, Silva M, de Almeida Engler J, Terra W, Grossi-de-Sa M. Knocking down chitin synthase 2 by RNAi is lethal to the cotton boll weevil. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.biori.2017.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Xia WK, Shen XM, Ding TB, Niu JZ, Zhong R, Liao CY, Feng YC, Dou W, Wang JJ. Functional analysis of a chitinase gene during the larval-nymph transition in Panonychus citri by RNA interference. EXPERIMENTAL & APPLIED ACAROLOGY 2016; 70:1-15. [PMID: 27388447 DOI: 10.1007/s10493-016-0063-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 06/29/2016] [Indexed: 06/06/2023]
Abstract
Chitinases are hydrolytic enzymes that are required for chitin degradation and reconstruction in arthropods. In this study, we report a cDNA sequence encoding a putative chitinase (PcCht1) from the citrus red mite, Panonychus citri. The PcCht1 (564 aa) possessed a signal peptide, a conserver domain, and a chitin-binding domain. Structural and phylogenetic analyses found that PcCht1 had high sequence similarity to chitinases in Tetranychus urticae. Real-time quantitative PCR analyses showed that the transcript levels of PcCht1 peaked periodically in larval and nymph stages. Moreover, significant increase of PcCht1 transcript level in the larvae was observed upon the exposure of diflubenzuron. In contrast, exposures of the larvae to diflubenzuron resulted in the decreased chitin content. Furthermore, through a feeding-based RNA interference approach, we were able to reduce the PcCht1 transcript level by 59.7 % in the larvae, and consequently the treated larvae showed a very low molting rate compared with the control. Our results expanded the understanding of the important role of PcCht1 in the growth and development of P. citri.
Collapse
Affiliation(s)
- Wen-Kai Xia
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
| | - Xiao-Min Shen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
| | - Tian-Bo Ding
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
| | - Jin-Zhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
| | - Rui Zhong
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
| | - Chong-Yu Liao
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
| | - Ying-Cai Feng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
16
|
Nie H, Liu C, Cheng T, Li Q, Wu Y, Zhou M, Zhang Y, Xia Q. Transcriptome analysis of integument differentially expressed genes in the pigment mutant (quail) during molting of silkworm, Bombyx mori. PLoS One 2014; 9:e94185. [PMID: 24718369 PMCID: PMC3981777 DOI: 10.1371/journal.pone.0094185] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/11/2014] [Indexed: 11/19/2022] Open
Abstract
In the silkworm Bombyx mori, pigment mutants with diverse body colors have been maintained throughout domestication for about 5000 years. The silkworm larval body color is formed through the mutual interaction of melanin, ommochromes, pteridines and uric acid. These pigments/compounds are synthesized by the cooperative action of various genes and enzymes. Previous reports showed that melanin, ommochrome and pteridine are increased in silkworm quail (q) mutants. To understand the pigment increase and alterations in pigment synthesis in q mutant, transcriptome profiles of the silkworm integument were investigated at 16 h after head capsule slippage in the fourth molt in q mutants and wild-type (Dazao). Compared to the wild-type, 1161 genes were differentially expressed in the q mutant. Of these modulated genes, 62.4% (725 genes) were upregulated and 37.6% (436 genes) were downregulated in the q mutant. The molecular function of differently expressed genes was analyzed by Blast2GO. The results showed that upregulated genes were mainly involved in protein binding, small molecule binding, transferase activity, nucleic acid binding, specific DNA-binding transcription factor activity and chromatin binding, while exclusively down-expressed genes functioned in oxidoreductase activity, cofactor binding, tetrapyrrole binding, peroxidase activity and pigment binding. We focused on genes related to melanin, pteridine and ommochrome biosynthesis; transport of uric acid; and juvenile hormone metabolism because of their importance in integument coloration during molting. This study identified differently expressed genes implicated in silkworm integument formation and pigmentation using silkworm q mutant. The results estimated the number and types of genes that drive new integument formation.
Collapse
Affiliation(s)
- Hongyi Nie
- State Key Laboratory of Silkworm Genome Biology, Chongqing, China; the Key Sericultural Laboratory of the Ministry of Agriculture, Southwest University, Chongqing, China
| | - Chun Liu
- State Key Laboratory of Silkworm Genome Biology, Chongqing, China; the Key Sericultural Laboratory of the Ministry of Agriculture, Southwest University, Chongqing, China
| | - Tingcai Cheng
- State Key Laboratory of Silkworm Genome Biology, Chongqing, China; the Key Sericultural Laboratory of the Ministry of Agriculture, Southwest University, Chongqing, China
| | - Qiongyan Li
- State Key Laboratory of Silkworm Genome Biology, Chongqing, China; the Key Sericultural Laboratory of the Ministry of Agriculture, Southwest University, Chongqing, China
| | - Yuqian Wu
- State Key Laboratory of Silkworm Genome Biology, Chongqing, China; the Key Sericultural Laboratory of the Ministry of Agriculture, Southwest University, Chongqing, China
| | - Mengting Zhou
- State Key Laboratory of Silkworm Genome Biology, Chongqing, China; the Key Sericultural Laboratory of the Ministry of Agriculture, Southwest University, Chongqing, China
| | - Yinxia Zhang
- State Key Laboratory of Silkworm Genome Biology, Chongqing, China; the Key Sericultural Laboratory of the Ministry of Agriculture, Southwest University, Chongqing, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Chongqing, China; the Key Sericultural Laboratory of the Ministry of Agriculture, Southwest University, Chongqing, China
| |
Collapse
|