1
|
Dong H, Zeng X, Xu J, He C, Sun Z, Liu L, Huang Y, Sun Z, Cao Y, Peng Z, Qiu YA, Yu T. Advances in immune regulation of the G protein-coupled estrogen receptor. Int Immunopharmacol 2024; 136:112369. [PMID: 38824903 DOI: 10.1016/j.intimp.2024.112369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/12/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
Estrogen and related receptors have been shown to have a significant impact on human development, reproduction, metabolism and immune regulation and to play a critical role in tumor development and treatment. Traditionally, the nuclear estrogen receptors (nERs) ERα and ERβ have been thought to be involved in mediating the estrogenic effects. However, our group and others have previously demonstrated that the G protein-coupled estrogen receptor (GPER) is the third independent ER, and estrogen signaling mediated by GPER is known to play an important role in normal physiology and a variety of abnormal diseases. Interestingly, recent studies have progressively revealed GPER involvement in the maintenance of the normal immune system, abnormal immune diseases, and inflammatory lesions, which may be of significant clinical value primarily in the immunotherapy of tumors. In this article, we review current advances in GPER-related immunomodulators and provide a theoretical basis and potential clinical targets to ameliorate immune-related diseases and immunotherapy for tumors.
Collapse
Affiliation(s)
- Hanzhi Dong
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China
| | - Xiaoqiang Zeng
- Jiangxi Medical College, Nanchang University, Nanchang 330000, China
| | - Jiawei Xu
- Department of Breast Surgery, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang 330029, China
| | - Chongwu He
- Department of Breast Surgery, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang 330029, China
| | - Zhengkui Sun
- Department of Breast Surgery, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang 330029, China
| | - Liyan Liu
- Department of Pharmacy, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang 330029, China
| | - Yanxiao Huang
- Jiangxi Medical College, Nanchang University, Nanchang 330000, China
| | - Zhe Sun
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China
| | - Yuan Cao
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China
| | - Zhiqiang Peng
- Department of Lymphohematology, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang 330029, China.
| | - Yu-An Qiu
- Department of Critical Care Medicine, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang 330029, China.
| | - Tenghua Yu
- Department of Breast Surgery, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang 330029, China.
| |
Collapse
|
2
|
Macheroni C, Leite GGF, Souza DS, Vicente CM, Lacerda JT, Moraes MN, Juliano MA, Porto CS. Activation of estrogen receptor induces differential proteomic responses mainly involving migration, invasion, and tumor development pathways in human testicular embryonal carcinoma NT2/D1 cells. J Steroid Biochem Mol Biol 2024; 237:106443. [PMID: 38092129 DOI: 10.1016/j.jsbmb.2023.106443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/27/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
The aims of the present study were to investigate the global changes on proteome of human testicular embryonal carcinoma NT2/D1 cells treated with 17β-estradiol (E2), and the effects of this hormone on migration, invasion, and colony formation of these cells. A quantitative proteomic analysis identified the presence of 1230 proteins in both E2-treated and control cells. The analysis revealed 75 differentially abundant proteins (DAPs), out of which 43 proteins displayed a higher abundance and, 30 proteins showed a lower abundance in E2-treated NT2/D1 cancer cells. Functional analysis using IPA highlighted some activation processes such as migration, invasion, metastasis, and tumor growth. Interestingly, the treatment with E2 and ERβ-selective agonist DPN increased the migration of NT2/D1 cells. On the other hand, ERα-selective agonist PPT did not modify cell migration, indicating that ERβ is the upstream receptor involved in this process. The activation of ERβ increased the invasion and anchorage‑independent growth of NT2/D1 cells more intensely than ERα. ERα and ERβ may play overlapping roles on invasion and colony formation of these cells. Further studies are required to clarify the mechanism underlying these effects. The molecular mechanisms revealed by proteomic and functional studies might also guide the development of potential targets for a better understanding of the biology of these cells and novel treatments for non-seminoma in the future.
Collapse
Affiliation(s)
- Carla Macheroni
- Laboratory of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP 04039-032, Brazil
| | - Giuseppe Gianini Figueirêdo Leite
- Division of Infectious Diseases, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP 04039-032, Brazil
| | - Deborah Simão Souza
- Laboratory of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP 04039-032, Brazil
| | - Carolina Meloni Vicente
- Laboratory of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP 04039-032, Brazil
| | - José Thalles Lacerda
- Department of Physiology, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, Butantã, São Paulo, SP 05508-090, Brazil
| | - Maria Nathália Moraes
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Av. Conceição 515, Diadema, São Paulo, SP, 09920-000, Brazil
| | - Maria Aparecida Juliano
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio, 100, Vila Clementino, São Paulo, SP 04044-020, Brazil
| | - Catarina Segreti Porto
- Laboratory of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP 04039-032, Brazil.
| |
Collapse
|
3
|
Fan YC, Wu W, Leng XF, Zhang HW. Utility of G protein-coupled oestrogen receptor 1 as a biomarker for pan-cancer diagnosis, prognosis and immune infiltration: a comprehensive bioinformatics analysis. Aging (Albany NY) 2023; 15:12021-12067. [PMID: 37921845 PMCID: PMC10683611 DOI: 10.18632/aging.205162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 10/02/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND The G protein-coupled oestrogen receptor (GPER) 1 mediates non-genomic oestrogen-related signalling and plays an important role in the regulation of cell growth and programmed cell death through multiple downstream pathways. Despite the increasing interest in the role of GPER1 in cancer development, no pan-cancer analysis has been available for GPER1. METHODS In this study we performed a comprehensive analysis of the role of GPER1 in pan-cancer via Human Protein Atlas (HPA), The Cancer Genome Atlas (TCGA), University of California, Santa Cruz Xena (UCSC XENA), Genotype-Tissue Expression (GTEx), MethSurv, The University of Alabama at Birmingham CANcer data analysis Portal (UALCAN), cBioPortal, STRING and TISIDB detabases, followed by enrichment analysis using R software. RESULTS GPER1 was widely expressed in tissues and organs and differed in expression from normal tissue in a variety of cancers. In diagnostic assessment, it's Area Under the Curve (AUC) surpassed 0.9 in nine cancer types. Survival analysis showed that GPER1 was correlated with the prognosis of 11 cancer types. Moreover, GPER1 expression was associated with immune infiltration in multiple cancers. CONCLUSIONS In summary, GPER1 has good diagnostic or prognostic value across various malignancies. Together with its extensive correlation with immune components, the aforementioned results suggests that GPER1 shows promise in tumour diagnosis and prognosis, providing new ideas for precise and personalised anti-tumour strategies.
Collapse
Affiliation(s)
- Yu-Chao Fan
- Department of Anesthesiology, Sichuan Cancer Center, Sichuan Cancer Hospital and Institute, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Wen Wu
- Department of Anesthesiology, Xichang People’s Hospital, Xichang, Sichuan, China
| | - Xue-Feng Leng
- Division of Thoracic Surgery, Sichuan Cancer Center, Sichuan Cancer Hospital and Institute, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Hong-Wei Zhang
- Department of Anesthesiology, Sichuan Cancer Center, Sichuan Cancer Hospital and Institute, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| |
Collapse
|
4
|
Oveisgharan S, Yang J, Yu L, Burba D, Bang W, Tasaki S, Grodstein F, Wang Y, Zhao J, De Jager PL, Schneider JA, Bennett DA. Estrogen Receptor Genes, Cognitive Decline, and Alzheimer Disease. Neurology 2023; 100:e1474-e1487. [PMID: 36697247 PMCID: PMC10104608 DOI: 10.1212/wnl.0000000000206833] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 12/05/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Lifetime risk of Alzheimer disease (AD) dementia is twofold higher in women compared with men, and low estrogen levels in postmenopause have been suggested as a possible contributor. We examined 3 ER (GPER1, ER2, and ER1) variants in association with AD traits as an indirect method to test the association between estrogen and AD in women. Although the study focus was on women, in a comparison, we separately examined ER molecular variants in men. METHODS Participants were followed for an average of 10 years in one of the 2 longitudinal clinical pathologic studies of aging. Global cognition was assessed using a composite score derived from 19 neuropsychological tests' scores. Postmortem pathologic assessment included examination of 3 AD (amyloid-β and tau tangles determined by immunohistochemistry, and a global AD pathology score derived from diffuse and neurotic plaques and neurofibrillary tangle count) and 8 non-AD pathology indices. ER molecular genomic variants included genotyping and examining ER DNA methylation and RNA expression in brain regions including the dorsolateral prefrontal cortex (DLPFC) that are major players in cognition and often have AD pathology. RESULTS The mean age of women (N = 1711) at baseline was 78.0 (SD = 7.7) years. In women, GPER1 molecular variants had the most consistent associations with AD traits. GPER1 DNA methylation was associated with cognitive decline, tau tangle density, and global AD pathology score. GPER1 RNA expression in DLPFC was related to cognitive decline and tau tangle density. Other associations included associations of ER2 and ER1 sequence variants and DNA methylation with cognition. RNA expressions in DLPFC of genes involved in signaling mechanisms of activated ERs were also associated with cognitive decline and tau tangle density in women. In men (N = 651, average age at baseline: 77.4 [SD = 7.3]), there were less robust associations between ER molecular genomic variants and AD cognitive and pathologic traits. No consistent association was seen between ER molecular genomic variations and non-AD pathologies in either of the sexes. DISCUSSION ER DNA methylation and RNA expression, and to some extent ER polymorphisms, were associated with AD cognitive and pathologic traits in women, and to a lesser extent in men.
Collapse
Affiliation(s)
- Shahram Oveisgharan
- From the Rush Alzheimer's Disease Center (S.O., J.Y., L.Y., D.B., W.B., S.T., F.G., Y.W., J.A.S., D.A.B.), Rush University Medical Center, Chicago; Departments of Neurological Sciences (S.O., J.Y., L.Y., S.T., J.A.S., D.A.B.) and Internal Medicine (F.G.), Rush University Medical Center, Chicago, IL; Department of Epidemiology (J.Z.), University of Florida, Gainesville; Center for Translational & Computational Neuroimmunology (P.L.D.J.), Department of Neurology, Columbia University Irving Medical Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (P.L.D.J.), Columbia University Irving Medical Center, New York, New York; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL.
| | - Jingyun Yang
- From the Rush Alzheimer's Disease Center (S.O., J.Y., L.Y., D.B., W.B., S.T., F.G., Y.W., J.A.S., D.A.B.), Rush University Medical Center, Chicago; Departments of Neurological Sciences (S.O., J.Y., L.Y., S.T., J.A.S., D.A.B.) and Internal Medicine (F.G.), Rush University Medical Center, Chicago, IL; Department of Epidemiology (J.Z.), University of Florida, Gainesville; Center for Translational & Computational Neuroimmunology (P.L.D.J.), Department of Neurology, Columbia University Irving Medical Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (P.L.D.J.), Columbia University Irving Medical Center, New York, New York; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL
| | - Lei Yu
- From the Rush Alzheimer's Disease Center (S.O., J.Y., L.Y., D.B., W.B., S.T., F.G., Y.W., J.A.S., D.A.B.), Rush University Medical Center, Chicago; Departments of Neurological Sciences (S.O., J.Y., L.Y., S.T., J.A.S., D.A.B.) and Internal Medicine (F.G.), Rush University Medical Center, Chicago, IL; Department of Epidemiology (J.Z.), University of Florida, Gainesville; Center for Translational & Computational Neuroimmunology (P.L.D.J.), Department of Neurology, Columbia University Irving Medical Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (P.L.D.J.), Columbia University Irving Medical Center, New York, New York; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL
| | - Dominika Burba
- From the Rush Alzheimer's Disease Center (S.O., J.Y., L.Y., D.B., W.B., S.T., F.G., Y.W., J.A.S., D.A.B.), Rush University Medical Center, Chicago; Departments of Neurological Sciences (S.O., J.Y., L.Y., S.T., J.A.S., D.A.B.) and Internal Medicine (F.G.), Rush University Medical Center, Chicago, IL; Department of Epidemiology (J.Z.), University of Florida, Gainesville; Center for Translational & Computational Neuroimmunology (P.L.D.J.), Department of Neurology, Columbia University Irving Medical Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (P.L.D.J.), Columbia University Irving Medical Center, New York, New York; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL
| | - Woojeong Bang
- From the Rush Alzheimer's Disease Center (S.O., J.Y., L.Y., D.B., W.B., S.T., F.G., Y.W., J.A.S., D.A.B.), Rush University Medical Center, Chicago; Departments of Neurological Sciences (S.O., J.Y., L.Y., S.T., J.A.S., D.A.B.) and Internal Medicine (F.G.), Rush University Medical Center, Chicago, IL; Department of Epidemiology (J.Z.), University of Florida, Gainesville; Center for Translational & Computational Neuroimmunology (P.L.D.J.), Department of Neurology, Columbia University Irving Medical Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (P.L.D.J.), Columbia University Irving Medical Center, New York, New York; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL
| | - Shinya Tasaki
- From the Rush Alzheimer's Disease Center (S.O., J.Y., L.Y., D.B., W.B., S.T., F.G., Y.W., J.A.S., D.A.B.), Rush University Medical Center, Chicago; Departments of Neurological Sciences (S.O., J.Y., L.Y., S.T., J.A.S., D.A.B.) and Internal Medicine (F.G.), Rush University Medical Center, Chicago, IL; Department of Epidemiology (J.Z.), University of Florida, Gainesville; Center for Translational & Computational Neuroimmunology (P.L.D.J.), Department of Neurology, Columbia University Irving Medical Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (P.L.D.J.), Columbia University Irving Medical Center, New York, New York; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL
| | - Fran Grodstein
- From the Rush Alzheimer's Disease Center (S.O., J.Y., L.Y., D.B., W.B., S.T., F.G., Y.W., J.A.S., D.A.B.), Rush University Medical Center, Chicago; Departments of Neurological Sciences (S.O., J.Y., L.Y., S.T., J.A.S., D.A.B.) and Internal Medicine (F.G.), Rush University Medical Center, Chicago, IL; Department of Epidemiology (J.Z.), University of Florida, Gainesville; Center for Translational & Computational Neuroimmunology (P.L.D.J.), Department of Neurology, Columbia University Irving Medical Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (P.L.D.J.), Columbia University Irving Medical Center, New York, New York; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL
| | - Yanling Wang
- From the Rush Alzheimer's Disease Center (S.O., J.Y., L.Y., D.B., W.B., S.T., F.G., Y.W., J.A.S., D.A.B.), Rush University Medical Center, Chicago; Departments of Neurological Sciences (S.O., J.Y., L.Y., S.T., J.A.S., D.A.B.) and Internal Medicine (F.G.), Rush University Medical Center, Chicago, IL; Department of Epidemiology (J.Z.), University of Florida, Gainesville; Center for Translational & Computational Neuroimmunology (P.L.D.J.), Department of Neurology, Columbia University Irving Medical Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (P.L.D.J.), Columbia University Irving Medical Center, New York, New York; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL
| | - Jinying Zhao
- From the Rush Alzheimer's Disease Center (S.O., J.Y., L.Y., D.B., W.B., S.T., F.G., Y.W., J.A.S., D.A.B.), Rush University Medical Center, Chicago; Departments of Neurological Sciences (S.O., J.Y., L.Y., S.T., J.A.S., D.A.B.) and Internal Medicine (F.G.), Rush University Medical Center, Chicago, IL; Department of Epidemiology (J.Z.), University of Florida, Gainesville; Center for Translational & Computational Neuroimmunology (P.L.D.J.), Department of Neurology, Columbia University Irving Medical Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (P.L.D.J.), Columbia University Irving Medical Center, New York, New York; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL
| | - Philip Lawrence De Jager
- From the Rush Alzheimer's Disease Center (S.O., J.Y., L.Y., D.B., W.B., S.T., F.G., Y.W., J.A.S., D.A.B.), Rush University Medical Center, Chicago; Departments of Neurological Sciences (S.O., J.Y., L.Y., S.T., J.A.S., D.A.B.) and Internal Medicine (F.G.), Rush University Medical Center, Chicago, IL; Department of Epidemiology (J.Z.), University of Florida, Gainesville; Center for Translational & Computational Neuroimmunology (P.L.D.J.), Department of Neurology, Columbia University Irving Medical Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (P.L.D.J.), Columbia University Irving Medical Center, New York, New York; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL
| | - Julie A Schneider
- From the Rush Alzheimer's Disease Center (S.O., J.Y., L.Y., D.B., W.B., S.T., F.G., Y.W., J.A.S., D.A.B.), Rush University Medical Center, Chicago; Departments of Neurological Sciences (S.O., J.Y., L.Y., S.T., J.A.S., D.A.B.) and Internal Medicine (F.G.), Rush University Medical Center, Chicago, IL; Department of Epidemiology (J.Z.), University of Florida, Gainesville; Center for Translational & Computational Neuroimmunology (P.L.D.J.), Department of Neurology, Columbia University Irving Medical Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (P.L.D.J.), Columbia University Irving Medical Center, New York, New York; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL
| | - David A Bennett
- From the Rush Alzheimer's Disease Center (S.O., J.Y., L.Y., D.B., W.B., S.T., F.G., Y.W., J.A.S., D.A.B.), Rush University Medical Center, Chicago; Departments of Neurological Sciences (S.O., J.Y., L.Y., S.T., J.A.S., D.A.B.) and Internal Medicine (F.G.), Rush University Medical Center, Chicago, IL; Department of Epidemiology (J.Z.), University of Florida, Gainesville; Center for Translational & Computational Neuroimmunology (P.L.D.J.), Department of Neurology, Columbia University Irving Medical Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (P.L.D.J.), Columbia University Irving Medical Center, New York, New York; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL
| |
Collapse
|
5
|
Donizetti A, Venditti M, Arcaniolo D, Aliperti V, Carrese AM, De Sio M, Minucci S, Caraglia M, Aniello F. The long non-coding RNA transcript, LOC100130460 (CAND1.11) gene, encodes a novel protein highly expressed in cancer cells and tumor human testis tissues. Cancer Biomark 2023; 38:343-353. [PMID: 37661873 DOI: 10.3233/cbm-230160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
BACKGROUND Testis-specific genes encoding for long non-coding RNA (lncRNA) have been detected in several cancers; many produce proteins with restricted or aberrant expression patterns in normal or cancer tissues. OBJECTIVE To characterize new lncRNA involved in normal and/or pathological differentiation of testicular cells. METHODS Using bioinformatics analysis, we found that lncRNA LOC100130460 (CAND1.11) is expressed in normal and tumor testis; its expression was assessed in several human cell lines by qRT-PCR. CAND1.11 protein, produced by a single nucleotide mutation, was studied by western blot and immunofluorescence analysis on normal, classic seminoma, and Leydig cell tumor testicular tissues. RESULTS CAND1.11 gene is primate-specific; its expression was low in SH-SY5Y cells and increased when differentiated with retinoic acid treatment. CAND1.11 expression in PC3 cells was higher than in PNT2 cells. CAND1.11 protein is present in the human testis and overexpressed in testicular cancer tissues. CONCLUSIONS This report is one of the few providing evidence that a lncRNA produces a protein expressed in normal human tissues and overexpressed in several testicular cancers, suggesting its involvement in regulating cell proliferation and differentiation. Although further studies are needed to validate the results, our data indicate that CAND1.11 could be a potential new prognostic biomarker to use in proliferation and cancer.
Collapse
Affiliation(s)
- Aldo Donizetti
- Dipartimento di Biologia, Università di Napoli "Federico II", Napoli, Italy
- Dipartimento di Biologia, Università di Napoli "Federico II", Napoli, Italy
| | - Massimo Venditti
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy
- Dipartimento di Biologia, Università di Napoli "Federico II", Napoli, Italy
| | - Davide Arcaniolo
- Dipartimento della Donna, del Bambino e di Chirurgia Generale e Specialistica, Università degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Vincenza Aliperti
- Dipartimento di Biologia, Università di Napoli "Federico II", Napoli, Italy
| | - Anna Maria Carrese
- Dipartimento di Biologia, Università di Napoli "Federico II", Napoli, Italy
| | - Marco De Sio
- Dipartimento della Donna, del Bambino e di Chirurgia Generale e Specialistica, Università degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Sergio Minucci
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Michele Caraglia
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Francesco Aniello
- Dipartimento di Biologia, Università di Napoli "Federico II", Napoli, Italy
| |
Collapse
|
6
|
Casarini L, Simoni M. Membrane estrogen receptor and follicle-stimulating hormone receptor. VITAMINS AND HORMONES 2022; 123:555-585. [PMID: 37717998 DOI: 10.1016/bs.vh.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Follicle-stimulating hormone (FSH) and estrogens are fundamental to support reproductive functions. Beside the well-known FSH membrane receptor (FSHR), a G protein-coupled estrogen receptor (GPER) has been found, over the last two decades, in several tissues. It may trigger rapid, non-genomic responses of estradiol, activating proliferative and survival stimuli. The two receptors were co-characterized in the ovary, where they modulate different intracellular signaling cascades, according to the expression level and developmental stage of ovarian follicles. Moreover, they may physically interact to form heteromeric assemblies, suggestive of a new mode of action to regulate FSH-specific signals, and likely determining the follicular fate between atresia and dominance. The knowledge of FSH and estrogen membrane receptors provides a new, deeper level of comprehension of human reproduction.
Collapse
Affiliation(s)
- Livio Casarini
- Unit of Endocrinology, Dept. Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Manuela Simoni
- Unit of Endocrinology, Dept. Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
7
|
Muhammad A, Forcados GE, Yusuf AP, Abubakar MB, Sadiq IZ, Elhussin I, Siddique MAT, Aminu S, Suleiman RB, Abubakar YS, Katsayal BS, Yates CC, Mahavadi S. Comparative G-Protein-Coupled Estrogen Receptor (GPER) Systems in Diabetic and Cancer Conditions: A Review. Molecules 2022; 27:molecules27248943. [PMID: 36558071 PMCID: PMC9786783 DOI: 10.3390/molecules27248943] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
For many patients, diabetes Mellitus and Malignancy are frequently encountered comorbidities. Diabetes affects approximately 10.5% of the global population, while malignancy accounts for 29.4 million cases each year. These troubling statistics indicate that current treatment approaches for these diseases are insufficient. Alternative therapeutic strategies that consider unique signaling pathways in diabetic and malignancy patients could provide improved therapeutic outcomes. The G-protein-coupled estrogen receptor (GPER) is receiving attention for its role in disease pathogenesis and treatment outcomes. This review aims to critically examine GPER' s comparative role in diabetes mellitus and malignancy, identify research gaps that need to be filled, and highlight GPER's potential as a therapeutic target for diabetes and malignancy management. There is a scarcity of data on GPER expression patterns in diabetic models; however, for diabetes mellitus, altered expression of transport and signaling proteins has been linked to GPER signaling. In contrast, GPER expression in various malignancy types appears to be complex and debatable at the moment. Current data show inconclusive patterns of GPER expression in various malignancies, with some indicating upregulation and others demonstrating downregulation. Further research should be conducted to investigate GPER expression patterns and their relationship with signaling pathways in diabetes mellitus and various malignancies. We conclude that GPER has therapeutic potential for chronic diseases such as diabetes mellitus and malignancy.
Collapse
Affiliation(s)
- Aliyu Muhammad
- Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria P.M.B. 1044, Nigeria
| | | | - Abdurrahman Pharmacy Yusuf
- Department of Biochemistry, School of Life Sciences, Federal University of Technology, Minna P.M.B. 65, Nigeria
| | - Murtala Bello Abubakar
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto P.M.B. 2254, Nigeria
- Centre for Advanced Medical Research & Training (CAMRET), Usmanu Danfodiyo University, Sokoto P.M.B. 2254, Nigeria
| | - Idris Zubairu Sadiq
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria P.M.B. 1044, Nigeria
| | - Isra Elhussin
- Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA
| | - Md Abu Talha Siddique
- Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA
| | - Suleiman Aminu
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria P.M.B. 1044, Nigeria
| | - Rabiatu Bako Suleiman
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria P.M.B. 1044, Nigeria
| | - Yakubu Saddeeq Abubakar
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria P.M.B. 1044, Nigeria
| | - Babangida Sanusi Katsayal
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria P.M.B. 1044, Nigeria
| | - Clayton C Yates
- Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA
| | - Sunila Mahavadi
- Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA
| |
Collapse
|
8
|
Venditti M, Arcaniolo D, De Sio M, Minucci S. First Evidence of the Expression and Localization of Prothymosin α in Human Testis and Its Involvement in Testicular Cancers. Biomolecules 2022; 12:biom12091210. [PMID: 36139050 PMCID: PMC9496091 DOI: 10.3390/biom12091210] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Prothymosin α (PTMA) is a phylogenetically conserved polypeptide in male gonads of Vertebrates. In Mammals, it is a ubiquitous protein, and, possessing a random-coil structure, it interacts with many other partners, in both cytoplasmic and nuclear compartments. PTMA has been widely studied during cell progression in different types of cancer because of its anti-apoptotic and proliferative properties. Here, we provided the first evidence of PTMA expression and localization in human testis and in two testicular cancers (TC): classic seminoma (CS) and Leydig cell tumor (LCT). Data showed that its protein level, together with that of proliferating cell nuclear antigen (PCNA), a cell cycle progression marker, increased in both CS and LCT samples, as compared to non-pathological (NP) tissue. Moreover, in the two-cancer tissue, a decreased apoptotic rate and an increased autophagic flux was also evidenced. Results confirmed the anti-apoptotic action of PTMA, also suggesting that it can act as a switcher from apoptosis to autophagy, to favor the survival of testicular cancer cells when they develop in adverse environments. Finally, the combined data, even if they need to be further validated, add new insight into the role of PTMA in human normal and pathological testicular tissue.
Collapse
Affiliation(s)
- Massimo Venditti
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate “F. Bottazzi”, Università degli Studi della Campania “Luigi Vanvitelli”, Via Costantinopoli, 16-80138 Napoli, Italy
- Correspondence:
| | - Davide Arcaniolo
- Dipartimento della Donna, del Bambino e di Chirurgia Generale e Specialistica, Università degli Studi della Campania “Luigi Vanvitelli”, Via Luigi De Crecchio, 02-80138 Napoli, Italy
| | - Marco De Sio
- Dipartimento della Donna, del Bambino e di Chirurgia Generale e Specialistica, Università degli Studi della Campania “Luigi Vanvitelli”, Via Luigi De Crecchio, 02-80138 Napoli, Italy
| | - Sergio Minucci
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate “F. Bottazzi”, Università degli Studi della Campania “Luigi Vanvitelli”, Via Costantinopoli, 16-80138 Napoli, Italy
| |
Collapse
|
9
|
Macheroni C, Gameiro Lucas TF, Souza DS, Vicente CM, Pereira GJDS, Junior IDSV, Juliano MA, Porto CS. Activation of estrogen receptor ESR1 and ESR2 induces proliferation of the human testicular embryonal carcinoma NT2/D1 cells. Mol Cell Endocrinol 2022; 554:111708. [PMID: 35792284 DOI: 10.1016/j.mce.2022.111708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 12/01/2022]
Abstract
The aims of the present study were to investigate the expression of the classic estrogen receptors ESR1 and ESR2, the splicing variant ESR1-36 and GPER in human testicular embryonal carcinoma NT2/D1 cells, and the effects of the activation of the ESR1 and ESR2 on cell proliferation. Immunostaining of ESR1, ESR2, and GPER were predominantly found in the nuclei, and less abundant in the cytoplasm. ESR1-36 isoform was predominantly expressed in the perinuclear region and cytoplasm, and some weakly immunostained in the nuclei. In nonstimulated NT2/D1 cells (control), proteins of the cell cycle CCND1, CCND2, CCNE1 and CDKN1B are present. Activation of ESR1 and ESR2 increases, respectively, CCND2 and CCNE1 expression, but not CCND1. Activation of ESR2 also mediates upregulation of the cell cycle inhibitor CDKN1B. This protein co-immunoprecipitated with CCND2. Also, E2 induces an increase in the number and viability of the NT2/D1 cells. These effects are blocked by simultaneous pretreatment with ESR1-and ESR2-selective antagonists, confirming that both estrogen receptors regulate NT2/D1 cell proliferation. In addition, E2 increases SRC phosphorylation, and SRC mediates cell proliferation. Our study provides novel insights into the signatures and molecular mechanisms of estrogen receptor in NT2/D1 cells.
Collapse
Affiliation(s)
- Carla Macheroni
- Laboratory of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP, 04039-032, Brazil
| | - Thaís Fabiana Gameiro Lucas
- Laboratory of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP, 04039-032, Brazil
| | - Deborah Simão Souza
- Laboratory of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP, 04039-032, Brazil
| | - Carolina Meloni Vicente
- Laboratory of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP, 04039-032, Brazil
| | - Gustavo José da Silva Pereira
- Laboratory of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP, 04039-032, Brazil
| | - Itabajara da Silva Vaz Junior
- Centro de Biotecnologia e Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, Porto Alegre, RS, 91501-970, Brazil
| | - Maria Aparecida Juliano
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio, 100, Vila Clementino, São Paulo, SP, 04044-020, Brazil
| | - Catarina Segreti Porto
- Laboratory of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP, 04039-032, Brazil.
| |
Collapse
|
10
|
Babiloni-Chust I, Dos Santos RS, Medina-Gali RM, Perez-Serna AA, Encinar JA, Martinez-Pinna J, Gustafsson JA, Marroqui L, Nadal A. G protein-coupled estrogen receptor activation by bisphenol-A disrupts the protection from apoptosis conferred by the estrogen receptors ERα and ERβ in pancreatic beta cells. ENVIRONMENT INTERNATIONAL 2022; 164:107250. [PMID: 35461094 DOI: 10.1016/j.envint.2022.107250] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
17β-estradiol protects pancreatic β-cells from apoptosis via the estrogen receptors ERα, ERβ and GPER. Conversely, the endocrine disruptor bisphenol-A (BPA), which exerts multiple effects in this cell type via the same estrogen receptors, increased basal apoptosis. The molecular-initiated events that trigger these opposite actions have yet to be identified. We demonstrated that combined genetic downregulation and pharmacological blockade of each estrogen receptor increased apoptosis to a different extent. The increase in apoptosis induced by BPA was diminished by the pharmacological blockade or the genetic silencing of GPER, and it was partially reproduced by the GPER agonist G1. BPA and G1-induced apoptosis were abolished upon pharmacological inhibition, silencing of ERα and ERβ, or in dispersed islet cells from ERβ knockout (BERKO) mice. However, the ERα and ERβ agonists PPT and DPN, respectively, had no effect on beta cell viability. To exert their biological actions, ERα and ERβ form homodimers and heterodimers. Molecular dynamics simulations together with proximity ligand assays and coimmunoprecipitation experiments indicated that the interaction of BPA with ERα and ERβ as well as GPER activation by G1 decreased ERαβ heterodimers. We propose that ERαβ heterodimers play an antiapoptotic role in beta cells and that BPA- and G1-induced decreases in ERαβ heterodimers lead to beta cell apoptosis. Unveiling how different estrogenic chemicals affect the crosstalk among estrogen receptors should help to identify diabetogenic endocrine disruptors.
Collapse
Affiliation(s)
- Ignacio Babiloni-Chust
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Reinaldo S Dos Santos
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Regla M Medina-Gali
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Atenea A Perez-Serna
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - José-Antonio Encinar
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
| | - Juan Martinez-Pinna
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain; Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Jan-Ake Gustafsson
- Department of Cell Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA; Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Laura Marroqui
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Angel Nadal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain.
| |
Collapse
|
11
|
Chimento A, De Luca A, Avena P, De Amicis F, Casaburi I, Sirianni R, Pezzi V. Estrogen Receptors-Mediated Apoptosis in Hormone-Dependent Cancers. Int J Mol Sci 2022; 23:1242. [PMID: 35163166 PMCID: PMC8835409 DOI: 10.3390/ijms23031242] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
It is known that estrogen stimulates growth and inhibits apoptosis through estrogen receptor(ER)-mediated mechanisms in many cancer cell types. Interestingly, there is strong evidence that estrogens can also induce apoptosis, activating different ER isoforms in cancer cells. It has been observed that E2/ERα complex activates multiple pathways involved in both cell cycle progression and apoptotic cascade prevention, while E2/ERβ complex in many cases directs the cells to apoptosis. However, the exact mechanism of estrogen-induced tumor regression is not completely known. Nevertheless, ERs expression levels of specific splice variants and their cellular localization differentially affect outcome of estrogen-dependent tumors. The goal of this review is to provide a general overview of current knowledge on ERs-mediated apoptosis that occurs in main hormone dependent-cancers. Understanding the molecular mechanisms underlying the induction of ER-mediated cell death will be useful for the development of specific ligands capable of triggering apoptosis to counteract estrogen-dependent tumor growth.
Collapse
Affiliation(s)
- Adele Chimento
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Arianna De Luca
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Paola Avena
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Francesca De Amicis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Ivan Casaburi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Rosa Sirianni
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Vincenzo Pezzi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, Arcavacata di Rende, 87036 Cosenza, Italy
| |
Collapse
|
12
|
Ulhaq ZS, Soraya GV, Milliana A, Tse WKF. Association between GPER gene polymorphisms and GPER expression levels with cancer predisposition and progression. Heliyon 2021; 7:e06428. [PMID: 33748487 PMCID: PMC7970143 DOI: 10.1016/j.heliyon.2021.e06428] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/27/2021] [Accepted: 03/02/2021] [Indexed: 12/26/2022] Open
Abstract
Estrogen is a female sex steroid hormone that plays a significant role in physiological functions. Evidence suggests that estrogen-signaling pathways are closely linked to cancer development and progression. The novel G protein-coupled estrogen receptor (GPER or GPR30) has been shown to influence cancer predisposition and progression, although results of related studies remain equivocal. Thus, this meta-analysis aimed to estimate the relationship between GPER gene polymorphisms and GPER expression levels, with cancer predisposition and progression. The pooled results showed that two GPER polymorphisms, rs3808350 and rs3808351, were significantly associated with cancer predisposition, especially in the Asian population, but no significant association was detected for rs11544331. In parallel, we also found that cancer aggressiveness and progression correlated with rs3808351 and GPER expression in cancerous tissues. Altogether, our findings suggest that GPER plays a pivotal role in cancer pathogenesis and progression. We suggest that rs3808350 and rs3808351 may be used as a prospective biomarker for cancer screening; while rs3808351 and GPER expression can be used to examine the prognosis of patients with cancer. Further biological studies are warranted to confirm our findings.
Collapse
Affiliation(s)
- Zulvikar Syambani Ulhaq
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Maulana Malik Ibrahim State Islamic University of Malang, Batu, East Java, 65151, Indonesia
| | - Gita Vita Soraya
- Department of Biochemistry, Faculty of Medicine, Hasanuddin University, Makassar, South Sulawesi, 90245, Indonesia
| | - Alvi Milliana
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Maulana Malik Ibrahim State Islamic University of Malang, Batu, East Java, 65151, Indonesia
| | - William Ka Fai Tse
- Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, 8190395, Japan
| |
Collapse
|
13
|
da Silva JS, Montagnoli TL, Rocha BS, Tacco MLCA, Marinho SCP, Zapata-Sudo G. Estrogen Receptors: Therapeutic Perspectives for the Treatment of Cardiac Dysfunction after Myocardial Infarction. Int J Mol Sci 2021; 22:E525. [PMID: 33430254 PMCID: PMC7825655 DOI: 10.3390/ijms22020525] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023] Open
Abstract
Estrogen receptors (ER) mediate functions beyond their endocrine roles, as modulation of cardiovascular, renal, and immune systems through anti-inflammatory and anti-apoptotic effects, preventing necrosis of cardiomyocytes and endothelial cells, and attenuating cardiac hypertrophy. Estradiol (E2) prevents cardiac dysfunction, increases nitric oxide synthesis, and reduces the proliferation of vascular cells, yielding protective effects, regardless of gender. Such actions are mediated by ER (ER-alpha (ERα), ER-beta (ERβ), or G protein-coupled ER (GPER)) through genomic or non-genomic pathways, which regulate cardiovascular function and prevent tissue remodeling. Despite the extensive knowledge on the cardioprotective effects of estrogen, clinical studies conducted on myocardial infarction (MI) and cardiovascular diseases still include favorable and unfavorable profiles. The purpose of this review is to provide up-to-date information regarding molecular, preclinical, and clinical aspects of cardiovascular E2 effects and ER modulation as a potential therapeutic target for the treatment of MI-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Jaqueline S. da Silva
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.S.d.S.); (T.L.M.); (B.S.R.); (M.L.C.A.T.); (S.C.P.M.)
| | - Tadeu L. Montagnoli
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.S.d.S.); (T.L.M.); (B.S.R.); (M.L.C.A.T.); (S.C.P.M.)
| | - Bruna S. Rocha
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.S.d.S.); (T.L.M.); (B.S.R.); (M.L.C.A.T.); (S.C.P.M.)
| | - Matheus L. C. A. Tacco
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.S.d.S.); (T.L.M.); (B.S.R.); (M.L.C.A.T.); (S.C.P.M.)
| | - Sophia C. P. Marinho
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.S.d.S.); (T.L.M.); (B.S.R.); (M.L.C.A.T.); (S.C.P.M.)
| | - Gisele Zapata-Sudo
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.S.d.S.); (T.L.M.); (B.S.R.); (M.L.C.A.T.); (S.C.P.M.)
- Instituto de Cardiologia Edson Saad, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
14
|
Schöneberg T, Liebscher I. Mutations in G Protein-Coupled Receptors: Mechanisms, Pathophysiology and Potential Therapeutic Approaches. Pharmacol Rev 2020; 73:89-119. [PMID: 33219147 DOI: 10.1124/pharmrev.120.000011] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
There are approximately 800 annotated G protein-coupled receptor (GPCR) genes, making these membrane receptors members of the most abundant gene family in the human genome. Besides being involved in manifold physiologic functions and serving as important pharmacotherapeutic targets, mutations in 55 GPCR genes cause about 66 inherited monogenic diseases in humans. Alterations of nine GPCR genes are causatively involved in inherited digenic diseases. In addition to classic gain- and loss-of-function variants, other aspects, such as biased signaling, trans-signaling, ectopic expression, allele variants of GPCRs, pseudogenes, gene fusion, and gene dosage, contribute to the repertoire of GPCR dysfunctions. However, the spectrum of alterations and GPCR involvement is probably much larger because an additional 91 GPCR genes contain homozygous or hemizygous loss-of-function mutations in human individuals with currently unidentified phenotypes. This review highlights the complexity of genomic alteration of GPCR genes as well as their functional consequences and discusses derived therapeutic approaches. SIGNIFICANCE STATEMENT: With the advent of new transgenic and sequencing technologies, the number of monogenic diseases related to G protein-coupled receptor (GPCR) mutants has significantly increased, and our understanding of the functional impact of certain kinds of mutations has substantially improved. Besides the classical gain- and loss-of-function alterations, additional aspects, such as biased signaling, trans-signaling, ectopic expression, allele variants of GPCRs, uniparental disomy, pseudogenes, gene fusion, and gene dosage, need to be elaborated in light of GPCR dysfunctions and possible therapeutic strategies.
Collapse
Affiliation(s)
- Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig, Germany
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig, Germany
| |
Collapse
|
15
|
Chimento A, De Luca A, Nocito MC, Avena P, La Padula D, Zavaglia L, Pezzi V. Role of GPER-Mediated Signaling in Testicular Functions and Tumorigenesis. Cells 2020; 9:cells9092115. [PMID: 32957524 PMCID: PMC7563107 DOI: 10.3390/cells9092115] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022] Open
Abstract
Estrogen signaling plays important roles in testicular functions and tumorigenesis. Fifteen years ago, it was discovered that a member of the G protein-coupled receptor family, GPR30, which binds also with high affinity to estradiol and is responsible, in part, for the rapid non-genomic actions of estrogens. GPR30, renamed as GPER, was detected in several tissues including germ cells (spermatogonia, spermatocytes, spermatids) and somatic cells (Sertoli and Leydig cells). In our previous review published in 2014, we summarized studies that evidenced a role of GPER signaling in mediating estrogen action during spermatogenesis and testis development. In addition, we evidenced that GPER seems to be involved in modulating estrogen-dependent testicular cancer cell growth; however, the effects on cell survival and proliferation depend on specific cell type. In this review, we update the knowledge obtained in the last years on GPER roles in regulating physiological functions of testicular cells and its involvement in neoplastic transformation of both germ and somatic cells. In particular, we will focus our attention on crosstalk among GPER signaling, classical estrogen receptors and other nuclear receptors involved in testis physiology regulation.
Collapse
Affiliation(s)
- Adele Chimento
- Correspondence: (A.C.); (V.P.); Tel.: +39-0984-493184 (A.C.); +39-0984-493148 (V.P.)
| | | | | | | | | | | | - Vincenzo Pezzi
- Correspondence: (A.C.); (V.P.); Tel.: +39-0984-493184 (A.C.); +39-0984-493148 (V.P.)
| |
Collapse
|
16
|
Chevalier N, Hinault C, Clavel S, Paul-Bellon R, Fenichel P. GPER and Testicular Germ Cell Cancer. Front Endocrinol (Lausanne) 2020; 11:600404. [PMID: 33574796 PMCID: PMC7870790 DOI: 10.3389/fendo.2020.600404] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
The G protein-coupled estrogen receptor (GPER), also known as GPR30, is a widely conserved 7-transmembrane-domain protein which has been identified as a novel 17β-estradiol-binding protein that is structurally distinct from the classic oestrogen receptors (ERα and ERβ). There are still conflicting data regarding the exact role and the natural ligand of GPER/GPR30 in reproductive tracts as both male and female knock-out mice are fertile and have no abnormalities of reproductive organs. Testicular germ cell cancers (TGCCs) are the most common malignancy in young males and the most frequent cause of death from solid tumors in this age group. Clinical and experimental studies suggested that estrogens participate in the physiological and pathological control of male germ cell proliferation. In human seminoma cell line, while 17β-estradiol (E2) inhibits in vitro cell proliferation through an ERβ-dependent mechanism, an impermeable E2 conjugate (E2 coupled to BSA), in vitro cell proliferation is stimulated by activating ERK1/2 and protein kinase A through a membrane GPCR that we further identified as GPER/GPR30. The same effect was observed with low but environmentally relevant doses of BPA, an estrogenic endocrine disrupting compound. Furthermore, GPER/GPR30 is specifically overexpressed in seminomas but not in non-seminomas and this overexpression is correlated with an ERβ-downregulation. This GPER/GPR30 overexpression could be linked to some genetic variations, as single nucleotide polymorphisms, which was also reported in other hormone-dependent cancers. We will review here the implication of GPER/GPR30 in TGCCs pathophysiology and the arguments to consider GPER/GPR30 as a potential therapeutic target in humans.
Collapse
Affiliation(s)
- Nicolas Chevalier
- Université Côte d’Azur, CHU, INSERM U1065, C3M, Nice, France
- Université Côte d’Azur, INSERM U1065, C3M, Nice, France
- *Correspondence: Nicolas Chevalier, ;
| | - Charlotte Hinault
- Université Côte d’Azur, CHU, INSERM U1065, C3M, Nice, France
- Université Côte d’Azur, INSERM U1065, C3M, Nice, France
| | | | | | - Patrick Fenichel
- Université Côte d’Azur, CHU, INSERM U1065, C3M, Nice, France
- Université Côte d’Azur, INSERM U1065, C3M, Nice, France
| |
Collapse
|
17
|
Fénichel P, Chevalier N. Is Testicular Germ Cell Cancer Estrogen Dependent? The Role of Endocrine Disrupting Chemicals. Endocrinology 2019; 160:2981-2989. [PMID: 31617897 DOI: 10.1210/en.2019-00486] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/11/2019] [Indexed: 11/19/2022]
Abstract
Testicular germ cell cancer (TGCC) is the most frequent cancer of the young male, with an increasing incidence worldwide. The pathogenesis and reasons for this increase remain unknown. However, epidemiological and experimental data have suggested that, similar to genital malformations and sperm impairment, it could result from the interaction of genetic and environmental factors including fetal exposure to endocrine-disrupting chemicals (EDCs) with estrogenic effects. In this review, we analyze the expression of classic and nonclassic estrogen receptors by TGCC cells, the way they may influence germ cell proliferation induced by EDCs, and discuss how this estrogen dependency supports the developmental and environmental hypothesis.
Collapse
Affiliation(s)
- Patrick Fénichel
- Université Côte d'Azur, CHU de Nice, Service d'Endocrinologie, Diabétologie et Médecine de la Reproduction, Hôpital de l'Archet, France
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, INSERM U1065/UNS, Centre Méditerranéen de Médecine Moléculaire, Equipe, France
| | - Nicolas Chevalier
- Université Côte d'Azur, CHU de Nice, Service d'Endocrinologie, Diabétologie et Médecine de la Reproduction, Hôpital de l'Archet, France
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, INSERM U1065/UNS, Centre Méditerranéen de Médecine Moléculaire, Equipe, France
| |
Collapse
|
18
|
Hong DG, Park JY, Chong GO, Lee YH, Lee HJ, Shinn JU, Lee YS, Seong WJ. Transmembrane G protein-coupled receptor 30 gene polymorphisms and uterine adenomyosis in Korean women. Gynecol Endocrinol 2019; 35:498-501. [PMID: 30626229 DOI: 10.1080/09513590.2018.1540572] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
To compare the genetic distributions of 14G protein-coupled receptor 30 (GPR30) single-nucleotide polymorphisms (SNPs) between women with and without uterine adenomyosis. The study population comprised 69 Korean women. Uterine tissues from the adenomyosis and non-adenomyosis groups were used for DNA extraction. Pre-designed PCR/Sanger or Sequencing Primer and TaqMan® SNP Genotyping Assays were used for the SNP genotyping of the GPR30 gene. Immunohistochemical staining was performed to confirm the GPR30 expression. Differences in genotype and allele frequencies between the two groups were calculated using Fisher's exact test. The rs3802141 CT genotype was more common in the control group (p = .02), and the rs4266553 CC genotype was more common in the adenomyosis group (p = .02). The C allele of the SNP rs4266553 was more common in the adenomyosis group (p = .02). GPR30 expression was confirmed in 69 individuals in both groups. GPR30 gene polymorphism is presumed to affect the risk of adenomyosis with limited sample size. Further large-scale study is needed to explain the genetic influence of GPR30 gene polymorphism.
Collapse
Affiliation(s)
- Dae Gy Hong
- a Department of Obstetrics and Gynecology, School of Medicine , Kyungpook National University, Kyungpook National University Chilgok Hospital , Daegu , South Korea
| | - Ji Young Park
- b Department of Pathology, School of Medicine , Kyungpook National University, Kyungpook National University Chilgok Hospital , Daegu , South Korea
| | - Gun Oh Chong
- a Department of Obstetrics and Gynecology, School of Medicine , Kyungpook National University, Kyungpook National University Chilgok Hospital , Daegu , South Korea
| | - Yoon Hee Lee
- a Department of Obstetrics and Gynecology, School of Medicine , Kyungpook National University, Kyungpook National University Chilgok Hospital , Daegu , South Korea
| | - Hyun Jung Lee
- c Department of Obstetrics and Gynecology, School of Medicine , Kyungpook National University, Kyungpook National University Hospital , Daegu , South Korea
| | - Jung Un Shinn
- a Department of Obstetrics and Gynecology, School of Medicine , Kyungpook National University, Kyungpook National University Chilgok Hospital , Daegu , South Korea
| | - Yoon Soon Lee
- a Department of Obstetrics and Gynecology, School of Medicine , Kyungpook National University, Kyungpook National University Chilgok Hospital , Daegu , South Korea
| | - Won Joon Seong
- a Department of Obstetrics and Gynecology, School of Medicine , Kyungpook National University, Kyungpook National University Chilgok Hospital , Daegu , South Korea
| |
Collapse
|
19
|
Tang L, Zheng S, Wang Y, Li F, Bao M, Zeng J, Xiang J, Luo H, Li J. Rs4265085 in GPER1 gene increases the risk for unexplained recurrent spontaneous abortion in Dai and Bai ethnic groups in China. Reprod Biomed Online 2017; 34:399-405. [PMID: 28126236 DOI: 10.1016/j.rbmo.2017.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 01/06/2017] [Accepted: 01/06/2017] [Indexed: 11/24/2022]
Abstract
Oestrogen receptors are implicated in the pathogenesis of recurrent spontaneous abortion (RSA). Non-genomic oestrogen responses can be mediated by GPER. The prevalence of polymorphisms in GPER1 gene in RSA was assessed in 747 Chinese women from Yunnan province (171 Bai, 258 Chinese Han, 234 Dai, 33 Achang and 51 Jingpo patients). Snapshot technology was used for genotyping the polymorphisms of the GPER1 gene. The rs4265085G was significantly increased in the Dai and Bai groups versus controls (Dai: P < 0.0001, Padj < 0.0001, OR 95% CI 2.34 [1.79 to 3.05]; Bai: P = 0.0004, Padj = 0.0012, OR 95% CI 1.71 [1.27 to 2.31]); recessive model of rs4265085 in the Dai (P = 0.003, Padj = 0.009, OR 95% CI 2.71 [1.38 to 5.30]); Bai (P < 0.0001, Padj < 0.0001, OR 95% CI 3.37 [1.93 to 5.91]). Haplotype frequencies containing rs10269151G-rs4265085G-rs11544331C were separately significantly different in Dai and Bai ethnic groups (Dai: P = 0.0002, Padj = 0.001, OR 95% CI = 2.12 [1.43 to 3.17]; Bai: P = 0.005, Padj = 0.025, OR 95% CI = 1.82 [1.18 to 2.78]) compared with controls. The intron variant rs4265085 may confer risk for RSA in Dai and Bai ethnic groups.
Collapse
Affiliation(s)
- Liang Tang
- Department of Human Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha, China; School of Basic Medical Science, Changsha Medical University, Changsha, China.
| | - Shui Zheng
- Key Laboratory for Fertility Regulation and Berth Heath of Minority Nationalities of Yunnan Province, Judicial Expertise Center, Yunnan Population and Family Planning Research Institute, Kunming, China
| | - Yan Wang
- School of Basic Medical Science, Changsha Medical University, Changsha, China; Experiment Center for Function, Changsha Medical University, Changsha, China
| | - Fang Li
- Department of Human Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha, China; School of Basic Medical Science, Changsha Medical University, Changsha, China
| | - Meihua Bao
- Department of Human Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha, China; School of Basic Medical Science, Changsha Medical University, Changsha, China
| | - Jie Zeng
- Department of Human Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha, China; School of Basic Medical Science, Changsha Medical University, Changsha, China
| | - Ju Xiang
- Department of Human Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha, China; School of Basic Medical Science, Changsha Medical University, Changsha, China
| | - Huaiqing Luo
- School of Basic Medical Science, Changsha Medical University, Changsha, China; Experiment Center for Function, Changsha Medical University, Changsha, China
| | - Jianming Li
- Department of Human Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha, China; Department of Neurology, Xiang-ya Hospital, Central South University, Changsha, China
| |
Collapse
|
20
|
Jacenik D, Cygankiewicz AI, Krajewska WM. The G protein-coupled estrogen receptor as a modulator of neoplastic transformation. Mol Cell Endocrinol 2016; 429:10-8. [PMID: 27107933 DOI: 10.1016/j.mce.2016.04.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/07/2016] [Accepted: 04/19/2016] [Indexed: 12/18/2022]
Abstract
Estrogens play a crucial role in the regulation of physiological and pathophysiological processes. These hormones act through specific receptors, most notably the canonical estrogen receptors α and β (ERα and ERβ) and their truncated forms as well as the G protein-coupled estrogen receptor (GPER). Several studies have shown that GPER is expressed in many normal and cancer cells, including those of the breast, endometrium, ovary, testis and lung. Hormonal imbalance is one possible cause of cancer development. An accumulating body of evidence indicates that GPER is involved in the regulation of cancer cell proliferation, migration and invasion, it may act as a mediator of microRNA, and is believed to modulate the inflammation associated with neoplastic transformation. Furthermore, used in various treatment regimens anti-estrogens such as tamoxifen, raloxifen and fulvestrant (ICI 182.780), antagonists/modulators of canonical estrogen receptors, were found to be GPER agonists. This review presents the current knowledge about the potential role of GPER in neoplastic transformation.
Collapse
Affiliation(s)
- Damian Jacenik
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska St. 141/143, 90-236 Lodz, Poland.
| | - Adam I Cygankiewicz
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska St. 141/143, 90-236 Lodz, Poland.
| | - Wanda M Krajewska
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska St. 141/143, 90-236 Lodz, Poland.
| |
Collapse
|
21
|
Barton M. Not lost in translation: Emerging clinical importance of the G protein-coupled estrogen receptor GPER. Steroids 2016; 111:37-45. [PMID: 26921679 DOI: 10.1016/j.steroids.2016.02.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 02/13/2016] [Accepted: 02/22/2016] [Indexed: 01/21/2023]
Abstract
It has been 20years that the G protein-coupled estrogen receptor (GPER) was cloned as the orphan receptor GPR30 from multiple cellular sources, including vascular endothelial cells. Here, I will provide an overview of estrogen biology and the historical background leading to the discovery of rapid vascular estrogen signaling. I will also review the recent advances in the understanding of the mechanisms underlying GPER function, its role in physiology and disease, some of the currently available GPER-targeting drugs approved for clinical use such as SERMs (selective estrogen receptor modulators) and SERDs (selective estrogen receptor downregulators). Many of currently used drugs such as tamoxifen, raloxifene, or faslodex™/fulvestrant were discovered targeting GPER many years after they had been introduced to the clinics for entirely different purposes. This has important implications for the clinical use of these drugs and their modes of action, which I have termed 'reverse translational medicine'. In addition, environmental pollutants known as 'endocrine disruptors' have been found to bind to GPER. This article also discusses recent evidence in these areas as well as opportunities in translational clinical medicine and GPER research, including medical genetics, personalized medicine, prevention, and its theranostic use.
Collapse
Affiliation(s)
- Matthias Barton
- Molecular Internal Medicine, University of Zürich, Switzerland.
| |
Collapse
|
22
|
Kasap B, Öztürk Turhan N, Edgünlü T, Duran M, Akbaba E, Öner G. G-protein-coupled estrogen receptor-30 gene polymorphisms are associated with uterine leiomyoma risk. Bosn J Basic Med Sci 2016; 16:39-45. [PMID: 26773178 DOI: 10.17305/bjbms.2016.683] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/12/2015] [Accepted: 10/12/2015] [Indexed: 12/20/2022] Open
Abstract
The G-protein-coupled estrogen receptor (GPR30, GPER-1) is a member of the G-protein-coupled receptor 1 family and is expressed significantly in uterine leiomyomas. To understand the relationship between GPR30 single nucleotide polymorphisms and the risk of leiomyoma, we measured the follicle-stimulating hormone (FSH) and estradiol (E2) levels of 78 perimenopausal healthy women and 111 perimenopausal women with leiomyomas. The participants' leiomyoma number and volume were recorded. DNA was extracted from whole blood with a GeneJET Genomic DNA Purification Kit. An amplification-refractory mutation system polymerase chain reaction approach was used for genotyping of the GPR30 gene (rs3808350, rs3808351, and rs11544331). The differences in genotype and allele frequencies between the leiomyoma and control groups were calculated using the chi-square (χ2) and Fischer's exact test. The median FSH level was higher in controls (63 vs. 10 IU/L, p=0.000), whereas the median E2 level was higher in the leiomyoma group (84 vs. 9.1 pg/mL, p=0.000). The G allele of rs3808351 and the GG genotype of both the rs3808350 and rs3808351 polymorphisms and the GGC haplotype increased the risk of developing leiomyoma. There was no significant difference in genotype frequencies or leiomyoma volume. However, the GG genotype of the GPR30 rs3808351 polymorphism and G allele of the GPR30 rs3808351 polymorphism were associated with the risk of having a single leiomyoma. Our results suggest that the presence of the GG genotype of the GPR30 rs3808351 polymorphism and the G allele of the GPR30 rs3808351 polymorphism affect the characteristics and development of leiomyomas in the Turkish population.
Collapse
Affiliation(s)
- Burcu Kasap
- Department of Obstetrics and Gynecology, School of Medicine, Mugla Sitki Kocman University, Mugla, Turkey.
| | | | | | | | | | | |
Collapse
|
23
|
Prossnitz ER, Arterburn JB. International Union of Basic and Clinical Pharmacology. XCVII. G Protein-Coupled Estrogen Receptor and Its Pharmacologic Modulators. Pharmacol Rev 2015; 67:505-40. [PMID: 26023144 PMCID: PMC4485017 DOI: 10.1124/pr.114.009712] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Estrogens are critical mediators of multiple and diverse physiologic effects throughout the body in both sexes, including the reproductive, cardiovascular, endocrine, nervous, and immune systems. As such, alterations in estrogen function play important roles in many diseases and pathophysiological conditions (including cancer), exemplified by the lower prevalence of many diseases in premenopausal women. Estrogens mediate their effects through multiple cellular receptors, including the nuclear receptor family (ERα and ERβ) and the G protein-coupled receptor (GPCR) family (GPR30/G protein-coupled estrogen receptor [GPER]). Although both receptor families can initiate rapid cell signaling and transcriptional regulation, the nuclear receptors are traditionally associated with regulating gene expression, whereas GPCRs are recognized as mediating rapid cellular signaling. Estrogen-activated pathways are not only the target of multiple therapeutic agents (e.g., tamoxifen, fulvestrant, raloxifene, and aromatase inhibitors) but are also affected by a plethora of phyto- and xeno-estrogens (e.g., genistein, coumestrol, bisphenol A, dichlorodiphenyltrichloroethane). Because of the existence of multiple estrogen receptors with overlapping ligand specificities, expression patterns, and signaling pathways, the roles of the individual receptors with respect to the diverse array of endogenous and exogenous ligands have been challenging to ascertain. The identification of GPER-selective ligands however has led to a much greater understanding of the roles of this receptor in normal physiology and disease as well as its interactions with the classic estrogen receptors ERα and ERβ and their signaling pathways. In this review, we describe the history and characterization of GPER over the past 15 years focusing on the pharmacology of steroidal and nonsteroidal compounds that have been employed to unravel the biology of this most recently recognized estrogen receptor.
Collapse
Affiliation(s)
- Eric R Prossnitz
- Department of Internal Medicine (E.R.P.) and University of New Mexico Cancer Center (E.R.P., J.B.A.), The University of New Mexico Health Sciences Center, Albuquerque, New Mexico; and Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico (J.B.A.)
| | - Jeffrey B Arterburn
- Department of Internal Medicine (E.R.P.) and University of New Mexico Cancer Center (E.R.P., J.B.A.), The University of New Mexico Health Sciences Center, Albuquerque, New Mexico; and Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico (J.B.A.)
| |
Collapse
|
24
|
Contrò V, R. Basile J, Proia P. Sex steroid hormone receptors, their ligands, and nuclear and non-nuclear pathways. AIMS MOLECULAR SCIENCE 2015. [DOI: 10.3934/molsci.2015.3.294] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
25
|
Heublein S, Mayr D, Friese K, Jarrin-Franco MC, Lenhard M, Mayerhofer A, Jeschke U. The G-protein-coupled estrogen receptor (GPER/GPR30) in ovarian granulosa cell tumors. Int J Mol Sci 2014; 15:15161-72. [PMID: 25167139 PMCID: PMC4200831 DOI: 10.3390/ijms150915161] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 08/15/2014] [Accepted: 08/21/2014] [Indexed: 01/29/2023] Open
Abstract
Ovarian granulosa cell tumors (GCTs) are thought to arise from cells of the ovarian follicle and comprise a rare entity of ovarian masses. We recently identified the G-protein-coupled estrogen receptor (GPER/GPR30) to be present in granulosa cells, to be regulated by gonadotropins in epithelial ovarian cancer and to be differentially expressed throughout folliculogenesis. Thus, supposing a possible role of GPER in GCTs, this study aimed to analyze GPER in GCTs. GPER immunoreactivity in GCTs (n = 26; n (primary diagnosis) = 15, n (recurrence) = 11) was studied and correlated with the main clinicopathological variables. Positive GPER staining was identified in 53.8% (14/26) of GCTs and there was no significant relation of GPER with tumor size or lymph node status. Those cases presenting with strong GPER intensity at primary diagnosis showed a significant reduced overall survival (p = 0.002). Due to the fact that GPER is regulated by estrogens, as well as gonadotropins, GPER may also be affected by endocrine therapies applied to GCT patients. Moreover, with our data supposing GPER to be associated with GCT prognosis, GPER might be considered as a possible confounder when assessing the efficacy of hormone-based therapeutic approaches in GCTs.
Collapse
Affiliation(s)
- Sabine Heublein
- Department of Obstetrics and Gynaecology, Ludwig-Maximilians-University of Munich, Campus Innenstadt, 80337 Munich, Germany; E-Mails: (K.F.); (U.J.)
- Author to whom correspondence should be addressed: E-Mail: ; Tel.: +49-89-4400-54234; Fax: +49-89-4400-54916
| | - Doris Mayr
- Department of Pathology, Ludwig-Maximilians-University of Munich, 80337 Munich, Germany; E-Mails: (D.M.); (M.C.J.-F.)
| | - Klaus Friese
- Department of Obstetrics and Gynaecology, Ludwig-Maximilians-University of Munich, Campus Innenstadt, 80337 Munich, Germany; E-Mails: (K.F.); (U.J.)
- Department of Obstetrics and Gynaecology, Ludwig-Maximilians-University of Munich, Campus Großhadern, 81377 Munich, Germany; E-Mail:
| | - Maria Cristina Jarrin-Franco
- Department of Pathology, Ludwig-Maximilians-University of Munich, 80337 Munich, Germany; E-Mails: (D.M.); (M.C.J.-F.)
| | - Miriam Lenhard
- Department of Obstetrics and Gynaecology, Ludwig-Maximilians-University of Munich, Campus Großhadern, 81377 Munich, Germany; E-Mail:
| | - Artur Mayerhofer
- Department of Anatomy III, Cell Biology, Ludwig-Maximilians-University of Munich, 80336 Munich, Germany; E-Mail:
| | - Udo Jeschke
- Department of Obstetrics and Gynaecology, Ludwig-Maximilians-University of Munich, Campus Innenstadt, 80337 Munich, Germany; E-Mails: (K.F.); (U.J.)
| |
Collapse
|
26
|
Zhang W, Yang F, Luo J, Chen F, Gu J, Guan X. A novel GPR30 rs10235056 A>G polymorphism associated with post-transcriptional regulation in lymphoblastoid cell lines. Biomarkers 2014; 19:417-23. [DOI: 10.3109/1354750x.2014.924996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
| | | | | | | | - Jun Gu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University
NanjingChina
| | | |
Collapse
|
27
|
Prossnitz ER, Barton M. Estrogen biology: new insights into GPER function and clinical opportunities. Mol Cell Endocrinol 2014; 389:71-83. [PMID: 24530924 PMCID: PMC4040308 DOI: 10.1016/j.mce.2014.02.002] [Citation(s) in RCA: 289] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 02/04/2014] [Indexed: 12/16/2022]
Abstract
Estrogens play an important role in the regulation of normal physiology, aging and many disease states. Although the nuclear estrogen receptors have classically been described to function as ligand-activated transcription factors mediating genomic effects in hormonally regulated tissues, more recent studies reveal that estrogens also mediate rapid signaling events traditionally associated with G protein-coupled receptors. The G protein-coupled estrogen receptor GPER (formerly GPR30) has now become recognized as a major mediator of estrogen's rapid cellular effects throughout the body. With the discovery of selective synthetic ligands for GPER, both agonists and antagonists, as well as the use of GPER knockout mice, significant advances have been made in our understanding of GPER function at the cellular, tissue and organismal levels. In many instances, the protective/beneficial effects of estrogen are mimicked by selective GPER agonism and are absent or reduced in GPER knockout mice, suggesting an essential or at least parallel role for GPER in the actions of estrogen. In this review, we will discuss recent advances and our current understanding of the role of GPER and the activity of clinically used drugs, such as SERMs and SERDs, in physiology and disease. We will also highlight novel opportunities for clinical development towards GPER-targeted therapeutics, for molecular imaging, as well as for theranostic approaches and personalized medicine.
Collapse
Affiliation(s)
- Eric R Prossnitz
- Department of Cell Biology and Physiology, UNM Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87120, USA.
| | - Matthias Barton
- Molecular Internal Medicine, University of Zurich, Switzerland.
| |
Collapse
|