1
|
Repetowski P, Warszyńska M, Dąbrowski JM. NIR-activated multifunctional agents for the combined application in cancer imaging and therapy. Adv Colloid Interface Sci 2025; 336:103356. [PMID: 39612723 DOI: 10.1016/j.cis.2024.103356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/17/2024] [Indexed: 12/01/2024]
Abstract
Anticancer therapies that combine both diagnostic and therapeutic capabilities hold significant promise for enhancing treatment efficacy and patient outcomes. Among these, agents responsive to near-infrared (NIR) photons are of particular interest due to their negligible toxicity and multifunctionality. These compounds are not only effective in photodynamic therapy (PDT), but also serve as contrast agents in various imaging modalities, including fluorescence and photoacoustic imaging. In this review, we explore the photophysical and photochemical properties of NIR-activated porphyrin, cyanine, and phthalocyanines derivatives as well as aggregation-induced emission compounds, highlighting their application in synergistic detection, diagnosis, and therapy. Special attention is given to the design and optimization of these agents to achieve high photostability, efficient NIR absorption, and significant yields of fluorescence, heat, or reactive oxygen species (ROS) generation depending on the application. Additionally, we discuss the incorporation of these compounds into nanocarriers to enhance their solubility, stability, and target specificity. Such nanoparticle-based systems exhibit improved pharmacokinetics and pharmacodynamics, facilitating more effective tumor targeting and broadening the application range to photoacoustic imaging and photothermal therapy. Furthermore, we summarize the application of these NIR-responsive agents in multimodal imaging techniques, which combine the advantages of fluorescence and photoacoustic imaging to provide comprehensive diagnostic information. Finally, we address the current challenges and limitations of photodiagnosis and phototherapy and highlight some critical barriers to their clinical implementation. These include issues related to their phototoxicity, limited tissue penetration, and potential off-target effects. The review concludes by highlighting future research directions aimed at overcoming these obstacles, with a focus on the development of next-generation agents and platforms that offer enhanced therapeutic efficacy and imaging capabilities in the field of cancer treatment.
Collapse
Affiliation(s)
- Paweł Repetowski
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Kraków, Poland
| | - Marta Warszyńska
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Kraków, Poland
| | | |
Collapse
|
2
|
Maia A, Ventura C, Santos AO, Nunes MJ, Boto REF, Sousa Â, Silvestre SM, Almeida P, Serrano JL. A New Demand for Improved Selectivity and Potency of Cyanine Dyes as Antiproliferative Agents Against Colorectal Cancer Cells. Molecules 2024; 29:5581. [PMID: 39683742 DOI: 10.3390/molecules29235581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/12/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Cancer treatment remains a significant challenge, with chemotherapy still being one of the most common therapeutic approaches. Based on our initial studies of symmetric monomethine cyanine dyes, which showed potential against colorectal cancer, this study explored several asymmetric cyanines, aiming to develop more potent and selective antitumor agents, particularly against colorectal cancer. In pursuit of this goal, we have designed, synthesized, and structurally characterized twelve new cyanine dyes. Their antiproliferative effects were then investigated in vitro against both tumor and non-tumor cell lines. Notably, the two most promising dyes in terms of potency and selectivity against Caco-2 colorectal cancer cells were derived from the combination of N-methylbenzoxazole and N-methylquinoline (dye 5), as well as N-ethylbenzothiazole and N-ethyl-6-nitrobenzothiazole (dye 10). The potential mechanisms behind their antiproliferative action were also explored, revealing that both dyes penetrate cells and localize within the cytoplasm and nucleus. Furthermore, dye 5 was found to slightly induce apoptosis without causing significant cell cycle arrest, in contrast to dye 10, which increased the number of cells in the G0/G1 phase. Interestingly, both dyes exhibited marked topoisomerase II inhibitory effects, particularly cyanine 5, which may further explain their antiproliferative activity. Additionally, drug-likeness properties were predicted for both dyes. Overall, cyanine 5 emerged as the most promising candidate for further investigation as a potential treatment for colorectal cancer.
Collapse
Affiliation(s)
- Ana Maia
- CICS-UBI-Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal
- Department of Chemistry, University of Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Cathy Ventura
- CICS-UBI-Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal
| | - Adriana O Santos
- CICS-UBI-Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal
| | - Maria J Nunes
- Department of Chemistry, University of Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Renato E F Boto
- CICS-UBI-Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal
- Department of Chemistry, University of Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Ângela Sousa
- CICS-UBI-Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal
| | - Samuel M Silvestre
- CICS-UBI-Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal
- Department of Chemistry, University of Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Paulo Almeida
- CICS-UBI-Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal
- Department of Chemistry, University of Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - João L Serrano
- CICS-UBI-Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal
- Department of Chemistry, University of Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal
| |
Collapse
|
3
|
Valimukhametova AR, Fannon O, Topkiran UC, Dorsky A, Sottile O, Gonzalez-Rodriguez R, Coffer J, Naumov AV. Five near-infrared-emissive graphene quantum dots for multiplex bioimaging. 2D MATERIALS 2024; 11:025009. [PMID: 39149578 PMCID: PMC11326670 DOI: 10.1088/2053-1583/ad1c6e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Due to high tissue penetration depth and low autofluorescence backgrounds, near-infrared (NIR) fluorescence imaging has recently become an advantageous diagnostic technique used in a variety of fields. However, most of the NIR fluorophores do not have therapeutic delivery capabilities, exhibit low photostabilities, and raise toxicity concerns. To address these issues, we developed and tested five types of biocompatible graphene quantum dots (GQDs) exhibiting spectrally-separated fluorescence in the NIR range of 928-1053 nm with NIR excitation. Their optical properties in the NIR are attributed to either rare-earth metal dopants (Ho-NGQDs, Yb-NGQDs, Nd-NGQDs) or defect-states (nitrogen doped GQDS (NGQDs), reduced graphene oxides) as verified by Hartree-Fock calculations. Moderate up to 1.34% quantum yields of these GQDs are well-compensated by their remarkable >4 h photostability. At the biocompatible concentrations of up to 0.5-2 mg ml-1 GQDs successfully internalize into HEK-293 cells and enable in vitro imaging in the visible and NIR. Tested all together in HEK-293 cells five GQD types enable simultaneous multiplex imaging in the NIR-I and NIR-II shown for the first time in this work for GQD platforms. Substantial photostability, spectrally-separated NIR emission, and high biocompatibility of five GQD types developed here suggest their promising potential in multianalyte testing and multiwavelength bioimaging of combination therapies.
Collapse
Affiliation(s)
- Alina R Valimukhametova
- Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, TX 76129, United States of America
| | - Olivia Fannon
- Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, TX 76129, United States of America
| | - Ugur C Topkiran
- Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, TX 76129, United States of America
| | - Abby Dorsky
- Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, TX 76129, United States of America
| | - Olivia Sottile
- Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, TX 76129, United States of America
| | | | - Jeffery Coffer
- Department of Chemistry and Biochemistry, Texas Christian University, TCU Box 298860, Fort Worth, TX 76129, United States of America
| | - Anton V Naumov
- Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, TX 76129, United States of America
| |
Collapse
|
4
|
Su Q, Zhang Y, Zhu S. Site-specific albumin tagging with chloride-containing near-infrared cyanine dyes: molecular engineering, mechanism, and imaging applications. Chem Commun (Camb) 2023; 59:13125-13138. [PMID: 37850230 DOI: 10.1039/d3cc04200f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Near-infrared dyes, particularly cyanine dyes, have shown great potential in biomedical imaging due to their deep tissue penetration, high resolution, and minimal tissue autofluorescence/scattering. These dyes can be adjusted in terms of absorption and emission wavelengths by modifying their chemical structures. The current issues with cyanine dyes include aggregation-induced quenching, poor photostability, and short in vivo circulation time. Encapsulating cyanine dyes with albumin, whether exogenous or endogenous, has been proven to be an effective strategy for improving their brightness and pharmacokinetics. In detail, the chloride-containing (Cl-containing) cyanine dyes have been found to selectively bind to albumin to achieve site-specific albumin tagging, resulting in enhanced optical properties and improved biosafety. This feature article provides an overview of the progress in the covalent binding of Cl-containing cyanine dyes with albumin, including molecular engineering methods, binding sites, and the selective binding mechanism. The improved optical properties of cyanine dyes and albumin complexes have led to cutting-edge applications in biological imaging, such as tumor imaging (diagnostics) and imaging-guided surgery.
Collapse
Affiliation(s)
- Qi Su
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Yuewei Zhang
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Jilin University, Changchun 130021, P. R. China.
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, P. R. China
| | - Shoujun Zhu
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Jilin University, Changchun 130021, P. R. China.
| |
Collapse
|
5
|
Arena F, La Cava F, Faletto D, Roberto M, Crivellin F, Stummo F, Adamo A, Boccalon M, Napolitano R, Blasi F, Koch M, Taruttis A, Reitano E. Short-wave infrared fluorescence imaging of near-infrared dyes with robust end-tail emission using a small-animal imaging device. PNAS NEXUS 2023; 2:pgad250. [PMID: 37575672 PMCID: PMC10422693 DOI: 10.1093/pnasnexus/pgad250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/07/2023] [Accepted: 07/25/2023] [Indexed: 08/15/2023]
Abstract
Commercially available near-infrared (NIR) dyes, including indocyanine green (ICG), display an end-tail of the fluorescence emission spectrum detectable in the short-wave infrared (SWIR) window. Imaging methods based on the second NIR spectral region (1,000-1,700 nm) are gaining interest within the biomedical imaging community due to minimal autofluorescence and scattering, allowing higher spatial resolution and depth sensitivity. Using a SWIR fluorescence imaging device, the properties of ICG vs. heptamethine cyanine dyes with emission >800 nm were evaluated using tissue-simulating phantoms and animal experiments. In this study, we tested the hypothesis that an increased rigidity of the heptamethine chain may increase the SWIR imaging performance due to the bathochromic shift of the emission spectrum. Fluorescence SWIR imaging of capillary plastic tubes filled with dyes was followed by experiments on healthy animals in which a time series of fluorescence hindlimb images were analyzed. Our findings suggest that higher spatial resolution can be achieved even at greater depths (>5 mm) or longer wavelengths (>1,100 nm), in both tissue phantoms and animals, opening the possibility to translate the SWIR prototype toward clinical application.
Collapse
Affiliation(s)
- Francesca Arena
- Bracco Research Center, Bracco Imaging S.p.A., Turin 10010, Italy
| | | | - Daniele Faletto
- Bracco Research Center, Bracco Imaging S.p.A., Turin 10010, Italy
| | - Miriam Roberto
- Molecular Imaging Center, Department of Molecular Biotechnologies and Health Sciences, University of Torino, Turin 10126, Italy
| | | | - Francesco Stummo
- Bracco Research Center, Bracco Imaging S.p.A., Turin 10010, Italy
| | - Alessia Adamo
- Bracco Research Center, Bracco Imaging S.p.A., Turin 10010, Italy
| | | | | | - Francesco Blasi
- Bracco Research Center, Bracco Imaging S.p.A., Turin 10010, Italy
| | | | | | | |
Collapse
|
6
|
Duraiyarasu M, Kumaran SS, Mayilmurugan R. Alkyl Chain Appended Fe(III) Catecholate Complex as a Dual-Modal T1 MRI-NIR Fluorescence Imaging Agent via Second Sphere Water Interactions. ACS Biomater Sci Eng 2023. [PMID: 37141045 DOI: 10.1021/acsbiomaterials.3c00203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The C12-alkyl chain-conjugated Fe(III) catecholate complex [Fe(C12CAT)3]3-, Fe(C12CAT)3 [C12CAT = N-(3,4-dihydroxyphenethyl)dodecanamide], was synthesized and characterized, reported as a dual-modal T1-MRI and an optical imaging probe. The DFT-optimized structure of Fe(C12CAT)3 reveals a distorted octahedral coordination geometry around the high spin Fe(III) center. The formation constant (-log K) of Fe(C12CAT)3 was calculated as 45.4. The complex exhibited r1-relaxivity values of 2.31 ± 0.12 and 1.52 ± 0.06 mM-1 s-1 at 25 and 37 °C, respectively, on 1.41 T at pH 7.3 via second-sphere water interactions. The interaction of Fe(C12CAT)3 with human serum albumin showed concomitant enhancement of r1-relaxivity to 6.44 ± 0.15 mM-1 s-1. The MR phantom images are significantly brighter and directly correlate to the concentration of Fe(C12CAT)3. Adding an external fluorescent marker IR780 dye to Fe(C12CAT)3 leads to the formation of self-assembly by C12-alkyl chains. It resulted in the fluorescence quenching of the dye, and its critical aggregation concentration was calculated as 70 μM. The aggregated matrix of Fe(C12CAT)3 and IR780 dye is spherical, with an average hydrodynamic diameter of 189.5 nm. This self-assembled supramolecular system is found to be non-fluorescent and was "turn-on" under acidic pH via dissociation of aggregates. The r1-relaxivity is found to be unchanged during the matrix aggregation and disaggregation. The probe showed MRI ON and fluorescent OFF under physiological conditions and MRI ON and fluorescent ON under acidic pH. The cell viability experiments showed that the cells are 80% viable at 1 mM probe concentration. Fluorescence experiments and MR phantom images showed that Fe(C12CAT)3 is a potential dual model imaging probe to visualize the acidic pH environment of the cells.
Collapse
Affiliation(s)
- Maheshwaran Duraiyarasu
- Department of Chemistry, and Department of Bioscience & Biomedical Engineering, Indian Institute of Technology Bhilai, Raipur, Chattisgarh 492015, India
| | - S Senthil Kumaran
- Department of NMR, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110 029, India
| | - Ramasamy Mayilmurugan
- Department of Chemistry, and Department of Bioscience & Biomedical Engineering, Indian Institute of Technology Bhilai, Raipur, Chattisgarh 492015, India
| |
Collapse
|
7
|
Shen J, He W. The fabrication strategies of near-infrared absorbing transition metal complexes. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
8
|
An Insight into Symmetrical Cyanine Dyes as Promising Selective Antiproliferative Agents in Caco-2 Colorectal Cancer Cells. Molecules 2022; 27:molecules27185779. [PMID: 36144515 PMCID: PMC9503608 DOI: 10.3390/molecules27185779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/30/2022] [Accepted: 09/04/2022] [Indexed: 12/04/2022] Open
Abstract
Cancer remains one of the diseases with the highest worldwide incidence. Several cytotoxic approaches have been used over the years to overcome this public health threat, such as chemotherapy, radiotherapy, and photodynamic therapy (PDT). Cyanine dyes are a class of compounds that have been extensively studied as PDT sensitisers; nevertheless, their antiproliferative potential in the absence of a light source has been scarcely explored. Herein, the synthesis of eighteen symmetric mono-, tri-, and heptamethine cyanine dyes and their evaluation as potential anticancer agents is described. The influences of the heterocyclic nature, counterion, and methine chain length on the antiproliferative effects and selectivities were analysed, and relevant structure-activity relationship data were gathered. The impact of light on the cytotoxic activity of the most promising dye was also assessed and discussed. Most of the monomethine and trimethine cyanine dyes under study demonstrated a high antiproliferative effect on human tumour cell lines of colorectal (Caco-2), breast (MCF-7), and prostate (PC-3) cancer at the initial screening (10 µM). However, concentration-viability curves showed higher potency and selectivity for the Caco-2 cell line. A monomethine cyanine dye derived from benzoxazole was the most promising compound (IC50 for Caco-2 = 0.67 µM and a selectivity index of 20.9 for Caco-2 versus normal human dermal fibroblasts (NHDF)) and led to Caco-2 cell cycle arrest at the G0/G1 phase. Complementary in silico studies predicted good intestinal absorption and oral bioavailability for this cyanine dye.
Collapse
|
9
|
Red‐Shifted Water‐Soluble BODIPY Photocages for Visualisation and Controllable Cellular Delivery of Signaling Lipids. Angew Chem Int Ed Engl 2022; 61:e202205855. [DOI: 10.1002/anie.202205855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Indexed: 11/07/2022]
|
10
|
Ding J, Kang X, Feng M, Tan J, Feng Q, Wang X, Wang J, Liu J, Li Z, Guan W, Qiao T. A novel active mitochondrion-selective fluorescent probe for the NIR fluorescence imaging and targeted photodynamic therapy of gastric cancer. Biomater Sci 2022; 10:4756-4763. [PMID: 35837996 DOI: 10.1039/d2bm00684g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The annual morbidity and mortality due to gastric cancer are still high across the world, posing a serious threat to public health. Improving the diagnosis rate of gastric cancer and exploring new treatments are urgent issues in the clinical field. In recent years, photosensitizer (PS)-based photodynamic therapy (PDT) has proven to be an effective cancer treatment strategy and can be used to treat a variety of cancers. Developing PSs with tumor-targeting ability and high singlet oxygen yield (Φ(1O2)) is the key to improving the PDT effect. Herein, we developed a novel diagnosis and treatment system (Cy1395-NPs). Our active thio-photosensitizer is based on the sulfur substitution strategy as it can reduce the S1-T1 energy gap, which can promote the process of intersystem crossing (ISC), thus resulting in high ROS generation efficiency. Cy1395-NPs exhibited stable spectral characteristics, satisfactory biocompatibility and high 1O2 yield under laser irradiation due to the introduction of the sulfur atom. In cellular studies, Cy1395-NPs could specifically target MKN45 cells via integrin αvβ3-mediated cRGD endocytosis and selectively aggregate in the mitochondria. Cy1395-NPs had no obvious cytotoxicity for MKN45 cells and exerted obvious phototoxicity due to the production of 1O2 under laser irradiation. The in vivo results showed that the fluorescence signal from the tumor site was obviously enhanced in 16-48 h, and Cy1395-NPs could selectively target solid tumors with a retention time of about 32 h. Under laser irradiation, Cy1395-NPs significantly inhibited tumor growth and led to significant tumor suppression and apoptosis. In summary, the developed Cy1395-NPs could actively target tumors and exert mitochondrial selectivity, showing an excellent fluorescence imaging effect. Under the irradiation of an 808 nm laser, Cy1395-NPs achieved good inhibition of gastric cancer cells both in vitro and in vivo, thus displaying the functions of tumor targeting, mitochondrial selectivity, fluorescence imaging and tumor inhibition. Our strategy provides a new diagnostic and treatment method for gastric cancers in clinical settings.
Collapse
Affiliation(s)
- Jie Ding
- Department of Vascular Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, China. .,Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Xing Kang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Min Feng
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Jiangkun Tan
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China.
| | - Qingzhao Feng
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Xingzhou Wang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Jiafeng Wang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China. .,Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Jiang Liu
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210004, China
| | - Zan Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China.
| | - Wenxian Guan
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Tong Qiao
- Department of Vascular Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, China.
| |
Collapse
|
11
|
Poryvai A, Galkin M, Shvadchak V, Slanina T. Red‐Shifted Water‐Soluble BODIPY Photocages for Visualisation and Controllable Cellular Delivery of Signaling Lipids. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Anna Poryvai
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences: Ustav organicke chemie a biochemie Akademie ved Ceske republiky Redox Photochemistry CZECH REPUBLIC
| | - Maksym Galkin
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences: Ustav organicke chemie a biochemie Akademie ved Ceske republiky Chemical Biology CZECH REPUBLIC
| | - Volodymyr Shvadchak
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences: Ustav organicke chemie a biochemie Akademie ved Ceske republiky Chemical biology CZECH REPUBLIC
| | - Tomáš Slanina
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences: Ustav organicke chemie a biochemie Akademie ved Ceske republiky Redox Photochemistry Flemingovo nám. 2 16000 Prague CZECH REPUBLIC
| |
Collapse
|
12
|
Marasini R, Aryal S. Indocyanine-type Infrared-820 Encapsulated Polymeric Nanoparticle-Assisted Photothermal Therapy of Cancer. ACS OMEGA 2022; 7:12056-12065. [PMID: 35449968 PMCID: PMC9016882 DOI: 10.1021/acsomega.2c00306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Organic small-molecule photosensitizers are well-characterized and known for the light-responsive treatment modality including photodynamic therapy. Compared with ultraviolet-visible (UV-vis) light used in conventional photodynamic therapy with organic photosensitizers, near-infrared (NIR) light from 700 to 900 nm is less absorbed and scattered by biological tissue such as hemoglobin, lipids, and water, and thus, the use of NIR excitation can greatly increase the penetration depth and emission. Additionally, NIR light has lower energy than UV-vis that can be beneficial due to less activation of fluorophores present in tissues upon NIR irradiation. However, the low water stability, nonspecific distribution, and short circulation half-life of the organic photosensitizers limit its broad biological application. NIR responsive small-molecule fluorescent agents are the focus of extensive research for combined molecular imaging and hyperthermia. Recently a new class of NIR dye, IR-820 with excitation and emission wavelengths of 710 and 820 nm, has been developed and explored as an alternative platform to overcome some of the limitations of the most commonly used gold nanoparticles for photothermal therapy of cancer. Herein, we synthesized a core-shell biocompatible nanocarrier envelope made up of a phospholipid conjugated with poly(ethylene glycol) as a shell, while poly(lactic glycolic acid) (PLGA) was used as a core to encapsulate IR-820 dye. The IR-820-loaded nanoparticles were prepared by nanoprecipitation and characterized for their physicochemical properties and photothermal efficiency. These nanoparticles were monodispersed and highly stable in physiological pH with the hydrodynamic size of 103 ± 8 nm and polydispersity index of 0.163 ± 0.031. The IR-820-loaded nanocarrier showed excellent biocompatibility in the dark, whereas remarkable phototoxicity was observed with breast cancer cells (MCF-7) upon NIR laser excitation. Therefore, the IR-820-loaded phospholipid mimicking biodegradable lipid-polymer composite nanoparticles could have great potential for cancer theranostics.
Collapse
Affiliation(s)
- Ramesh Marasini
- Department
of Chemistry, College of Arts and Sciences, Kansas State University, Manhattan, Kansas 66506, United States
- Russell
H. Morgan Department of Radiology and Radiological Sciences, Division
of MR Research, The Johns Hopkins University
School of Medicine, Baltimore, Maryland 21205, United States
- Cellular
Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Santosh Aryal
- Department
of Pharmaceutical Sciences and Health Outcomes, The Ben and Maytee
Fisch College of Pharmacy, The University
of Texas at Tyler, Tyler, Texas 75799, United States
| |
Collapse
|
13
|
Costa SM, Fangueiro R, Ferreira DP. Drug Delivery Systems for Photodynamic Therapy: The Potentiality and Versatility of Electrospun Nanofibers. Macromol Biosci 2022; 22:e2100512. [PMID: 35247227 DOI: 10.1002/mabi.202100512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/02/2022] [Indexed: 11/07/2022]
Abstract
Recently, photodynamic therapy (PDT) has become a promising approach for the treatment of a broad range of diseases, including oncological and infectious diseases. This minimally invasive and localized therapy is based on the production of reactive oxygen species (ROS) able to destroy cancer cells and inactivate pathogens by combining the use of photosensitizers (PSs), light and molecular oxygen. To overcome the drawbacks of drug systemic administration, drug delivery systems (DDS) can be used to carrier the PSs, allowing higher therapeutic efficacy and minimal toxicological effects. Polymeric nanofibers produced by electrospinning emerged as powerful platforms for drug delivery applications. Electrospun nanofibers exhibit outstanding characteristics, such as large surface area to volume ratio associated with high drug loading, high porosity, flexibility, ability to incorporate and release a wide variety of therapeutic agents, biocompatibility and biodegradability. Due to the versatility of this technique, fibers with different morphologies and functionalities, including drug release profile can be produced. The possibility of scalability makes electrospinning even more attractive for the development of DDS. This review aims to explore and show an up to date of the huge potential of electrospun nanofibers as DDS for different PDT applications and discuss the opportunities and challenges in this field. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sofia M Costa
- Centre for Textile Science and Technology (2C2T), University of Minho, Guimarães, 4800-058, Portugal
| | - Raul Fangueiro
- Centre for Textile Science and Technology (2C2T), University of Minho, Guimarães, 4800-058, Portugal.,Department of Mechanical Engineering, University of Minho, Guimarães, 4800-058, Portugal
| | - Diana P Ferreira
- Centre for Textile Science and Technology (2C2T), University of Minho, Guimarães, 4800-058, Portugal
| |
Collapse
|
14
|
Development of Cyanine 813@Imidazole-Based Doped Supported Devices for Divalent Metal Ions Detection. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10020080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A NIR cyanine@imidazole derivative Cy1 was synthesized and evaluated as a metal ion sensor in solution. Cy1 was shown to be very sensitive to all metal ions tested, presenting a blue shift in the absorption from 668 nm to 633 nm, followed by a change in colour from pale green to blue with Zn2+, Cd2+, Co2+, Ni2+ and Hg2+ ions. Despite the blue shift in the absorption, a decrease at 633 nm (with a colour change from pale green to colourless), as well as a quenching in the emission intensity at 785 nm were observed for Cu2+ ions. The results show the formation of sandwich complexes of two ligands per metal ion with the highest association constant observed for Cu2+ (Log Kass.abs = 14.76 ± 0.09; Log Kass.emis. = 14.79 ± 0.06). The minimal detectable amounts were found to be 31 nM and 37 nM, with a naked eye detection of 2.9 ppm and 2.1 ppm for Hg2+ and Cu2+ ions, respectively. These results prompted us to explore the applicability of Cy1 by its combination with nanomaterials. Thus, Cy1@ doped MNs and Cy1@ doped PMMA nanoparticles were synthesized. Both nanosystems were shown to be very sensitive to Cu2+ ions in water, allowing a naked-eye detection of at least 1 ppm for Cy1@ doped MNs and 7 ppm for Cy1@ doped PMMA. This colourimetric response is an easy and inexpensive way to assess the presence of metals in aqueous media with no need for further instrumentation.
Collapse
|
15
|
Jalihal A, Le T, Macchi S, Krehbiel H, Bashiru M, Forson M, Siraj N. Understanding of Förster Resonance Energy Transfer (FRET) in Ionic Materials. SUSTAINABLE CHEMISTRY 2021; 2:564-575. [PMID: 35350442 PMCID: PMC8958797 DOI: 10.3390/suschem2040031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Herein, an ionic material (IM) with Förster Resonance Energy Transfer (FRET) characteristics is reported for the first time. The IM is designed by pairing a Nile Blue A cation (NBA+) with an anionic near-infrared (NIR) dye, IR820-, using a facile ion exchange reaction. These two dyes absorb at different wavelength regions. In addition, NBA+ fluorescence emission spectrum overlaps with IR820- absorption spectrum, which is one requirement for the occurrence of the FRET phenomenon. Therefore, the photophysical properties of the IM were studied in detail to investigate the FRET mechanism in IM for potential dye sensitized solar cell (DSSCs) application. Detailed examination of photophysical properties of parent compounds, a mixture of the parent compounds, and the IM revealed that the IM exhibits FRET characteristics, but not the mixture of two dyes. The presence of spectator counterion in the mixture hindered the FRET mechanism while in the IM, both dyes are in close proximity as an ion pair, thus exhibiting FRET. All FRET parameters such as spectral overlap integral, Förster distance, and FRET energy confirm the FRET characteristics of the IM. This article presents a simple synthesis of a compound with FRET properties which can be further used for a variety of applications.
Collapse
|
16
|
Laboe M, Lahiri J, Mohan T M N, Liang F, Levine BG, Beck WF, Dantus M. Linear and Nonlinear Optical Processes Controlling S 2 and S 1 Dual Fluorescence in Cyanine Dyes. J Phys Chem A 2021; 125:9770-9784. [PMID: 34747598 DOI: 10.1021/acs.jpca.1c05772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report on the changes in the dual fluorescence of two cyanine dyes IR144 and IR140 as a function of viscosity and probe their internal conversion dynamics from S2 to S1 via their dependence on a femtosecond laser pulse chirp. Steady-state and time-resolved measurements performed in methanol, ethanol, propanol, ethylene glycol, and glycerol solutions are presented. Quantum calculations reveal the presence of three excited states responsible for the experimental observations. Above the first excited state, we find an excited state, which we designate as S1', that relaxes to the S1 minimum, and we find that the S2 state has two stable configurations. Chirp-dependence measurements, aided by numerical simulations, reveal how internal conversion from S2 to S1 depends on solvent viscosity and pulse duration. By combining solvent viscosity, transform-limited pulses, and chirped pulses, we obtain an overall change in the S2/S1 population ratio of a factor of 86 and 55 for IR144 and IR140, respectively. The increase in the S2/S1 ratio is explained by a two-photon transition to a higher excited state. The ability to maximize the population of higher excited states by delaying or bypassing nonradiative relaxation may lead to the increased efficiency of photochemical processes.
Collapse
Affiliation(s)
- Maryann Laboe
- Department of Chemical Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jurick Lahiri
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Nila Mohan T M
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Fangchun Liang
- Institute for Advanced Computational Science and Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Benjamin G Levine
- Institute for Advanced Computational Science and Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Warren F Beck
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Marcos Dantus
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States.,Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
17
|
Sun Y, Yang Q, Xia X, Li X, Ruan W, Zheng M, Zou Y, Shi B. Polymeric Nanoparticles for Mitochondria Targeting Mediated Robust Cancer Therapy. Front Bioeng Biotechnol 2021; 9:755727. [PMID: 34692665 PMCID: PMC8526929 DOI: 10.3389/fbioe.2021.755727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/24/2021] [Indexed: 12/19/2022] Open
Abstract
Despite all sorts of innovations in medical researches over the past decades, cancer remains a major threat to human health. Mitochondria are essential organelles in eukaryotic cells, and their dysfunctions contribute to numerous diseases including cancers. Mitochondria-targeted cancer therapy, which specifically delivers drugs into the mitochondria, is a promising strategy for enhancing anticancer treatment efficiency. However, owing to their special double-layered membrane system and highly negative potentials, mitochondria remain a challenging target for therapeutic agents to reach and access. Polymeric nanoparticles exceed in cancer therapy ascribed to their unique features including ideal biocompatibility, readily design and synthesis, as well as flexible ligand decoration. Significant efforts have been put forward to develop mitochondria-targeted polymeric nanoparticles. In this review, we focused on the smart design of polymeric nanosystems for mitochondria targeting and summarized the current applications in improving cancer therapy.
Collapse
Affiliation(s)
- Yajing Sun
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, China
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences and School of Pharmacy, Henan University, Kaifeng, China
| | - Qingshan Yang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, China
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences and School of Pharmacy, Henan University, Kaifeng, China
| | - Xue Xia
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, China
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences and School of Pharmacy, Henan University, Kaifeng, China
| | - Xiaozhe Li
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, China
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences and School of Pharmacy, Henan University, Kaifeng, China
| | - Weimin Ruan
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, China
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences and School of Pharmacy, Henan University, Kaifeng, China
| | - Meng Zheng
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, China
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences and School of Pharmacy, Henan University, Kaifeng, China
| | - Yan Zou
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, China
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences and School of Pharmacy, Henan University, Kaifeng, China
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Bingyang Shi
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, China
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences and School of Pharmacy, Henan University, Kaifeng, China
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
18
|
Della Pelle G, Delgado López A, Salord Fiol M, Kostevšek N. Cyanine Dyes for Photo-Thermal Therapy: A Comparison of Synthetic Liposomes and Natural Erythrocyte-Based Carriers. Int J Mol Sci 2021; 22:ijms22136914. [PMID: 34199144 PMCID: PMC8268567 DOI: 10.3390/ijms22136914] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/21/2021] [Accepted: 06/25/2021] [Indexed: 01/02/2023] Open
Abstract
Cyanine fluorescent dyes are attractive diagnostic or therapeutic agents due to their excellent optical properties. However, in free form, their use in biological applications is limited due to the short circulation time, instability, and toxicity. Therefore, their encapsulation into nano-carriers might help overcome the above-mentioned issues. In addition to indocyanine green (ICG), which is clinically approved and therefore the most widely used fluorescent dye, we tested the structurally similar and cheaper alternative called IR-820. Both dyes were encapsulated into liposomes. However, due to the synthetic origin of liposomes, they can induce an immunogenic response. To address this challenge, we proposed to use erythrocyte membrane vesicles (EMVs) as “new era” nano-carriers for cyanine dyes. The optical properties of both dyes were investigated in different biological relevant media. Then, the temperature stability and photo-stability of dyes in free form and encapsulated into liposomes and EMVs were evaluated. Nano-carriers efficiently protected dyes from thermal degradation, as well as from photo-induced degradation. Finally, a hemotoxicity study revealed that EMVs seem less hemotoxic dye carriers than clinically approved liposomes. Herein, we showed that EMVs exhibit great potential as nano-carriers for dyes with improved stability and hemocompatibility without losing excellent optical properties.
Collapse
Affiliation(s)
- Giulia Della Pelle
- Department for Nanostructured Materials, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
- Correspondence: (G.D.P.); (N.K.)
| | - Andrea Delgado López
- Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; (A.D.L.); (M.S.F.)
| | - Marina Salord Fiol
- Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; (A.D.L.); (M.S.F.)
| | - Nina Kostevšek
- Department for Nanostructured Materials, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
- Correspondence: (G.D.P.); (N.K.)
| |
Collapse
|
19
|
Takemiya K, Røise JJ, He M, Taing C, Rodriguez AG, Murthy N, Goodman MM, Taylor WR. Maltohexaose-indocyanine green (MH-ICG) for near infrared imaging of endocarditis. PLoS One 2021; 16:e0247673. [PMID: 33647027 PMCID: PMC7920357 DOI: 10.1371/journal.pone.0247673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 02/11/2021] [Indexed: 11/19/2022] Open
Abstract
Infectious endocarditis is a life-threatening disease, and diagnostics are urgently needed to accurately diagnose this disease especially in the case of prosthetic valve endocarditis. We show here that maltohexaose conjugated to indocyanine green (MH-ICG) can detect Staphylococcus aureus (S. aureus) infection in a rat model of infective endocarditis. The affinity of MH-ICG to S. aureus was determined and had a Km and Vmax of 5.4 μM and 3.0 X 10−6 μmol/minutes/108 CFU, respectively. MH-ICG had no detectable toxicity to mammalian cells at concentrations as high as 100 μM. The in vivo efficiency of MH-ICG in rats was evaluated using a right heart endocarditis model, and the accumulation of MH-ICG in the bacterial vegetations was 2.5 ± 0.2 times higher than that in the control left ventricular wall. The biological half-life of MH-ICG in healthy rats was 14.0 ± 1.3 minutes, and approximately 50% of injected MH-ICG was excreted into the feces after 24 hours. These data demonstrate that MH-ICG was internalized by bacteria with high specificity and that MH-ICG specifically accumulated in bacterial vegetations in a rat model of endocarditis. These results demonstrate the potential efficacy of this agent in the detection of infective endocarditis.
Collapse
Affiliation(s)
- Kiyoko Takemiya
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United states of America
- * E-mail: (KT); (NM); (MMG); (WRT)
| | - Joachim J. Røise
- Department of Bioengineering, University of California at Berkeley, Berkeley, California, United States of America
- Department of Chemistry, University of California at Berkeley, Berkeley, California, United States of America
| | - Maomao He
- Department of Bioengineering, University of California at Berkeley, Berkeley, California, United States of America
| | - Chung Taing
- Department of Chemistry, University of California at Berkeley, Berkeley, California, United States of America
| | - Alexander G. Rodriguez
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United states of America
| | - Niren Murthy
- Department of Bioengineering, University of California at Berkeley, Berkeley, California, United States of America
- * E-mail: (KT); (NM); (MMG); (WRT)
| | - Mark M. Goodman
- Department of Radiology and Imaging Sciences, Emory Center for Systems Imaging, Emory University School of Medicine, Atlanta, Georgia, United states of America
- * E-mail: (KT); (NM); (MMG); (WRT)
| | - W. Robert Taylor
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United states of America
- Cardiology Division, Atlanta Veterans Affairs Medical Center, Atlanta, Georgia, United states of America
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, Georgia, United states of America
- * E-mail: (KT); (NM); (MMG); (WRT)
| |
Collapse
|
20
|
Weinstain R, Slanina T, Kand D, Klán P. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chem Rev 2020; 120:13135-13272. [PMID: 33125209 PMCID: PMC7833475 DOI: 10.1021/acs.chemrev.0c00663] [Citation(s) in RCA: 307] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Photoactivatable (alternatively, photoremovable, photoreleasable, or photocleavable) protecting groups (PPGs), also known as caged or photocaged compounds, are used to enable non-invasive spatiotemporal photochemical control over the release of species of interest. Recent years have seen the development of PPGs activatable by biologically and chemically benign visible and near-infrared (NIR) light. These long-wavelength-absorbing moieties expand the applicability of this powerful method and its accessibility to non-specialist users. This review comprehensively covers organic and transition metal-containing photoactivatable compounds (complexes) that absorb in the visible- and NIR-range to release various leaving groups and gasotransmitters (carbon monoxide, nitric oxide, and hydrogen sulfide). The text also covers visible- and NIR-light-induced photosensitized release using molecular sensitizers, quantum dots, and upconversion and second-harmonic nanoparticles, as well as release via photodynamic (photooxygenation by singlet oxygen) and photothermal effects. Release from photoactivatable polymers, micelles, vesicles, and photoswitches, along with the related emerging field of photopharmacology, is discussed at the end of the review.
Collapse
Affiliation(s)
- Roy Weinstain
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Tomáš Slanina
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Dnyaneshwar Kand
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Petr Klán
- Department
of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
21
|
Hou X, Tao Y, Li X, Pang Y, Yang C, Jiang G, Liu Y. CD44-Targeting Oxygen Self-Sufficient Nanoparticles for Enhanced Photodynamic Therapy Against Malignant Melanoma. Int J Nanomedicine 2020; 15:10401-10416. [PMID: 33376328 PMCID: PMC7764953 DOI: 10.2147/ijn.s283515] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/05/2020] [Indexed: 12/13/2022] Open
Abstract
Objective Nanotechnology-based photodynamic therapy (PDT) is a relatively new anti-tumor strategy. However, its efficacy is limited by the hypoxic state in the tumor microenvironment. In the present study, a poly(lactic-co-glycolic acid) (PLGA) nanoparticle that encapsulated both IR820 and catalase (CAT) was developed to enhance anti-tumor therapy. Materials and Methods HA-PLGA-CAT-IR820 nanoparticles (HCINPs) were fabricated via a double emulsion solvent evaporation method. Dynamic light scattering (DLS), transmission electron microscopy (TEM), laser scanning confocal microscopy, and an ultraviolet spectrophotometer were used to identify and characterize the nanoparticles. The stability of the nanoparticle was investigated by DLS via monitoring the sizes and polydispersity indexes (PDIs) in water, PBS, DMEM, and DMEM+10%FBS. Oxygen generation measurement was carried out via visualizing the oxygen bubbles with ultrasound imaging system and an optical microscope. Inverted fluorescence microscopy and flow cytometry were used to measure the uptake and targeting effect of the fluorescent-labeled nanoparticles. The live-dead method and tumor-bearing mouse models were applied to study the HCINP-induced enhanced PDT effect. Results The results showed that the HCINPs could selectively target melanoma cells with high expression of CD44, and generated oxygen by catalyzing H2O2, which increased the amount of singlet oxygen, ultimately inhibiting tumor growth significantly. Conclusion The present study presents a novel nanoplatform for melanoma treatment.
Collapse
Affiliation(s)
- Xiaoyang Hou
- Department of Dermatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| | - Yingkai Tao
- Department of Dermatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| | - Xinxin Li
- Department of Dermatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| | - Yanyu Pang
- Department of Dermatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| | - Chunsheng Yang
- Department of Dermatology, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an 223002, People's Republic of China
| | - Guan Jiang
- Department of Dermatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| | - Yanqun Liu
- Department of Dermatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| |
Collapse
|
22
|
Josa‐Culleré L, Llebaria A. In the Search for Photocages Cleavable with Visible Light: An Overview of Recent Advances and Chemical Strategies. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000253] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Laia Josa‐Culleré
- Laboratory of Medicinal Chemistry Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) Jordi Girona 18–26 08034 Barcelona Spain
| | - Amadeu Llebaria
- Laboratory of Medicinal Chemistry Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) Jordi Girona 18–26 08034 Barcelona Spain
| |
Collapse
|
23
|
Wang J, Zhang J, Nguyen NTD, Chen YA, Hsieh JT, Dong X. Quantitative measurements of IR780 in formulations and tissues. J Pharm Biomed Anal 2020; 194:113780. [PMID: 33280993 DOI: 10.1016/j.jpba.2020.113780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/21/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE IR780 iodide, a promising near-infrared dye, is widely used to prepare nanoparticles as a theranostic agent for tumor imaging and therapy. However, there are no validated (bio)analytical methods to measure IR780 in nanoparticles and tissues in literature. The aim of this study is to develop and validate a new HPLC method to measure IR780 concentration in IR780 formulations as well as a new LC-MS/MS method to measure IR780 concentration in tissue samples, particularly in liver and lung. MATERIALS AND METHODS IR780 granules that produced IR780 in situ self-assembled nanoparticles upon contact with water were prepared at two drug loadings (0.2 % and 0.37 %). An HPLC method was developed and validated to measure IR780 concentrations in IR780 granules and nanoparticles. Furthermore, a validated LC-MS/MS method was developed to measure IR780 in mouse liver and lung. Both HPLC method and LC-MS/MS method were validated in terms of specificity, stability, linearity, limit of detection, limit of quantification, accuracy and precision. RESULTS Both HPLC method and LC-MS/MS method achieved the criteria for method validation. The HPLC method was accurate in the concentration range of 0.5-25 μg/mL. The measured drug loadings were 95 % of the theoretical drug loadings. The validated LC-MS/MS method can quantitatively measure the concentrations of IR780 in liver and lung. The linear range of the LC-MS/MS method was 1-1000 ng/mL for both liver and lung samples. IR780 granules showed the lung selectivity compared to IR780 solution at 2 h after oral administration. CONCLUSION A validated HPLC method was developed to measure IR780 concentration in pharmaceutical formulations and a validated LC-MS/MS method was developed to measure IR780 concentration in tissues. These quantitative methods provide reliable measurements of IR780 in pharmaceutic formulations and biological samples, which will significantly facilitate the research of IR780 as a theranostic agent for cancer therapy and imaging.
Collapse
Affiliation(s)
- Jianmei Wang
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Jinmin Zhang
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | | | - Yu-An Chen
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jer-Tsong Hsieh
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaowei Dong
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA.
| |
Collapse
|
24
|
Li S, Cheng T, Yin C, Zhou S, Fan Q, Wu W, Jiang X. Phenothiazine versus Phenoxazine: Structural Effects on the Photophysical Properties of NIR-II AIE Fluorophores. ACS APPLIED MATERIALS & INTERFACES 2020; 12:43466-43473. [PMID: 32907323 DOI: 10.1021/acsami.0c12773] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Aggregation-induced emission (AIE) fluorophores with second near-infrared window (NIR-II) fluorescence are very promising for in vivo imaging because they emit fluorescence in an aggregated state and provide desirable imaging resolution and depth. Up to now, only a limited number of NIR-II AIE fluorophores have been developed. Therefore, synthesizing novel NIR-II AIE fluorophores and investigating structural effects on their photophysical properties are very important for the development of AIE probes. In this work, we synthesized two donor-acceptor-donor-type NIR fluorophores with emissions extending into the NIR-II window named DPTQ-PhPTZ and DPTQ-PhPXZ with phenothiazine (PTZ) and phenoxazine (PXZ) derivatives as the electron donors, respectively, and studied their photophysical properties via theoretical and experimental approaches as well as the properties in NIR-II in vivo imaging. The PTZ and PXZ moieties provided typical AIE characteristics. Despite the very similar chemical structures of PTZ and PXZ, DPTQ-PhPTZ and DPTQ-PhPXZ exhibited rather different photophysical properties, for example, compared to DPTQ-PhPTZ, DPTQ-PhPXZ had higher quantum yield (QY) both in solution and in the aggregated state and its QY was less sensitive to solvent polarity. After being coated with an amphiphilic copolymer F-127, the fluorophores maintained fluorescence, and the formed fluorescent polymer nanoparticles (NPs) had satisfactory tumor accumulation and biocompatibility, implying that they are applicable for in vivo tumor detection.
Collapse
Affiliation(s)
- Shun Li
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Tianyuan Cheng
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Changfeng Yin
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Sensen Zhou
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Quli Fan
- Key Lab Organ Elect & Informat Displays, Nanjing University Posts & Telecommun, Nanjing 210023, P. R. China
| | - Wei Wu
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Xiqun Jiang
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
25
|
Li S, Yin C, Wang R, Fan Q, Wu W, Jiang X. Second Near-Infrared Aggregation-Induced Emission Fluorophores with Phenothiazine Derivatives as the Donor and 6,7-Diphenyl-[1,2,5]Thiadiazolo[3,4-g]Quinoxaline as the Acceptor for In Vivo Imaging. ACS APPLIED MATERIALS & INTERFACES 2020; 12:20281-20286. [PMID: 32279482 DOI: 10.1021/acsami.0c03769] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Traditional organic fluorophores generally have hydrophobic conjugated backbones and exhibit an aggregation-caused quenching emission property, which limits greatly their applications in the biological field. Aggregation-induced emission (AIE) fluorophores can breakthrough this shortcoming and are more promising in biological imaging. In this paper, we synthesized three novel donor-acceptor-donor-type second near-infrared (NIR-II) fluorophores and studied their geometric and electronic structures and photophysical properties by both theoretical and experimental studies. All the three fluorophores had typical AIE characteristics, and their emission wavelength spanned the traditional near-infrared and NIR-II regions. They exhibited much stronger fluorescence after being encapsulated in polymer nanoparticles (NPs) than in solutions, and the fluorophore-loaded NPs had desirable biosafety and significant tumor accumulation, indicating that they have great application potentials in tumor detection.
Collapse
Affiliation(s)
- Shun Li
- Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Changfeng Yin
- Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Ruonan Wang
- Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China
| | - Wei Wu
- Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Xiqun Jiang
- Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
26
|
Feng L, Chen W, Ma X, Liu SH, Yin J. Near-infrared heptamethine cyanines (Cy7): from structure, property to application. Org Biomol Chem 2020; 18:9385-9397. [DOI: 10.1039/d0ob01962c] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Heptamethine cyanine dyes (Cy7) have attracted much attention in the field of biological application due to their unique structure and attractive near infrared (NIR) photophysical properties.
Collapse
Affiliation(s)
- Lan Feng
- Key Laboratory of Pesticide and Chemical Biology
- Ministry of Education; Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis; International Joint Research Center for Intelligent Biosensing Technology and Health; College of Chemistry
- Central China Normal University
- Wuhan 430079
- P. R. China
| | - Weijie Chen
- Key Laboratory of Pesticide and Chemical Biology
- Ministry of Education; Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis; International Joint Research Center for Intelligent Biosensing Technology and Health; College of Chemistry
- Central China Normal University
- Wuhan 430079
- P. R. China
| | - Xiaoxie Ma
- Key Laboratory of Pesticide and Chemical Biology
- Ministry of Education; Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis; International Joint Research Center for Intelligent Biosensing Technology and Health; College of Chemistry
- Central China Normal University
- Wuhan 430079
- P. R. China
| | - Sheng Hua Liu
- Key Laboratory of Pesticide and Chemical Biology
- Ministry of Education; Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis; International Joint Research Center for Intelligent Biosensing Technology and Health; College of Chemistry
- Central China Normal University
- Wuhan 430079
- P. R. China
| | - Jun Yin
- Key Laboratory of Pesticide and Chemical Biology
- Ministry of Education; Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis; International Joint Research Center for Intelligent Biosensing Technology and Health; College of Chemistry
- Central China Normal University
- Wuhan 430079
- P. R. China
| |
Collapse
|
27
|
Verma A, Tiwari A, Panda PK, Saraf S, Jain A, Raikwar S, Bidla P, Jain SK. Liposomes for Advanced Drug Delivery. ADVANCED BIOPOLYMERIC SYSTEMS FOR DRUG DELIVERY 2020. [DOI: 10.1007/978-3-030-46923-8_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
El-Hammadi MM, Arias JL. An update on liposomes in drug delivery: a patent review (2014-2018). Expert Opin Ther Pat 2019; 29:891-907. [DOI: 10.1080/13543776.2019.1679767] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Mazen M. El-Hammadi
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - José L. Arias
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, Spain
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
- Biosanitary Research Institute of Granada (ibs.GRANADA), Andalusian Health Service (SAS), University of Granada, Granada, Spain
| |
Collapse
|
29
|
Chen M, Pérez RL, Du P, Bhattarai N, McDonough KC, Ravula S, Kumar R, Mathis JM, Warner IM. Tumor-Targeting NIRF NanoGUMBOS with Cyclodextrin-Enhanced Chemo/Photothermal Antitumor Activities. ACS APPLIED MATERIALS & INTERFACES 2019; 11:27548-27557. [PMID: 31310100 DOI: 10.1021/acsami.9b08047] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The near-infrared fluorescent (NIRF) dye, IR780, is recognized as a promising theranostic agent and has been widely investigated for imaging, chemotherapeutic, and phototherapeutic applications. However, its poor photostability and nonselective toxicities toward both cancer and normal cells limit its biological applications. Herein, we introduce the use of GUMBOS (a group of uniform materials based on organic salts) developed through counter-anion exchange with IR780 and subsequent nanomaterials (nanoGUMBOS) formed by complexation with cyclodextrin (CD) for enhanced chemo/photothermal therapy. Such CD-based nanoGUMBOS display improved aqueous stability, photostability, and photothermal effects relative to traditional IR780. The examination of in vitro cytotoxicity reveals that CD-based nanoGUMBOS are selectively toxic toward cancer cells and exhibit synergistically enhanced cytotoxicity toward cancer cells upon NIR laser irradiation. Additionally, in vivo NIRF imaging demonstrated selective accumulation of these nanoGUMBOS within the tumor site, indicating tumor-targeting properties. Further in vivo therapeutic study of these CD-based nanoGUMBOS suggests excellent chemo/photothermal antitumor effects. Using these studies, we herein demonstrate a promising strategy, via conversion of IR780 into nanoGUMBOS, that can be used for improved theranostic cancer treatment.
Collapse
|
30
|
Zaharie-Butucel D, Potara M, Suarasan S, Licarete E, Astilean S. Efficient combined near-infrared-triggered therapy: Phototherapy over chemotherapy in chitosan-reduced graphene oxide-IR820 dye-doxorubicin nanoplatforms. J Colloid Interface Sci 2019; 552:218-229. [PMID: 31128402 DOI: 10.1016/j.jcis.2019.05.050] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 12/21/2022]
Abstract
Significant efforts are currently being funneled into the improvement of therapeutic outcomes in cancer by designing hybrid nanomaterials that synergistically combine chemotherapeutic abilities and near-infrared (NIR) light-activated photothermal (PTT) and photodynamic (PDT) activity. Herein, a nanotherapeutic platform is specifically designed to integrate combinational functionalities: chemotherapy, PTT, PDT and traceable optical properties. The system, based on chitosan-reduced graphene oxide (chit-rGO), incorporates and carries a large payload of IR820 dye with dual PTT and PDT activity and a chemotherapeutic drug, doxorubicin (DOX). The potential of the fabricated nanoplatforms to operate as an NIR activatable therapeutic agent is first assessed in aqueous solution by investigating its ability to generate singlet oxygen and heat under NIR irradiation with 785 nm laser irradiation. The in vitro anticancer activity of chit-rGO-IR820-DOX is evaluated against murine colon carcinoma cells (C26). The fabricated nanosystem exhibits synergistic anticancer activity against C26 cancer cells by combining IR820 induced PDT, simultaneous graphene and IR820 induced PTT and the chemotherapeutic effect of DOX. Notably, the therapeutic performance of chit-rGO-IR820-DOX can be controlled by the ratio between IR820 and DOX. Moreover, chit-rGO-IR820-DOX facilitates localization inside cancer cells correlated with the release of DOX via mapping by confocal Raman microscopy.
Collapse
Affiliation(s)
- Diana Zaharie-Butucel
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian Str. 42, 400271 Cluj-Napoca, Romania
| | - Monica Potara
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian Str. 42, 400271 Cluj-Napoca, Romania.
| | - Sorina Suarasan
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian Str. 42, 400271 Cluj-Napoca, Romania
| | - Emilia Licarete
- Molecular Biology Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, T Laurian Str. 42, 400271 Cluj-Napoca, Romania
| | - Simion Astilean
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian Str. 42, 400271 Cluj-Napoca, Romania; Department of Biomolecular Physics, Faculty of Physics, Babes-Bolyai University, M Kogalniceanu Str. 1, 400084 Cluj-Napoca, Romania.
| |
Collapse
|
31
|
Miranda D, Huang H, Kang H, Zhan Y, Wang D, Zhou Y, Geng J, Kilian HI, Stiles W, Razi A, Ortega J, Xia J, Choi HS, Lovell JF. Highly-Soluble Cyanine J-aggregates Entrapped by Liposomes for In Vivo Optical Imaging around 930 nm. Am J Cancer Res 2019; 9:381-390. [PMID: 30809281 PMCID: PMC6376187 DOI: 10.7150/thno.28376] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 11/16/2018] [Indexed: 12/18/2022] Open
Abstract
Near infrared (NIR) dyes are useful for in vivo optical imaging. Liposomes have been used extensively for delivery of diverse cargos, including hydrophilic cargos which are passively loaded in the aqueous core. However, most currently available NIR dyes are only slightly soluble in water, making passive entrapment in liposomes challenging for achieving high optical contrast. Methods: We modified a commercially-available NIR dye (IR-820) via one-step Suzuki coupling with dicarboxyphenylboronic acid, generating a disulfonated heptamethine; dicarboxyphenyl cyanine (DCP-Cy). DCP-Cy was loaded in liposomes and used for optical imaging. Results: Owing to increased charge in mildly basic aqueous solution, DCP-Cy had substantially higher water solubility than indocyanine green (by an order of magnitude), resulting in higher NIR absorption. Unexpectedly, DCP-Cy tended to form J-aggregates with pronounced spectral red-shifting to 934 nm (from 789 nm in monomeric form). J-aggregate formation was dependent on salt and DCP-Cy concentration. Dissolved at 20 mg/mL, DCP-Cy J-aggregates could be entrapped in liposomes. Full width at half maximum absorption of the liposome-entrapped dye was just 25 nm. The entrapped DCP-Cy was readily detectable by fluorescence and photoacoustic NIR imaging. Upon intravenous administration to mice, liposomal DCP-Cy circulated substantially longer than the free dye. Accumulation was largely in the spleen, which was visualized with fluorescence and photoacoustic imaging. Conclusions: DCP-Cy is simple to synthesize and exhibits high aqueous solubility and red-shifted absorption from J-aggregate formation. Liposomal dye entrapment is possible, which facilitates in vivo photoacoustic and fluorescence imaging around 930 nm.
Collapse
|
32
|
Gorka AP, Nani RR, Schnermann MJ. Harnessing Cyanine Reactivity for Optical Imaging and Drug Delivery. Acc Chem Res 2018; 51:3226-3235. [PMID: 30418020 DOI: 10.1021/acs.accounts.8b00384] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Optical approaches that visualize and manipulate biological processes have transformed modern biomedical research. An enduring challenge is to translate these powerful methods into increasingly complex physiological settings. Longer wavelengths, typically in the near-infrared (NIR) range (∼650-900 nm), can enable advances in both fundamental and clinical settings; however, suitable probe molecules are needed. The pentamethine and heptamethine cyanines, led by prototypes Cy5 and Cy7, are among the most useful compounds for fluorescence-based applications, finding broad use in a range of contexts. The defining chemical feature of these molecules, and the key chromophoric element, is an odd-numbered polymethine that links two nitrogen atoms. Not only a light-harvesting functional group, the cyanine chromophore is subject to thermal and photochemical reactions that dramatically alter many properties of these molecules. This Account describes our recent studies to define and use intrinsic cyanine chromophore reactivity. The hypothesis driving this research is that novel chemistries that manipulate the cyanine chromophore can be used to address challenging problems in the areas of imaging and drug delivery. We first review reaction discovery efforts that seek to address two limitations of long-wavelength fluorophores: undesired thiol reactivity and modest fluorescence quantum yield. Heptamethine cyanines with an O-alkyl substituent at the central C4' carbon were prepared through a novel N- to O-transposition reaction. Unlike commonly used C4'-phenol variants, this new class of fluorophores is resistant to thiol modification and exhibits improved in vivo imaging properties when used as antibody tags. We have also developed a chemical strategy to enhance the quantum yield of far-red pentamethine cyanines. Using a synthetic strategy involving a cross metathesis/tetracyclization sequence, this approach conformationally restrains the pentamethine cyanine scaffold. The resulting molecules exhibit enhanced quantum yield (ΦF = 0.69 vs ΦF = 0.15). Furthermore, conformational restraint improves interconversion between reduced hydrocyanine and intact cyanine forms, which enables super resolution microscopy. This Account then highlights efforts to use cyanine photochemical reactivity for NIR photocaging. Our approach involves the deliberate use of cyanine photooxidation, a reaction previously only associated with photodegradation. The uncaging reaction sequence is initiated by photooxidative chromophore cleavage (using wavelengths of up to 780 nm), which prompts a C-N bond hydrolysis/cyclization sequence resulting in phenol liberation. This approach has been applied to generate the first NIR-activated antibody-drug conjugates. Tumor uptake can be monitored in vivo using NIR fluorescence, prior to uncaging with an external irradiation source. This NIR uncaging strategy can slow tumor progression and increase survival in a MDA-MB-468- luc mouse model. Broadly, the vantage point of cyanine reactivity is providing novel probe molecules with auspicious features for use in complex imaging and drug delivery settings.
Collapse
Affiliation(s)
- Alexander P. Gorka
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 20850, United States
| | - Roger R. Nani
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 20850, United States
| | - Martin J. Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 20850, United States
| |
Collapse
|
33
|
Alves CG, Lima-Sousa R, de Melo-Diogo D, Louro RO, Correia IJ. IR780 based nanomaterials for cancer imaging and photothermal, photodynamic and combinatorial therapies. Int J Pharm 2018; 542:164-175. [DOI: 10.1016/j.ijpharm.2018.03.020] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 12/19/2022]
|
34
|
Ghann W, Kang H, Emerson E, Oh J, Chavez-Gil T, Nesbitt F, Williams R, Uddin J. Photophysical properties of near-IR cyanine dyes and their application as photosensitizers in dye sensitized solar cells. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Lee Y, Thompson DH. Stimuli-responsive liposomes for drug delivery. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 9:10.1002/wnan.1450. [PMID: 28198148 PMCID: PMC5557698 DOI: 10.1002/wnan.1450] [Citation(s) in RCA: 261] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/23/2016] [Accepted: 11/27/2016] [Indexed: 12/25/2022]
Abstract
The ultimate goal of drug delivery is to increase the bioavailability and reduce the toxic side effects of the active pharmaceutical ingredient (API) by releasing them at a specific site of action. In the case of antitumor therapy, association of the therapeutic agent with a carrier system can minimize damage to healthy, nontarget tissues, while limit systemic release and promoting long circulation to enhance uptake at the cancerous site due to the enhanced permeation and retention effect (EPR). Stimuli-responsive systems have become a promising way to deliver and release payloads in a site-selective manner. Potential carrier systems have been derived from a wide variety of materials, including inorganic nanoparticles, lipids, and polymers that have been imbued with stimuli-sensitive properties to accomplish triggered release based on an environmental cue. The unique features in the tumor microenvironment can serve as an endogenous stimulus (pH, redox potential, or unique enzymatic activity) or the locus of an applied external stimulus (heat or light) to trigger the controlled release of API. In liposomal carrier systems triggered release is generally based on the principle of membrane destabilization from local defects within bilayer membranes to effect release of liposome-entrapped drugs. This review focuses on the literature appearing between November 2008-February 2016 that reports new developments in stimuli-sensitive liposomal drug delivery strategies using pH change, enzyme transformation, redox reactions, and photochemical mechanisms of activation. WIREs Nanomed Nanobiotechnol 2017, 9:e1450. doi: 10.1002/wnan.1450 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Y Lee
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - D H Thompson
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
36
|
Palao-Suay R, Martín-Saavedra FM, Rosa Aguilar M, Escudero-Duch C, Martín-Saldaña S, Parra-Ruiz FJ, Rohner NA, Thomas SN, Vilaboa N, San Román J. Photothermal and photodynamic activity of polymeric nanoparticles based on α-tocopheryl succinate-RAFT block copolymers conjugated to IR-780. Acta Biomater 2017; 57:70-84. [PMID: 28511874 DOI: 10.1016/j.actbio.2017.05.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 01/28/2023]
Abstract
The aim of this work was the generation of a multifunctional nanopolymeric system that incorporates IR-780 dye, a near-infrared (NIR) imaging probe that exhibits photothermal and photodynamic properties; and a derivate of α-tocopheryl succinate (α-TOS), a mitochondria-targeted anticancer compound. IR-780 was conjugated to the hydrophilic segment of copolymer PEG-b-polyMTOS, based on poly(ethylene glycol) (PEG) and a methacrylic derivative of α-tocopheryl succinate (MTOS), to generate IR-NP, self-assembled nanoparticles (NPs) in aqueous media which exhibit a hydrophilic shell and a hydrophobic core. During assembly, the hydrophobic core of IR-NP could encapsulate additional IR-780 to generate derived subspecies carrying different amount of probe (IR-NP-eIR). Evaluation of photo-inducible properties of IR-NP and IR-NP-eIR were thoroughly assessed in vitro. Developed nanotheranostic particles showed distinct fluorescence and photothermal behavior after excitation by a laser light emitting at 808nm. Treatment of MDA-MB-453 cells with IR-NP or IR-NP-eIR resulted in an efficient internalization of the IR-780 dye, while subsequent NIR-laser irradiation led to a severe decrease in cell viability. Photocytoxicity conducted by IR-NP, which could not be attributed to the generation of lethal hyperthermia, responded to an increase in the levels of intracellular reactive oxygen species (ROS). Therefore, the fluorescence imaging and inducible phototoxicity capabilities of NPs derived from IR-780-PEG-b-polyMTOS copolymer confer high value to these nanotheranostics tools in clinical cancer research. STATEMENT OF SIGNIFICANCE Multifunctional polymeric nanoparticles (NPs) that combine imaging and therapeutic properties are highly valuable in cancer treatment. In this paper we describe the development of NPs that are fluorescent in the near-infrared (NIR). This is important for their visualization in living tissues that present low absorption and low autofluorescence in this wavelength region (between 700 and 1000nm). Moreover, NPs present photothermal and photodynamic properties when NIR irradiated: the NPs produce an efficient increment of temperature and increase the intracellular reactive oxygen species (ROS) when laser irradiated at 808nm. These tuneable photoinduced properties make the NPs highly cytotoxic after NIR irradiation and provide a new tool for highly precise cancer treatment.
Collapse
|
37
|
Thomas RG, Jeong YY. NIRF Heptamethine Cyanine Dye Nanocomplexes for Multi Modal Theranosis of Tumors. Chonnam Med J 2017; 53:83-94. [PMID: 28584786 PMCID: PMC5457956 DOI: 10.4068/cmj.2017.53.2.83] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/02/2017] [Accepted: 04/03/2017] [Indexed: 01/15/2023] Open
Abstract
Heptamethine cyanine dyes are categorized as a class of near infrared fluorescent (NIRF) dyes which have been discovered to have tumor targeting and accumulation capability. This unique feature of NIRF dye makes it a promising candidate for imaging, targeted therapy and also as a drug delivery vehicle for various types of cancers. The favored uptake of dyes only in cancer cells is facilitated by several factors which include organic anion-transporting polypeptides, high mitochondrial membrane potential and tumor hypoxia in cancer cells. Currently nanotechnology has opened possibilities for multimodal or multifunctional strategies for cancer treatment. Including heptamethine cyanine dyes in nanoparticle based delivery systems have generally improved its theranostic ability by several fold owing to the multiple functionalities and structural features of heptamethine dyes. For this reason, nanocomplexes with NIRF heptamethine cyanine dye probe are preferred over non-targeting dyes such as indo cyanine green (ICG). This review sums up current trends and progress in NIRF heptamethine cyanine dye, including dye properties, multifunctional imaging and therapeutic applications in cancer.
Collapse
Affiliation(s)
- Reju George Thomas
- Department of Radiology, Chonnam National University Hwasun Hospital, Molecular Theranostics Laboratory, Hwasun, Korea
| | - Yong Yeon Jeong
- Department of Radiology, Chonnam National University Hwasun Hospital, Molecular Theranostics Laboratory, Hwasun, Korea
| |
Collapse
|
38
|
Asadian-Birjand M, Bergueiro J, Wedepohl S, Calderón M. Near Infrared Dye Conjugated Nanogels for Combined Photodynamic and Photothermal Therapies. Macromol Biosci 2016; 16:1432-1441. [PMID: 27297134 DOI: 10.1002/mabi.201600117] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/17/2016] [Indexed: 12/24/2022]
Abstract
There is a need for new and smart formulations that will help overcome the limitations of organic dyes used in photodynamic (PDT) and photothermal (PTT) therapy and significantly accelerate their clinical translation. Therefore the aim of this work was to create a responsive nanogel scaffold as a smart vehicle for dye administration. We developed a methodology that enables the conjugation of organic dyes to thermoresponsive nanogels and yields biocompatible, nanometer-sized products with low polydispersity. The potential of the dye-nanogel conjugate as a photothermal and photodynamic agent has been demonstrated by an in vitro evaluation with a model human carcinoma cell line. Additionally, confocal cell images showed their cellular uptake profile and their potential for bioimaging and intracellular drug delivery. These conjugates are a promising scaffold as a theranostic agents and will enable further applications in combination with controlled drug release.
Collapse
Affiliation(s)
- Mazdak Asadian-Birjand
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Julian Bergueiro
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Stefanie Wedepohl
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Marcelo Calderón
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany.
| |
Collapse
|
39
|
Shi C, Wu JB, Pan D. Review on near-infrared heptamethine cyanine dyes as theranostic agents for tumor imaging, targeting, and photodynamic therapy. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:50901. [PMID: 27165449 DOI: 10.1117/1.jbo.21.5.050901] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/20/2016] [Indexed: 05/21/2023]
Abstract
A class of near-infrared fluorescence (NIRF) heptamethine cyanine dyes that are taken up and accumulated specifically in cancer cells without chemical conjugation have recently emerged as promising tools for tumor imaging and targeting. In addition to their fluorescence and nuclear imaging-based tumor-imaging properties, these dyes can be developed as drug carriers to safely deliver chemotherapy drugs to tumors. They can also be used as effective agents for photodynamic therapy with remarkable tumoricidal activity via photodependent cytotoxic activity. The preferential uptake of dyes into cancer but not normal cells is co-operatively mediated by the prevailing activation of a group of organic anion-transporting polypeptides on cancer cell membranes, as well as tumor hypoxia and increased mitochondrial membrane potential in cancer cells. Such mechanistic explorations have greatly advanced the current application and future development of NIRF dyes and their derivatives as anticancer theranostic agents. This review summarizes current knowledge and emerging advances in NIRF dyes, including molecular characterization, photophysical properties, multimodal development and uptake mechanisms, and their growing potential for preclinical and clinical use.
Collapse
Affiliation(s)
- Changhong Shi
- Fourth Military Medical University, Laboratory Animal Center, 169 West Changle Road, Xi'an, Shaanxi 710032, China
| | - Jason Boyang Wu
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Uro-Oncology Research Program, Department of Medicine, Los Angeles, California 90048, United States
| | - Dongfeng Pan
- University of Virginia, Department of Radiology, Charlottesville, Virginia 22908, United States
| |
Collapse
|
40
|
Ferreira DP, Conceição DS, Fernandes F, Sousa T, Calhelha RC, Ferreira ICFR, Santos PF, Vieira Ferreira LF. Characterization of a Squaraine/Chitosan System for Photodynamic Therapy of Cancer. J Phys Chem B 2016; 120:1212-20. [DOI: 10.1021/acs.jpcb.5b11604] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Diana P. Ferreira
- Centro
de Química-Física Molecular and IN-Institute of Nanoscience
and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - David S. Conceição
- Centro
de Química-Física Molecular and IN-Institute of Nanoscience
and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - F. Fernandes
- Centro
de Química-Física Molecular and IN-Institute of Nanoscience
and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - T. Sousa
- Centro
de Química-Física Molecular and IN-Institute of Nanoscience
and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ricardo C. Calhelha
- Mountain
Research Centre (CIMO), ESA, Polytechnic Institute of Bragança, Campus de Santa Apolónia, 1172, 5301-855 Bragança, Portugal
| | - Isabel C. F. R. Ferreira
- Mountain
Research Centre (CIMO), ESA, Polytechnic Institute of Bragança, Campus de Santa Apolónia, 1172, 5301-855 Bragança, Portugal
| | - Paulo F. Santos
- Centro
de Química—Vila Real, Universidade de Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
| | - L. F. Vieira Ferreira
- Centro
de Química-Física Molecular and IN-Institute of Nanoscience
and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
41
|
Kumar P, Srivastava R. IR 820 stabilized multifunctional polycaprolactone glycol chitosan composite nanoparticles for cancer therapy. RSC Adv 2015. [DOI: 10.1039/c5ra05997f] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Photothermal therapy has gained worldwide attention for its less painful, non invasive/minimally invasive, effective thermal ablation based therapy for cancer.
Collapse
Affiliation(s)
- Piyush Kumar
- Department of Biosciences and Bioengineering
- Indian Institute of Technology-Bombay
- Mumbai-400076
- India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering
- Indian Institute of Technology-Bombay
- Mumbai-400076
- India
| |
Collapse
|
42
|
Gorka AP, Nani RR, Zhu J, Mackem S, Schnermann MJ. A near-IR uncaging strategy based on cyanine photochemistry. J Am Chem Soc 2014; 136:14153-9. [PMID: 25211609 PMCID: PMC4195383 DOI: 10.1021/ja5065203] [Citation(s) in RCA: 194] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
![]()
The development of photocaging groups
activated by near-IR light
would enable new approaches for basic research and allow for spatial
and temporal control of drug delivery. Here we report a near-IR light-initiated
uncaging reaction sequence based on readily synthesized C4′-dialkylamine-substituted
heptamethine cyanines. Phenol-containing small molecules are uncaged
through sequential release of the C4′-amine and intramolecular
cyclization. The release sequence is initiated by a previously unexploited
photochemical reaction of the cyanine fluorophore scaffold. The uncaging
process is compatible with biological milieu and is initiated with
low intensity 690 nm light. We show that cell viability can be inhibited
through light-dependent release of the estrogen receptor antagonist,
4-hydroxycyclofen. In addition, through uncaging of the same compound,
gene expression is controlled with near-IR light in a ligand-dependent
CreERT/LoxP-reporter cell line derived from transgenic
mice. These studies provide a chemical foundation that we expect will
enable specific delivery of small molecules using cytocompatible,
tissue penetrant near-IR light.
Collapse
Affiliation(s)
- Alexander P Gorka
- Chemical Biology Laboratory, National Cancer Institute , 376 Boyles Street, Frederick, Maryland 21702, United States
| | | | | | | | | |
Collapse
|