1
|
Li Y, Huang L, Xu Y, Cheng B, Zhao M. Optimization of Enzyme-Assisted Extraction of Rosemary Essential Oil Using Response Surface Methodology and Its Antioxidant Activity by Activating Nrf2 Signaling Pathway. Molecules 2024; 29:3382. [PMID: 39064960 PMCID: PMC11279388 DOI: 10.3390/molecules29143382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Rosemary essential oil (REO) is widely recognized as a food flavoring and traditional herb and possesses potential antioxidant activity. However, its low yield rate and unclarified antioxidant mechanism warrant further investigation. In this study, an enzyme pretreatment-assisted extraction method with Box-Behnken design (BBD) and response surface methodology (RSM) models was employed to optimize the main factors of REO, and its antioxidant molecular mechanism under oxidative stress was elucidated in hydrogen peroxide-induced human lung carcinoma (A549) cells. The optimized yield (4.10%) of REO was recorded with the following optimum conditions: enzyme amount 1.60%, enzyme digestion pH 5.0, enzyme digestion temperature 46.50 °C, and enzyme digestion time 1.7 h. Meanwhile, 1.8-cineole (53.48%) and β-pinene (20.23%) exhibited radical scavenging activity higher than that of BHA and BHT. At the cellular level, REO (12.5-50 µg/mL) increased the levels of cell viability, CAT, SOD, and GSH significantly while reducing the contents of ROS, MDA, and GSSG, when compared to H2O2 exposure. Mechanically, REO relieved oxidative stress via activating the Nrf2 signaling pathway and enhancing the protein expression of Nrf2, NQO-1, and HO-1, which was further verified by molecular docking between the main component 1.8-cineole and the Kelch domain of KEAP1. Therefore, REO could be considered as a potent natural antioxidant with a potential strategy in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Yuanyuan Li
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Lei Huang
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Yongfang Xu
- School of Pharmacy, Zhengzhou Shuqing Medical College, Zhengzhou 450064, China
| | - Biao Cheng
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Mingqin Zhao
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
2
|
OU JY, LIU FL, CHEN CL, FANG MC, HUANG CH. Immunomodulatory effects of Ulva-derived polysaccharides, oligosaccharides, and residues in a murine model of delayed-type hypersensitivity. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2023; 43:128-134. [PMID: 38562547 PMCID: PMC10981946 DOI: 10.12938/bmfh.2023-065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/07/2023] [Indexed: 04/04/2024]
Abstract
Ulva, an edible green alga, contains sulfated polysaccharides and oligosaccharides that possess immunomodulatory and anti-inflammatory properties. The objective of this study was to investigate the anti-allergic effects of Ulva-derived samples of polysaccharides (UP), oligosaccharides (UO), and residues (UR) on delayed-type hypersensitivity (DTH) in mice. Oral treatment of mice with UP, UO, and UR (250 mg/kg body weight) daily noticeably improved the DTH reaction as evidenced by attenuation of footpad swelling and cell infiltration at the allergen-challenge site. Although the Ulva samples had limited impacts on the production of serum total IgG, decreased concentrations of allergen-specific IgG and IgG2a and an increased concentration of IgG1 were observed in the treated mice. Moreover, treatment with them suppressed allergen-induced IFN-γ and TNF-α secretion and elevated IL-4 secretion. However, none of the Ulva sample treatments could modulate the production of IL-10. Concordantly, the in situ data reveal that the Ulva sample treatments suppressed IFN-γ and TNF-α expression at the allergen-injection site. These findings collectively suggest the potential of UP, UO, and UR as functional food candidates for the management of delayed-type hypersensitivity.
Collapse
Affiliation(s)
- Jing-Yi OU
- Department of Food Science, National Taiwan Ocean University,
No.2, Beining Rd, Zhongzheng Dist., Keelung 20224, Taiwan
| | - Fang-Ling LIU
- Department of Food Science, National Taiwan Ocean University,
No.2, Beining Rd, Zhongzheng Dist., Keelung 20224, Taiwan
| | - Chien-Li CHEN
- Department of Food Science, National Taiwan Ocean University,
No.2, Beining Rd, Zhongzheng Dist., Keelung 20224, Taiwan
| | - Ming-Chih FANG
- Department of Food Science, National Taiwan Ocean University,
No.2, Beining Rd, Zhongzheng Dist., Keelung 20224, Taiwan
| | - Chung-Hsiung HUANG
- Department of Food Science, National Taiwan Ocean University,
No.2, Beining Rd, Zhongzheng Dist., Keelung 20224, Taiwan
- Center for Marine Bioscience and Biotechnology, National
Taiwan Ocean University, No. 2, Beining Rd, Zhongzheng Dist., Keelung 20224, Taiwan
| |
Collapse
|
3
|
Aramouni K, Assaf R, Shaito A, Fardoun M, Al-Asmakh M, Sahebkar A, Eid AH. Biochemical and cellular basis of oxidative stress: Implications for disease onset. J Cell Physiol 2023; 238:1951-1963. [PMID: 37436042 DOI: 10.1002/jcp.31071] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/13/2023]
Abstract
Cellular oxidation-reduction (redox) systems, which encompass pro- and antioxidant molecules, are integral components of a plethora of essential cellular processes. Any dysregulation of these systems can cause molecular imbalances between the pro- and antioxidant moieties, leading to a state of oxidative stress. Long-lasting oxidative stress can manifest clinically as a variety of chronic illnesses including cancers, neurodegenerative disorders, cardiovascular disease, and metabolic diseases like diabetes. As such, this review investigates the impact of oxidative stress on the human body with emphasis on the underlying oxidants, mechanisms, and pathways. It also discusses the available antioxidant defense mechanisms. The cellular monitoring and regulatory systems that ensure a balanced oxidative cellular environment are detailed. We critically discuss the notion of oxidants as a double-edged sword, being signaling messengers at low physiological concentrations but causative agents of oxidative stress when overproduced. In this regard, the review also presents strategies employed by oxidants including redox signaling and activation of transcriptional programs such as those mediated by the Nrf2/Keap1 and NFk signaling. Likewise, redox molecular switches of peroxiredoxin and DJ-1 and the proteins they regulate are presented. The review concludes that a thorough comprehension of cellular redox systems is essential to develop the evolving field of redox medicine.
Collapse
Affiliation(s)
- Karl Aramouni
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Roland Assaf
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Abdullah Shaito
- Biomedical Research Center, Qatar University, Doha, Qatar
- Department of Biomedical Sciences, QU Health, Qatar University, Doha, Qatar
| | - Manal Fardoun
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Maha Al-Asmakh
- Department of Biomedical Sciences, QU Health, Qatar University, Doha, Qatar
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, Western Australia, Australia
- Department of Biotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
4
|
Eltamany EE, Nafie MS, Hal DM, Abdel-Kader MS, Abu-Elsaoud AM, Ahmed SA, Ibrahim AK, Badr JM, Abdelhameed RFA. A New Saponin (Zygo-albuside D) from Zygophyllum album Roots Triggers Apoptosis in Non-Small Cell Lung Carcinoma (A549 Cells) through CDK-2 Inhibition. ACS OMEGA 2023; 8:30630-30639. [PMID: 37636931 PMCID: PMC10448641 DOI: 10.1021/acsomega.3c04314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 07/28/2023] [Indexed: 08/29/2023]
Abstract
Phytochemical study of the ethyl acetate root extract of Zygophyllum album has resulted in the isolation of a new saponin, Zygo-albuside D (1), along with two known compounds; (3-O-[β-D-quinovopyranosyl]-quinovic acid) (2), which is first reported in the root, and catechin (3), first reported in the genus. Their chemical structures were established by NMR and high-resolution mass spectrometry (HRMS). The new saponin (1) exhibited promising cytotoxicity with IC50 values of 3.5 and 5.52 μM on A549 and PC-3 cancer cell lines, respectively, compared to doxorubicin with IC50 values of 9.44 and 11.39 μM on A549 and PC-3 cancer cell lines, respectively. While it had an IC50 value of 46.8 μM against WISH cells. Investigating apoptosis-induction, compound 1 induced total apoptotic cell death in A549 lung cancer cells by 32-fold; 21.53% compared to 0.67% in the untreated control cells. Finally, it upregulated the pro-apoptotic genes and downregulated the antiapoptotic gene using gene expression levels. Compound 1 exhibited remarkable CDK-2 target inhibition by 96.2% with an IC50 value of 117.6 nM compared to Roscovitine. The molecular docking study further confirmed the binding affinity of compound 1 as CDK2 and Bcl2 inhibitors that led to apoptosis induction in A549 cancer cells. Hence, this study highlights the importance of compound 1 in the design of a new anticancer agent with specific mechanisms.
Collapse
Affiliation(s)
- Enas E. Eltamany
- Department
of Pharmacognosy, Faculty of Pharmacy, Suez
Canal University, Ismailia 41522, Egypt
| | - Mohamed S. Nafie
- Department
of Chemistry (Biochemistry program), Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Dina M. Hal
- Department
of Pharmacognosy, Faculty of Pharmacy, Suez
Canal University, Ismailia 41522, Egypt
| | - Maged S. Abdel-Kader
- Department
of Pharmacognosy, College of Pharmacy, Prince
Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department
of Pharmacognosy, Faculty of Pharmacy, Alexandria
University, Alexandria 21215, Egypt
| | - Abdelghafar M. Abu-Elsaoud
- Department
of Botany & Microbiology, Faculty of Science, Suez Canal University, Ismailia, Egypt
- Department
of Biology, College of Science, Imam Muhammad
bin Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Safwat A. Ahmed
- Department
of Pharmacognosy, Faculty of Pharmacy, Suez
Canal University, Ismailia 41522, Egypt
| | - Amany K. Ibrahim
- Department
of Pharmacognosy, Faculty of Pharmacy, Suez
Canal University, Ismailia 41522, Egypt
| | - Jihan M. Badr
- Department
of Pharmacognosy, Faculty of Pharmacy, Suez
Canal University, Ismailia 41522, Egypt
| | - Reda F. A. Abdelhameed
- Department
of Pharmacognosy, Faculty of Pharmacy, Suez
Canal University, Ismailia 41522, Egypt
- Department
of Pharmacognosy, Faculty of Pharmacy, Galala
University, New Galala 43713, Egypt
| |
Collapse
|
5
|
Lomartire S, Gonçalves AMM. Algal Phycocolloids: Bioactivities and Pharmaceutical Applications. Mar Drugs 2023; 21:384. [PMID: 37504914 PMCID: PMC10381318 DOI: 10.3390/md21070384] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Seaweeds are abundant sources of diverse bioactive compounds with various properties and mechanisms of action. These compounds offer protective effects, high nutritional value, and numerous health benefits. Seaweeds are versatile natural sources of metabolites applicable in the production of healthy food, pharmaceuticals, cosmetics, and fertilizers. Their biological compounds make them promising sources for biotechnological applications. In nature, hydrocolloids are substances which form a gel in the presence of water. They are employed as gelling agents in food, coatings and dressings in pharmaceuticals, stabilizers in biotechnology, and ingredients in cosmetics. Seaweed hydrocolloids are identified in carrageenan, alginate, and agar. Carrageenan has gained significant attention in pharmaceutical formulations and exhibits diverse pharmaceutical properties. Incorporating carrageenan and natural polymers such as chitosan, starch, cellulose, chitin, and alginate. It holds promise for creating biodegradable materials with biomedical applications. Alginate, a natural polysaccharide, is highly valued for wound dressings due to its unique characteristics, including low toxicity, biodegradability, hydrogel formation, prevention of bacterial infections, and maintenance of a moist environment. Agar is widely used in the biomedical field. This review focuses on analysing the therapeutic applications of carrageenan, alginate, and agar based on research highlighting their potential in developing innovative drug delivery systems using seaweed phycocolloids.
Collapse
Affiliation(s)
- Silvia Lomartire
- University of Coimbra, MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Ana M M Gonçalves
- University of Coimbra, MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
6
|
Wei Y, Sun L, Liu C, Li L. Naringin regulates endoplasmic reticulum stress and mitophagy through the ATF3/PINK1 signaling axis to alleviate pulmonary fibrosis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1155-1169. [PMID: 36688958 DOI: 10.1007/s00210-023-02390-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease that is characterized by abnormal proliferation of fibroblasts and extracellular matrix remodeling, ultimately leading to respiratory insufficiency or even death. Naringin (Nar), a natural compound derived from grapefruit and citrus fruits, has several pharmacological activities that are associated with therapeutic benefits for IPF. However, the specific molecular mechanisms underlying its pulmonary tissue-protective effects remain largely unknown. This study aimed to investigate the effects of Nar on endoplasmic reticulum stress (ERS) and mitophagy. A bleomycin (BLM)-induced mouse model of IPF was established for treatment with different doses of Nar. Histopathological changes in the lung were examined by hematoxylin and eosin (HE) staining and Masson staining. The extent of fibrosis was determined by measuring hydroxyproline and collagen expression levels. The levels of inflammatory cytokines and oxidative stress indicators were determined by Enzyme linked immunosorbent assay (ELISA) and biochemical kits. Western blot and immunofluorescence were used to evaluate the expression levels of the mitophagy-related markers. Cell apoptosis was estimated by western blot and TUNEL staining. Nar reduced the levels of inflammatory response, oxidative stress and decreased the proportion of apoptosis. Nar also inhibited the expression of the ERS and mitophagy-related genes and ERS-downstream proteins, thereby activating transcription factor (ATF) 3 and inhibiting the transcription of PTEN-induced kinase 1 (PINK1). Taken together, Nar is a promising therapeutic agent for treating IPF via inhibiting ERS, reducing apoptosis, and maintaining mitochondrial homeostasis, all of which may be associated with the regulation of the ATF3/PINK1 signaling axis.
Collapse
Affiliation(s)
- Yi Wei
- Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Lei Sun
- Department of Pharmacy, Aoshanwei Hospital of Qingdao Jimo District, Qingdao, 266235, China
| | - Chao Liu
- Department of Medical Imaging, Qingdao Hospital of Traditional Chinese Medicine, 4th Renmin Road, Qingdao, 266013, China.
| | - Lujia Li
- Department of Health Care, People's Liberation Army Navy 971 Hospital, Shandong Road, Qingdao, 266071, China.
| |
Collapse
|
7
|
Sahoo DK, Chainy GBN. Hormone-linked redox status and its modulation by antioxidants. VITAMINS AND HORMONES 2023; 121:197-246. [PMID: 36707135 DOI: 10.1016/bs.vh.2022.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Hormones have been considered as key factors involved in the maintenance of the redox status of the body. We are making considerable progress in understanding interactions between the endocrine system, redox status, and oxidative stress with the dynamics of life, which encompasses fertilization, development, growth, aging, and various pathophysiological states. One of the reasons for changes in redox states of vertebrates leading to oxidative stress scenario is the disruption of the endocrine system. Comprehending the dynamics of hormonal status to redox state and oxidative stress in living systems is challenging. It is more difficult to come to a unifying conclusion when some hormones exhibit oxidant properties while others have antioxidant features. There is a very limited approach to correlate alteration in titers of hormones with redox status and oxidative stress with growth, development, aging, and pathophysiological stress. The situation is further complicated when considering various tissues and sexes in vertebrates. This chapter discusses the beneficial impacts of hormones with antioxidative properties, such as melatonin, glucagon, insulin, estrogens, and progesterone, which protect cells from oxidative damage and reduce pathophysiological effects. Additionally, we discuss the protective effects of antioxidants like vitamins A, E, and C, curcumin, tempol, N-acetyl cysteine, α-lipoic acid, date palm pollen extract, resveratrol, and flavonoids on oxidative stress triggered by hormones such as aldosterone, glucocorticoids, thyroid hormones, and catecholamines. Inflammation, pathophysiology, and the aging process can all be controlled by understanding how antioxidants and hormones operate together to maintain cellular redox status. Identifying the hormonal changes and the action of antioxidants may help in developing new therapeutic strategies for hormonal imbalance-related disorders.
Collapse
Affiliation(s)
- Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa States University, Ames, IA, United States.
| | - Gagan B N Chainy
- Department of Biotechnology, Utkal University, Bhubaneswar, Odisha, India
| |
Collapse
|
8
|
Elderdery AY, Alzahrani B, Alabdulsalam AA, Alanazi F, M A Hamza S, M E Elkhalifa A, Alhamidi AH, Mohamedain A, Kumar SS, Ling P. Synthesis of nickel cobalt-codoped Tin oxide nanoparticles from Psidium guajava with anticancer properties. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
|
9
|
Zygo-Albuside A: New Saponin from Zygophyllum album L. with Significant Antioxidant, Anti-Inflammatory and Antiapoptotic Effects against Methotrexate-Induced Testicular Damage. Int J Mol Sci 2022; 23:ijms231810799. [PMID: 36142712 PMCID: PMC9501557 DOI: 10.3390/ijms231810799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 12/23/2022] Open
Abstract
Chemical investigation of the crude extract of the aerial part of Zygophyllum album L. (Z. album) led to the isolation of a new saponin, Zygo-albuside A (7), together with seven known compounds, one of them (caffeic acid, compound 4) is reported in the genus for the first time. NMR (1D and 2D) and mass spectrometric analysis, including high-resolution mass spectrometry (HRMS), were utilized to set up the chemical structures of these compounds. The present biological study aimed to investigate the protective antioxidant, anti-inflammatory, and antiapoptotic activities of the crude extract from the aerial part of Z. album and two of its isolated compounds, rutin and the new saponin zygo-albuside A, against methotrexate (MTX)-induced testicular injury, considering the role of miRNA-29a. In all groups except for the normal control group, which received a mixture of distilled water and DMSO (2:1) as vehicle orally every day for ten days, testicular damage was induced on the fifth day by intraperitoneal administration of MTX at a single dose of 20 mg/kg. Histopathological examination showed that pre-treatment with the crude extract of Z. album, zygo-albuside A, or rutin reversed the testicular damage induced by MTX. In addition, biochemical analysis in the protected groups showed a decrease in malondialdehyde (MDA), interleukin-6 (IL-6) and IL-1β, Bcl-2-associated-protein (Bax), and an increase in B-cell lymphoma 2 (Bcl-2) protein, catalase (CAT), superoxide dismutase (SOD) in the testis, along with an increase in serum testosterone levels compared with the unprotected (positive control) group. The mRNA expression levels of nuclear factor-kappa B (NF-κB), tumor necrosis factor-α (TNF-α), p53, and miRNA-29a were downregulated in the testicular tissues of the protected groups compared with the unprotected group. In conclusion, the study provides sufficient evidence that Z. album extract, and its isolated compounds, zygo-albuside A and rutin, could alleviate testicular damage caused by the chemotherapeutic agent MTX.
Collapse
|
10
|
Mohanta YK, Nayak D, Mishra AK, Chakrabartty I, Ray MK, Mohanta TK, Tayung K, Rajaganesh R, Vasanthakumaran M, Muthupandian S, Murugan K, Sharma G, Dahms HU, Hwang JS. Green Synthesis of Endolichenic Fungi Functionalized Silver Nanoparticles: The Role in Antimicrobial, Anti-Cancer, and Mosquitocidal Activities. Int J Mol Sci 2022; 23:ijms231810626. [PMID: 36142546 PMCID: PMC9502095 DOI: 10.3390/ijms231810626] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 11/23/2022] Open
Abstract
Green nanotechnology is currently a very crucial and indispensable technology for handling diverse problems regarding the living planet. The concoction of reactive oxygen species (ROS) and biologically synthesized silver nanoparticles (AgNPs) has opened new insights in cancer therapy. The current investigation caters to the concept of the involvement of a novel eco-friendly avenue to produce AgNPs employing the wild endolichenic fungus Talaromyces funiculosus. The synthesized Talaromyces funiculosus–AgNPs were evaluated with the aid of UV visible spectroscopy, dynamic light scattering (DLS), Fourier infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The synthesized Talaromyces funiculosus–AgNPs (TF-AgNPs) exhibited hemo-compatibility as evidenced by a hemolytic assay. Further, they were evaluated for their efficacy against foodborne pathogens Staphylococcus aureus, Streptococcus faecalis, Listeria innocua, and Micrococcus luteus and nosocomial Pseudomonas aeruginosa, Escherichia coli, Vibrio cholerae, and Bacillus subtilis bacterial strains. The synthesized TF-AgNPs displayed cytotoxicity in a dose-dependent manner against MDA-MB-231 breast carcinoma cells and eventually condensed the chromatin material observed through the Hoechst 33342 stain. Subsequent analysis using flow cytometry and fluorescence microscopy provided the inference of a possible role of intracellular ROS (OH−, O−, H2O2, and O2−) radicals in the destruction of mitochondria, DNA machinery, the nucleus, and overall damage of the cellular machinery of breast cancerous cells. The combined effect of predation by the cyclopoid copepod Mesocyclops aspericornis and TF-AgNPS for the larval management of dengue vectors were provided. A promising larval control was evident after the conjunction of both predatory organisms and bio-fabricated nanoparticles. Thus, this study provides a novel, cost-effective, extracellular approach of TF-AgNPs production with hemo-compatible, antioxidant, and antimicrobial efficacy against both human and foodborne pathogens with cytotoxicity (dose dependent) towards MDA-MB-231 breast carcinoma.
Collapse
Affiliation(s)
- Yugal Kishore Mohanta
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya, Ri-Bhoi 793101, Meghalaya, India
| | - Debasis Nayak
- Department of Wildlife and Biodiversity Conservation, Maharaja Sriram Chandra Bhanj Deo University, Baripada 757003, Odisha, India
| | | | - Ishani Chakrabartty
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya, Ri-Bhoi 793101, Meghalaya, India
| | - Manjit Kumar Ray
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya, Ri-Bhoi 793101, Meghalaya, India
| | - Tapan Kumar Mohanta
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa 616, Oman
| | - Kumananda Tayung
- Department of Botany, Gauhati University, Jalukbari, Guwahati 781014, Assam, India
| | | | | | - Saravanan Muthupandian
- AMR and Nanotherapeutics Laboratory, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600077, Chennai, India
| | - Kadarkarai Murugan
- Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Gouridutta Sharma
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya, Ri-Bhoi 793101, Meghalaya, India
| | - Hans-Uwe Dahms
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University (KMU), Kaohsiung 80708, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung 80708, Taiwan
- Correspondence: (H.-U.D.); (J.-S.H.)
| | - Jiang-Shiou Hwang
- Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan
- Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
- Correspondence: (H.-U.D.); (J.-S.H.)
| |
Collapse
|
11
|
Modulatory effects of Porphyra-derived polysaccharides, oligosaccharides and their mixture on antigen-specific immune responses in ovalbumin-sensitized mice. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
12
|
Yu Y, Lu Q, Chen F, Wang S, Niu C, Liao J, Wang H, Chen F. Serum untargeted metabolomics analysis of the mechanisms of evodiamine on type 2 diabetes mellitus model rats. Food Funct 2022; 13:6623-6635. [PMID: 35635367 DOI: 10.1039/d1fo04396j] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Evodiamine (EVO) is an alkaloid extracted from Evodia rutaecarpa and has various pharmacological activities, including hypolipidemic, anti-inflammatory, anti-infective, and antitumor effects. However, the therapeutic effects of EVO on type 2 diabetes mellitus (T2DM) and the possible mechanisms remain unknown. In this study, we used a T2DM rat model using a high-fat diet (HFD) combined with streptozotocin (STZ) injections followed by treatment with EVO. First, we evaluated the therapeutic effects of EVO on T2DM rats, following which we evaluated the anti-inflammatory and anti-oxidative effects of EVO on T2DM rats. Finally, we analyzed the metabolic regulatory mechanism of EVO in T2DM rats using an untargeted metabolomics approach. The results showed that EVO treatment alleviated the hyperglycemia, hyperlipidemia, insulin resistance (IR), and pathological changes of the liver, pancreas and kidneys in T2DM rats. Moreover, EVO treatment ameliorated the oxidative stress and decreased the serum levels of pro-inflammatory cytokines in T2DM model rats. Serum untargeted metabolomics analysis indicated that the EVO treatment affected the levels of 26 metabolites, such as methionine, citric acid, cholesterol, taurocholic acid, pilocarpine, adrenic acid, and other metabolites. These metabolites were mainly related to the amino sugar and nucleotide sugar metabolism, arginine biosynthesis, arginine and proline metabolism, glutathione metabolism, and tryptophan metabolism pathways. In conclusion, EVO can reduce blood glucose and improve oxidative stress and inflammatory response in T2DM rats. These functions are related to the regulation of amino sugar and nucleotide sugar metabolism, arginine biosynthesis, arginine and proline metabolism, glutathione metabolism, and tryptophan metabolism pathways.
Collapse
Affiliation(s)
- Yuejie Yu
- Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing 314001, China.
| | - Qinyan Lu
- Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing 314001, China.
| | - Feng Chen
- Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing 314001, China.
| | - Shangli Wang
- Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing 314001, China.
| | - Chunxiang Niu
- Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing 314001, China.
| | - Jiabao Liao
- Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing 314001, China.
| | - Hongwu Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Fengjuan Chen
- Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing 314001, China.
| |
Collapse
|
13
|
Pandy KM, Krishnan R, Paratharaj S. Synthesis, antioxidant and antimicrobial activity of some novel N‐substituted derivatives of 3‐(benzo[b]thiophen‐2‐yl)‐5‐(3‐(trifluoromethyl)styryl)‐4,
5‐dihydro‐1H
‐pyrazole. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Karthik Manikandan Pandy
- Synthetic Development Solara Active Pharma Sciences Limited, Research Centre, No.27, Melakottaiyur (PO) Chennai India
| | - Radhakrishnan Krishnan
- Saraswathi Narayanan College of Arts and Science Madurai Kamaraj University Madurai Tamil Nadu India
| | - Senthilkumar Paratharaj
- Synthetic Development Solara Active Pharma Sciences Limited, Research Centre, No.27, Melakottaiyur (PO) Chennai India
| |
Collapse
|
14
|
Xie X, Liao J, Ai Y, Gao J, Zhao J, Qu F, Xu C, Zhang Z, Wen W, Cui H, Wang H. Pi-Dan-Jian-Qing Decoction Ameliorates Type 2 Diabetes Mellitus Through Regulating the Gut Microbiota and Serum Metabolism. Front Cell Infect Microbiol 2021; 11:748872. [PMID: 34938667 PMCID: PMC8685325 DOI: 10.3389/fcimb.2021.748872] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/03/2021] [Indexed: 01/01/2023] Open
Abstract
Pi-Dan-Jian-Qing decoction (PDJQ) can been used in the treatment of type 2 diabetes mellitus (T2DM) in clinic. However, the protective mechanisms of PDJQ on T2DM remain unknown. Recent studies have shown that the changes in gut microbiota could affect the host metabolism and contribute to progression of T2DM. In this study, we first investigated the therapeutic effects of PDJQ on T2DM rats. 16S rRNA sequencing and untargeted metabolomics analyses were used to investigate the mechanisms of action of PDJQ in the treatment of T2DM. Our results showed that PDJQ treatment could improve the hyperglycemia, hyperlipidemia, insulin resistance (IR) and pathological changes of liver, pancreas, kidney, and colon in T2DM rats. PDJQ could also decrease the levels of pro-inflammatory cytokines and inhibit the oxidative stress. 16S rRNA sequencing showed that PDJQ could decrease the Firmicutes/Bacteroidetes (F to B) ratio at the phylum level. At the genus level, PDJQ could increase the relative abundances of Lactobacillus, Blautia, Bacteroides, Desulfovibrio and Akkermansia and decrease the relative abundance of Prevotella. Serum untargeted metabolomics analysis showed that PDJQ could regulate tryptophan metabolism, histidine metabolism, tricarboxylic acid (TCA) cycle, phenylalanine, tyrosine and tryptophan biosynthesis and tyrosine metabolism pathways. Correlation analysis indicated that the modulatory effects of PDJQ on the tryptophan metabolism, histidine metabolism and TCA cycle pathways were related to alterations in the abundance of Lactobacillus, Bacteroides and Akkermansia. In conclusion, our study revealed the various ameliorative effects of PDJQ on T2DM, including improving the liver and kidney functions and alleviating the hyperglycemia, hyperlipidemia, IR, pathological changes, oxidative stress and inflammatory response. The mechanisms of PDJQ on T2DM are likely linked to an improvement in the dysbiosis of gut microbiota and modulation of tryptophan metabolism, histamine metabolism, and the TCA cycle.
Collapse
Affiliation(s)
- Xuehua Xie
- First College of Clinical Medicine, Nanjing University of Traditional Chinese Medicine, Jiangsu, China.,Department of Endocrinology, Yunnan Provincial Hospital of Chinese Medicine, Yunnan, China
| | - Jiabao Liao
- Department of Emergency, Jiaxing Hospital of Traditional Chinese Medicine, Zhejiang, China.,Jiaxing Key Laboratory of Diabetic Angiopathy Research, Jiaxing Hospital of Traditional Chinese Medicine, Zhejiang, China
| | - Yuanliang Ai
- Department of Orthopedics, Kunming Municipal Hospital of Traditional Chinese Medicine, Yunnan, China
| | - Jinmei Gao
- Department of Rehabilitation, Fujian People's Hospital of Traditional Chinese Medicine, Fujian, China
| | - Jie Zhao
- Department of Endocrinology, Yunnan Provincial Hospital of Chinese Medicine, Yunnan, China
| | - Fei Qu
- Department of Emergency, Jiaxing Hospital of Traditional Chinese Medicine, Zhejiang, China
| | - Chao Xu
- Department of Endocrinology, Yunnan Provincial Hospital of Chinese Medicine, Yunnan, China
| | - Zhaiyi Zhang
- College of Integrated Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Weibo Wen
- Department of Endocrinology, Yunnan Provincial Hospital of Chinese Medicine, Yunnan, China
| | - Huantian Cui
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Shandong, China
| | - Hongwu Wang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
15
|
Nayak D, Thathapudi NC, Ashe S, Nayak B. Bioengineered ethosomes encapsulating AgNPs and Tasar silk sericin proteins for non melanoma skin carcinoma (NMSC) as an alternative therapeutics. Int J Pharm 2021; 596:120265. [PMID: 33486031 DOI: 10.1016/j.ijpharm.2021.120265] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023]
Abstract
Rising cases of Non melanoma skin carcinoma (NMSC) and escalating levels of ultraviolet radiations have underlined a profound correlation with the elevating levels of environmental detoriation and increasing health issues. However, the availability of therapeutics has not aided in controlling the recurrence rates of skin carcinoma. Frequent administration of therapeutics with higher chances of facial deformity escalates the patient's treatment expenses. Thus, this study initiates a low cost effective and biodegradable therapy by exploring four formulations with combinations of silver nanoparticles (AgNPs), sericin (isolated from cocoons of Antherea mylitta) and chitosan. Subsequently, various ethosomal formulations were evaluated as a platform for transdermal delivery vehicle for efficient skin intervention therapeutics. Characterization using UV visible spectroscopy, Dynamic light scattering, Fourier Infrared spectroscopy, X-ray dispersion, Transmission electron microscopy, Fluorescence assisted cell sorting and in vitro studies were done and it was inferenced that equal combination of AgNPs and sericin facilitated to combat the morphological and cellular deformation of the epidermoid A431skin carcinoma cells. The overproduction of superoxide (O2.) and nitric oxide (NO) radicals consequently depolarized the mitochondrial membrane potential triggering apoptosis and necrosis. The in vivo experiments exhibited the stimulation of IgM secretion with T cell-mediated immune response. Therefore, this study proposes a novel approach for treatment of NMSC using biocompatible formulations delivered through ethosomes.
Collapse
Affiliation(s)
- Debasis Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha, India.
| | - Neethi C Thathapudi
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha, India
| | - Sarbani Ashe
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha, India
| | - Bismita Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha, India.
| |
Collapse
|
16
|
Bodede O, More GK, Prinsloo G. Antimicrobial, Cytotoxic and Oxidative Stress Inhibitory Activities of Terpenoids and Flavonols from Senegalia nigrescens (Oliv.) P.J.H. Hurter. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:329-338. [PMID: 35194450 PMCID: PMC8842601 DOI: 10.22037/ijpr.2021.115653.15463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Senegalia nigrescens (knob thorn) is a deciduous tree distributed in savannah regions from Tanzania to South Africa used for timber but also medicinally for the treatment of convulsions, wounds, and skin problems. In this study, the biological activities of six phytocompounds, namely: 3 β -hydroxy-20(29)-en-lupan-30-al (1), 30-hydroxylup-20(29)-en-3 β -ol (2), ent-kaur-15-en-18,20-diol (3), melanoxetin (4), quercetin (5) and quercetin-3-O-methyl ether (6), isolated from S. nigrescens were investigated. The compounds were screened against two bacterial (Escherichia coli and Staphylococcus aureus) and one fungal (Candida albicans) strain and were also tested for their cytotoxicity on breast cancer (MDA-MB-231) and normal murine macrophage (RAW 264.7) cell line. Effects of the compounds on attenuating the lipopolysaccharide (LPS)-induced intracellular reactive oxygen species (ROS) production in RAW 264.7 cells were quantified with the H2DCF-DA assay. This study revealed that flavonols (5 and 6) had the strongest antibacterial and antifungal effects, both having MIC values of 62.5, 31.25 and 31.25 µg/mL on E. coli, S. aureus and C. albicans, respectively. Compounds 2, 3 and 6 were the most cytotoxic against the breast cancer cells with IC50 values of 11.86, 12.62 and 14.03 µg/mL, respectively, while the least toxicity towards normal cells were observed in compounds 2, 5 and 6. All compounds (1-6) significantly lowered ROS production in RAW264.7 cells. In conclusion, tested compounds represent potential promising candidates as antimicrobial, anticancer and antidotes for LPS-induced oxidative stress. This is the first report on the antifungal, cytotoxicity and antioxidative activities of the ent-kaurene diterpenoid, ent-kaur-15-en-18,20-diol (3).
Collapse
Affiliation(s)
- Olusola Bodede
- Department of Agriculture and Animal Health, University of South Africa, Florida Campus, Florida, 1710, South Africa.
| | | | | |
Collapse
|
17
|
Synthesis of furocoumarin-stilbene hybrids as potential multifunctional drugs against multiple biochemical targets associated with Alzheimer's disease. Bioorg Chem 2020; 101:103997. [PMID: 32554280 DOI: 10.1016/j.bioorg.2020.103997] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/26/2020] [Accepted: 06/02/2020] [Indexed: 12/14/2022]
Abstract
A series of furocoumarin-stilbene hybrids has been synthesized and evaluated in vitro for inhibitory effect against acetylcholinesterase (AChE), butyrylcholinestarase (BChE), β-secretase, cyclooxygenase-2 (COX-2), and lipoxygenase-5 (LOX-5) activities including free radical-scavenging properties. Among these hybrids, 8-(3,5-dimethoxyphenyl)-4-(3,5-dimethoxystyryl)furochromen-2-one 4h exhibited significant anticholinesterase activity and inhibitory effect against β-secretase, COX-2 and LOX-5 activities. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity and an in vitro cell-based antioxidant activity assay involving lipopolysaccharide induced reactive oxygen species production revealed that 4h has capability of scavenging free radicals. Molecular docking into AChE, BChE, β-secretase, COX-2 and LOX-5 active sites has also been performed.
Collapse
|
18
|
Olomola TO, Mphahlele MJ, Gildenhuys S. Benzofuran-selenadiazole hybrids as novel α-glucosidase and cyclooxygenase-2 inhibitors with antioxidant and cytotoxic properties. Bioorg Chem 2020; 100:103945. [PMID: 32450390 DOI: 10.1016/j.bioorg.2020.103945] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/01/2020] [Accepted: 05/13/2020] [Indexed: 12/25/2022]
Abstract
Series of 2-arylbenzofuran-1,2,3-selenodiazole hybrids were prepared via multiple reactions and then evaluated in vitro through enzymatic assay for inhibitory effect against α-glucosidase and cyclooxygenase-2 (COX-2) activities including antioxidant activity. The presence of 1,2,3-selenodiazole moiety resulted in increased inhibitory effect for compounds 4a-f against α-glucosidase and COX-2 activities, and increased free radical scavenging activity. 6-Acetoxy-2-phenyl-5-(1,2,3-selenadiazol-4-yl)benzofuran (4a) and its 2-(4-methoxyphenyl) substituted derivative (4f) were, in turn, screened for antiproliferation against the breast MCF-7 cancer cell line and for cytotoxicity on the human embryonic kidney derived Hek293-T cells. A cell-based antioxidant activity assay involving lipopolysaccharide induced reactive oxygen species production in these cells was performed. Molecular docking has also been performed on these two compounds to predict protein-ligand interactions against α-glucosidase and COX-2.
Collapse
Affiliation(s)
- Temitope O Olomola
- Department of Chemistry, College of Science, Engineering and Technology, University of South Africa, Private Bag X06, Florida 1710, South Africa
| | - Malose J Mphahlele
- Department of Chemistry, College of Science, Engineering and Technology, University of South Africa, Private Bag X06, Florida 1710, South Africa.
| | - Samantha Gildenhuys
- Department of Life & Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X06, Florida 1710, South Africa
| |
Collapse
|
19
|
In-vitro analysis of free radical scavenging activities and suppression of LPS-induced ROS production in macrophage cells by Solanum sisymbriifolium extracts. Sci Rep 2020; 10:6493. [PMID: 32300192 PMCID: PMC7162848 DOI: 10.1038/s41598-020-63491-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/30/2020] [Indexed: 02/03/2023] Open
Abstract
The current study aims to evaluate the antioxidant, cytotoxicity activities and suppression of LPS-induced oxidative stress production and characterization of phytochemicals in Solanum sisymbriifolium leaf extracts. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis3-ethylbenzothiazoline-6-sulphonic acid (ABTS) radical scavenging activity of the leaves of S. sisymbriifolium extracted with solvents of various polarities viz. water: ethanol, ratio 50: 50; ethyl acetate and dichloromethane, was assessed. The cytotoxicity of the extracts was determined using the [3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide] (MTT) assay on RAW 264.7 macrophage (Murine) cells and real-time cell analysis (RTCA) xCELLigence system was used for determining cell viability. Cell-based detection of reactive oxygen species (ROS) was investigated utilizing a 2',7'-Dichlorodihydrofluorescein diacetate (H2DCF-DA) assay. The DPPH and ABTS scavenging activity results of extracts revealed a dose-dependent response with significantly lower activity in both DPPH and ABTS. The superoxide dismutase (SOD) enzyme activity was then evaluated and extracts displayed a high SOD enzyme activity with 90-50% activity. Cytotoxicity results revealed that S. sisymbriifolium extracts were not toxic to RAW 264.7 macrophage cells at the tested concentrations. All three extracts decreased the production of ROS in macrophage cells. Phytochemical analysis using Fourier-transform infrared spectroscopy (FTIR) indicated the presence of metabolite functional groups which may be responsible for the antioxidant activity. The current study indicates that S. sisymbriifolium contains phytochemicals that scavenge free radicals, with less toxicity, and suppresses the LPS-induced ROS production in RAW 264.7 macrophage cells.
Collapse
|
20
|
Konus M, Algso MAS, Kavak E, Kurt‐Kızıldoğan A, Yılmaz C, Kivrak A. Design, Synthesis, andIn vitroEvaluation of Thieno[a]dibenzothiophene Derivatives. ChemistrySelect 2020. [DOI: 10.1002/slct.202000685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Metin Konus
- Department of Molecular Biology and GeneticsVan Yüzüncü Yil University Van 65080 Turkey
| | | | - Emrah Kavak
- Department of ChemistryVan Yüzüncü Yil University Van 65080 Turkey
| | - Aslıhan Kurt‐Kızıldoğan
- Department of Agricultural BiotechnologyFaculty of AgricultureOndokuz Mayıs University 55139 Samsun Turkey
| | - Can Yılmaz
- Department of Molecular Biology and GeneticsVan Yüzüncü Yil University Van 65080 Turkey
| | - Arif Kivrak
- Department of ChemistryVan Yüzüncü Yil University Van 65080 Turkey
| |
Collapse
|
21
|
Recent Updates in Pharmacological Properties of Chitooligosaccharides. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4568039. [PMID: 31781615 PMCID: PMC6875261 DOI: 10.1155/2019/4568039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 06/26/2019] [Accepted: 08/05/2019] [Indexed: 12/12/2022]
Abstract
Chemical structures derived from marine foods are highly diverse and pharmacologically promising. In particular, chitooligosaccharides (COS) present a safe pharmacokinetic profile and a great source of new bioactive polymers. This review describes the antioxidant, anti-inflammatory, and antidiabetic properties of COS from recent publications. Thus, COS constitute an effective agent against oxidative stress, cellular damage, and inflammatory pathogenesis. The mechanisms of action and targeted therapeutic pathways of COS are summarized and discussed. COS may act as antioxidants via their radical scavenging activity and by decreasing oxidative stress markers. The mechanism of COS antidiabetic effect is characterized by an acceleration of pancreatic islets proliferation, an increase in insulin secretion and sensitivity, a reduction of postprandial glucose, and an improvement of glucose uptake. COS upregulate the GLUT2 and inhibit digestive enzyme and glucose transporters. Furthermore, they resulted in reduction of gluconeogenesis and promotion of glucose conversion. On the other hand, the COS decrease inflammatory mediators, suppress the activation of NF-κB, increase the phosphorylation of kinase, and stimulate the proliferation of lymphocytes. Overall, this review brings evidence from experimental data about protective effect of COS.
Collapse
|
22
|
Fournière M, Latire T, Lang M, Terme N, Bourgougnon N, Bedoux G. Production of Active Poly- and Oligosaccharidic Fractions from Ulva sp. by Combining Enzyme-Assisted Extraction (EAE) and Depolymerization. Metabolites 2019; 9:E182. [PMID: 31547343 PMCID: PMC6780239 DOI: 10.3390/metabo9090182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/08/2019] [Accepted: 09/10/2019] [Indexed: 12/26/2022] Open
Abstract
Data on fractionation and depolymerization of the matrix ulvan polysaccharides, and studies on the biological activities on skin cells, are very scarce. In this work, crude ulvans were produced by using EAE (enzyme-assisted extraction) and compared to maceration (an established procedure). After different fractionation procedures-ethanolic precipitation, dialysis, or ammonium sulfate precipitation-the biochemical composition showed that EAE led to an increased content in ulvans. Coupling EAE to sulfate ammonium precipitation led to protein enrichment. Oligosaccharides were obtained by using radical depolymerization by H2O2 and ion-exchange resin depolymerization. Sulfate groups were partially cleaved during these chemical treatments. The potential bioactivity of the fractions was assessed using a lipoxygenase inhibition assay for anti-inflammatory activity and a WST-1 assay for human dermal fibroblast viability and proliferation. All ulvans extracts, poly- and oligosaccharidic fractions from EAE, expanded the fibroblast proliferation rate up to 62%. Our research emphasizes the potential use of poly- and oligosaccharidic fractions of Ulva sp. for further development in cosmetic applications.
Collapse
Affiliation(s)
- Mathilde Fournière
- Université Catholique de l'Ouest Bretagne Nord, 22200 Guingamp, France.
- Laboratoire de Biotechnologie et Chimie Marines, EA 3884 Université Bretagne Sud, 56000 Vannes, France.
| | - Thomas Latire
- Université Catholique de l'Ouest Bretagne Nord, 22200 Guingamp, France.
| | - Marie Lang
- Laboratoire de Biotechnologie et Chimie Marines, EA 3884 Université Bretagne Sud, 56000 Vannes, France.
| | - Nolwenn Terme
- Laboratoire de Biotechnologie et Chimie Marines, EA 3884 Université Bretagne Sud, 56000 Vannes, France.
| | - Nathalie Bourgougnon
- Laboratoire de Biotechnologie et Chimie Marines, EA 3884 Université Bretagne Sud, 56000 Vannes, France.
| | - Gilles Bedoux
- Laboratoire de Biotechnologie et Chimie Marines, EA 3884 Université Bretagne Sud, 56000 Vannes, France.
| |
Collapse
|
23
|
Evaluation of Cartilage Regeneration in Gellan Gum/agar Blended Hydrogel with Improved Injectability. Macromol Res 2019. [DOI: 10.1007/s13233-019-7085-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
24
|
Polyphenols as Natural Antioxidants: Sources, Extraction and Applications in Food, Cosmetics and Drugs. GREEN CHEMISTRY AND SUSTAINABLE TECHNOLOGY 2019. [DOI: 10.1007/978-981-13-3810-6_8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
25
|
Bhanumathi R, Manivannan M, Thangaraj R, Kannan S. Drug-Carrying Capacity and Anticancer Effect of the Folic Acid- and Berberine-Loaded Silver Nanomaterial To Regulate the AKT-ERK Pathway in Breast Cancer. ACS OMEGA 2018; 3:8317-8328. [PMID: 30087941 PMCID: PMC6072244 DOI: 10.1021/acsomega.7b01347] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/28/2017] [Indexed: 05/10/2023]
Abstract
Currently, in clinics, breast cancer is treated with free chemotherapeutic drugs, as a result there is not much therapeutic effect in treated models, leading to substantial systemic toxicity. To overcome these critical problems for the primary outcome, we developed the formulated nanomaterial (FA-PEG@BBR-AgNPs) aimed to specifically target cancer cells via nanoscopic-based drug delivery for getting better therapeutic effectiveness. In the present study, an isoquinoline alkaloid, berberine (BBR), was chosen as a cancer therapeutic agent, encapsulated on citrate-capped silver nanoparticles (AgNPs) through electrostatic interactions (BBR-AgNPs). Then, BBR-AgNPs were conjugated with polyethylene glycol-functionalized folic acid (FA-PEG) via hydrogen bonding interactions (FA-PEG@BBR-AgNPs). The transmission electron microscopy study shows the cellular invasion of the formulated FA-PEG@BBR-AgNPs, indicating the accretion of the nanomaterial at the tumor-specific site. Hence, FA conjugated with the nanomaterial suggests an efficient release of BBR molecules into the specific cancer site. Consequently, the results showed an increase in apoptotic induction via reactive oxygen species and condensed nuclei in cancer cells. Moreover, the western blotting analysis shows reduced/increased expression of PI3K, AKT, Ras, Raf, ERK, VEGF, HIF1α, Bcl-2, Bax, cytochrome c, caspase-9, and caspase-3, thereby enhancing apoptosis. Likewise, the in vivo antitumor efficiency of FA-PEG@BBR-AgNPs showed a significant restraint of tumor progression, and histopathological observations of lung, liver, kidney, heart, and brain tissues proved lesser toxicity of FA-PEG@BBR-AgNPs. Thus, the successfully formulated nanomaterial can serve as a potential drug-discharging vehicle to combat cancer cells by a molecular-based targeting approach.
Collapse
Affiliation(s)
- Ramasamy Bhanumathi
- Division of Cancer Nanomedicine, Department
of Zoology, Periyar University, Salem 636 011, Tamil Nadu, India
| | - Manickam Manivannan
- Division of Cancer Nanomedicine, Department
of Zoology, Periyar University, Salem 636 011, Tamil Nadu, India
| | - Ramasundaram Thangaraj
- Division of Cancer Nanomedicine, Department
of Zoology, Periyar University, Salem 636 011, Tamil Nadu, India
| | - Soundarapandian Kannan
- Division of Cancer Nanomedicine, Department
of Zoology, Periyar University, Salem 636 011, Tamil Nadu, India
| |
Collapse
|
26
|
Novel 3D Liquid Cell Culture Method for Anchorage-independent Cell Growth, Cell Imaging and Automated Drug Screening. Sci Rep 2018; 8:3627. [PMID: 29483620 PMCID: PMC5827526 DOI: 10.1038/s41598-018-21950-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/13/2018] [Indexed: 12/21/2022] Open
Abstract
Cells grown in three-dimensional (3D) cultures are more likely to have native cell-cell and cell-matrix interactions than in 2D cultures that impose mechanical constraints to cells. However, most 3D cultures utilise gel matrix which, while serving as a scaffold, limits application due to its solid and opaque nature and inconsistency in cell exposure to exogenous signals. In 3D culture without gel matrix, cells tend to adhere to each other and form clumps with necrotic zone at the centre, making them unsuitable for analyses. Here we report that addition of low-molecular-weight agar named LA717 to culture media allows cells to grow as dispersed clonal spheroids in 3D. LA717 maintains cells dispersed and settled to the bottom of the medium while keeping the medium clear with little additional viscosity, making it suitable for microscopic observation. Importantly, cancer spheroids formed in LA717-containing medium show higher sensitivity to anti-cancer drugs such as Trametinib and MK-2206 that are not as effective in 2D. Because of the small and consistent size of spheroids, cell viability and drug toxicity are readily detectable in automated imaging analysis. These results demonstrate that LA717 offers a novel 3D culture system with great in vivo reflection and practicality.
Collapse
|
27
|
Il’ina AV, Varlamov VP. Neutralization of reactive oxygen species by chitosan and its derivatives in vitro/in vivo (Review). APPL BIOCHEM MICRO+ 2016. [DOI: 10.1134/s0003683816010063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Ashe S, Nayak D, Kumari M, Nayak B. Ameliorating Effects of Green Synthesized Silver Nanoparticles on Glycated End Product Induced Reactive Oxygen Species Production and Cellular Toxicity in Osteogenic Saos-2 Cells. ACS APPLIED MATERIALS & INTERFACES 2016; 8:30005-30016. [PMID: 27749032 DOI: 10.1021/acsami.6b10639] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Advanced glycation end-products (AGEs) that result from nonenzymatic glycation are one of the major factors involved in diabetes and its secondary complications and diseases. This necessitates our urge to discover new compounds that may be used as potential AGEs inhibitors without affecting the normal structure and function of biomolecules. In the present study, we investigated the inhibitory effects of AgNP (silver nanoparticles) on AGEs formation as well as their inhibitory effects on glycation mediated cell toxicity via reactive oxygen species (ROS) production and DNA damage. The excitation-emission fluorescence spectroscopy was employed to investigate the interaction of AgNP during glycation. The values of conditional stability constant (log Ka = 4.44) derived from the Stern-Volmer equation indicate that AgNP have strong binding capacity for glycated protein. UV-vis, fluorescence, and Fourier transform infrared spectral data reveal complexation of AgNP with glycated bovine serum albumin, which significantly inhibits AGEs formation in a concentration-dependent manner. Cytotoxic evaluations suggest that simultaneous administration of AgNP and glycated product reduces cell death (42.82% ± 3.54) as compared to the glycated product alone. Similarly, ROS production in AgNP treated cells is significantly less compared to only glycated product treated cells. Although DNA damage studies show DNA damage in both GP and GP-AgNP treated cells, fluorescence activated cell sorting analysis demonstrates that glycated products induce cell death by necrosis, while AgNP cause cell death via apoptotic pathways. AgNP have a positive effect on restoring native protein structure deduced from spectral studies, and hence, inferences can be drawn that AgNP have ameliorating effects on glycated induced cytotoxicity observed in osteogenic Saos-2 cells.
Collapse
Affiliation(s)
- Sarbani Ashe
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Debasis Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Manisha Kumari
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Bismita Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| |
Collapse
|
29
|
Nayak D, Kumari M, Rajachandar S, Ashe S, Thathapudi NC, Nayak B. Biofilm Impeding AgNPs Target Skin Carcinoma by Inducing Mitochondrial Membrane Depolarization Mediated through ROS Production. ACS APPLIED MATERIALS & INTERFACES 2016; 8:28538-28553. [PMID: 27715004 DOI: 10.1021/acsami.6b11391] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Reactive oxygen species (ROS) are a double-edged sword that possesses both beneficial and harmful effects. Although basic research on skin cancer prevention has undergone a huge transformation, cases of recurrence with higher rates of drug resistance are some of its drawbacks. Therefore, targeting mitochondria by ROS overproduction provides an alternate approach for anticancer therapy. In the present study, green-synthesized silver nanoparticles (AgNPs) were explored for triggering the ROS production in A431 skin carcinoma cells. The synthesized AgNPs were characterized for size, charge, morphology, and phase through high-throughput DLS, Fe-SEM, XRD, and ATR-FTIR techniques. Their physiochemical properties with hemoglobin and blood plasma were screened through hemolysis, hemagglutination assay, and circular dichroism spectroscopy confirmed their nontoxic nature. The AgNPs also exhibited additional efficacy in inhibiting biofilm produced by V. cholerae and B. subtilis, thereby facilitating better applicability in wound-healing biomaterials. The depolarization of mitochondrial membrane potential ΔΨm through excess ROS production was deduced to be the triggering force behind the apoptotic cell death mechanism of the skin carcinoma. Subsequent experimentation through DNA fragmentation, comet tail formation, cell membrane blebbing, and reduced invasiveness potentials through scratch assay confirmed the physiological hallmarks of apoptosis. Thus, depolarizing mitochondrial membrane potential through green-synthesized AgNPs provides an economic, nontoxic, specific approach for targeting skin carcinoma with additional benefits of antibacterial activities.
Collapse
Affiliation(s)
- Debasis Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology , Rourkela, Odisha 769008, India
| | - Manisha Kumari
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology , Rourkela, Odisha 769008, India
| | - Sripathi Rajachandar
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology , Rourkela, Odisha 769008, India
| | - Sarbani Ashe
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology , Rourkela, Odisha 769008, India
| | - Neethi Chandra Thathapudi
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology , Rourkela, Odisha 769008, India
| | - Bismita Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology , Rourkela, Odisha 769008, India
| |
Collapse
|
30
|
Nayak D, Minz AP, Ashe S, Rauta PR, Kumari M, Chopra P, Nayak B. Synergistic combination of antioxidants, silver nanoparticles and chitosan in a nanoparticle based formulation: Characterization and cytotoxic effect on MCF-7 breast cancer cell lines. J Colloid Interface Sci 2016; 470:142-152. [PMID: 26939078 DOI: 10.1016/j.jcis.2016.02.043] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 02/17/2016] [Accepted: 02/17/2016] [Indexed: 11/19/2022]
Abstract
HYPOTHESIS Chitosan (Cs) is a biocompatible, biodegradable cationic polymer having the ability of targeted drug delivery. Vitamin E and C are not synthesized in our body thus, when encapsulated within a carrier system these vitamins in combination with/alone can be utilized for their anti-cancer potentials. EXPERIMENT The present investigation was conducted to develop a stable nanoparticle based formulation encapsulating antioxidants (Vitamin E, catechol) and silver nanoparticles synthesized from Hibiscus rosa-sinensis (HRS) petal extracts within a chitosan matrix. The prepared nanoformulations were characterized using Field emission scanning electron microscopy (Fe-SEM), X-ray diffraction (XRD) and Attenuated Total Reflection Fourier Transform Infrared spectroscopy (ATR-FTIR). They were further tested for their antioxidant potentials using DPPH assay, hydrogen peroxide scavenging assay, nitric oxide scavenging assay and ferrous antioxidant reducing potential assay. FINDINGS The nanoformulations were found to be highly hemocompatible and showed high encapsulation efficiency up to 76%. They also showed higher antioxidant activity than their base materials. Further, their anti-cancer efficacy was observed against MCF-7 breast cancer cells having IC50 values of 53.36±0.36μg/mL (chitosan-ascorbic acid-glucose), 55.28±0.85μg/mL (chitosan-Vitamin E), 63.72±0.27μg/mL (Chitosan-catechol) and 58.53±0.55μg/mL (chitosan-silver nanoparticles). Thus, the prepared formulations can be therapeutically applied for effective and targeted delivery in breast cancer treatment.
Collapse
Affiliation(s)
- Debasis Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Aliva Prity Minz
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Sarbani Ashe
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Pradipta Ranjan Rauta
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Manisha Kumari
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Pankaj Chopra
- Department of Biotechnology, Thapar University, Patiala, Punjab, India
| | - Bismita Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India.
| |
Collapse
|
31
|
Targeted Delivery of Superoxide Dismutase by Chemical Modification with Quaternary Ammonium Chitosan and Pharmacokinetic Analysis. J Pharm Innov 2015. [DOI: 10.1007/s12247-015-9231-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
32
|
Bathula SR, Akondi SM, Mainkar PS, Chandrasekhar S. “Pruning of biomolecules and natural products (PBNP)”: an innovative paradigm in drug discovery. Org Biomol Chem 2015; 13:6432-48. [DOI: 10.1039/c5ob00403a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Smart Schneider: ‘Nature’ is the most intelligent tailor with an ability to utilize the resources. Researchers are still at an infant stage learning this art. The present review highlights some of the man made pruning of bio-molecules and NPs (PBNP) in finding chemicals with a better therapeutic index.
Collapse
Affiliation(s)
- Surendar Reddy Bathula
- Division of Natural Products Chemistry CSIR-Indian Institute of Chemical Technology
- Hyderabad
- 500007 India
| | - Srirama Murthy Akondi
- Division of Natural Products Chemistry CSIR-Indian Institute of Chemical Technology
- Hyderabad
- 500007 India
| | - Prathama S. Mainkar
- Division of Natural Products Chemistry CSIR-Indian Institute of Chemical Technology
- Hyderabad
- 500007 India
| | - Srivari Chandrasekhar
- Division of Natural Products Chemistry CSIR-Indian Institute of Chemical Technology
- Hyderabad
- 500007 India
| |
Collapse
|
33
|
Machová E, Čížová A, Bystrický P. Effect of carboxymethylation on antioxidant properties and radical degradation of mannans and glucans. Carbohydr Polym 2014; 112:603-7. [DOI: 10.1016/j.carbpol.2014.06.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 06/13/2014] [Accepted: 06/18/2014] [Indexed: 10/25/2022]
|