1
|
Hamidi N, Feizi F, Azadmehr A, Zabihi E, Khafri S, Zarei-Behjani Z, Babazadeh Z. Disulfiram ameliorates bleomycin induced pulmonary inflammation and fibrosis in rats. Biotech Histochem 2023; 98:584-592. [PMID: 37779489 DOI: 10.1080/10520295.2023.2261367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023] Open
Abstract
Bleomycin (BL) is a widely used anticancer drug that can cause pulmonary fibrosis due to increased fibroblast proliferation and increased secretion of extracellular matrix. RASSF1A is a tumor suppressor gene that is down-regulated by DNA methylation during fibrosis. Disulfiram (DSF), a noncytosine DNA methyltransferase inhibitor, can revert epigenetic biomarkers and re-express silenced genes. We investigated anti-inflammatory and anti-fibrotic effects of DSF on regulation of epigenetic molecules and histopathology in a rat model of BL induced pulmonary fibrosis. We used six groups of rats: sesame oil (SO) control (Co) group, BL group, BL + SO group and three BL + DSF groups administered 1 mg/kg DSF (BL + DSF), 10 mg/kg DSF (BL + DSF10) or 100 mg/kg DSF (BL + DSF100), respectively. BL was administered intratracheally to induce pulmonary fibrosis. DSF and SO were injected intraperitoneally (i.p.) 2 days before BL administration; these injections were continued for 3 weeks. At the end of the study, lung tissues were removed for molecular and histopathologic studies. Administration of 10 or 100 mg/kg DSF after BL induced pulmonary inflammation and fibrosis, and up-regulated RASSF1A and down-regulated TNF-α and IL-1 β compared to the BL and BL + SO groups. A RASSF1A unmethylated band was observed using the methylation-specific PCR technique in rats that had been administered 10 and 100 mg/kg DSF, which indicated partial DNA demethylation. Histopathologic evaluation revealed that fibrosis and all inflammatory scores were decreased significantly in the BL + DSF10 and BL + DSF100 groups compared to the BL group. Our findings indicate that DSF modified DNA methylation by up-regulating RASSF1A, which reduced inflammation and fibrosis in BL induced pulmonary inflammation and fibrosis.
Collapse
Affiliation(s)
- Negar Hamidi
- Cellular and Molecular Biology Research Center, Institute of Health, Babol University of Medical Sciences, Babol, Iran
- Department of Anatomical Science, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Farideh Feizi
- Cellular and Molecular Biology Research Center, Institute of Health, Babol University of Medical Sciences, Babol, Iran
- Department of Anatomical Science, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Abbas Azadmehr
- Cellular and Molecular Biology Research Center, Institute of Health, Babol University of Medical Sciences, Babol, Iran
- Department of Immunology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Ebrahim Zabihi
- Cellular and Molecular Biology Research Center, Institute of Health, Babol University of Medical Sciences, Babol, Iran
| | - Soraya Khafri
- Department of Biostatistics and Epidemiology, Faculty of Medicine, Babol University of Medical Science, Babol, Iran
| | - Zeinab Zarei-Behjani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Babazadeh
- Cellular and Molecular Biology Research Center, Institute of Health, Babol University of Medical Sciences, Babol, Iran
- Department of Anatomical Science, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
2
|
Quantum dots as targeted doxorubicin drug delivery nanosystems in human lung cancer cells. Cancer Nanotechnol 2021. [DOI: 10.1186/s12645-021-00077-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Abstract
Background
Lung cancer is one of the most frequently diagnosed cancers all over the world and is also one of the leading causes of cancer-related mortality. The main treatment option for small cell lung cancer, conventional chemotherapy, is characterized by a lack of specificity, resulting in severe adverse effects. Therefore, this study aimed at developing a new targeted drug delivery (TDD) system based on Ag–In–Zn–S quantum dots (QDs). For this purpose, the QD nanocrystals were modified with 11-mercaptoundecanoic acid (MUA), L-cysteine, and lipoic acid decorated with folic acid (FA) and used as a novel TDD system for targeting doxorubicin (DOX) to folate receptors (FARs) on adenocarcinomic human alveolar basal epithelial cells (A549). NIH/3T3 cells were used as FAR-negative controls. Comprehensive physicochemical, cytotoxicity, and genotoxicity studies were performed to characterize the developed novel TDDs.
Results
Fourier transformation infrared spectroscopy, dynamic light scattering, and fluorescence quenching confirmed the successful attachment of FA to the QD nanocrystals and of DOX to the QD–FA nanocarriers. UV–Vis analysis helped in determining the amount of FA and DOX covalently anchored to the surface of the QD nanocrystals. Biological screening revealed that the QD–FA–DOX nanoconjugates had higher cytotoxicity in comparison to the other forms of synthesized QD samples, suggesting the cytotoxic effect of DOX liberated from the QD constructs. Contrary to the QD–MUA–FA–DOX nanoconjugates which occurred to be the most cytotoxic against A549 cells among others, no such effect was observed for NIH/3T3 cells, confirming FARs as molecular targets. In vitro scratch assay also revealed significant inhibition of A549 cell migration after treatment with QD–MUA–FA–DOX. The performed studies evidenced that at IC50 all the nanoconjugates induced significantly more DNA breaks than that observed in nontreated cells. Overall, the QD–MUA–FA–DOX nanoconjugates showed the greatest cytotoxicity and genotoxicity, while significantly inhibiting the migratory potential of A549 cells.
Conclusion
QD–MUA–FA–DOX nanoconjugates can thus be considered as a potential drug delivery system for the effective treatment of adenocarcinomic human alveolar basal epithelial cells.
Collapse
|
3
|
Kong Y, Wang H, Wu S, Lv J, Mei L, Zhou H, Lin X, Han X. A quantum dot fluorescent microsphere based immunochromatographic strip for detection of brucellosis. BMC Vet Res 2021; 17:48. [PMID: 33485335 PMCID: PMC7823175 DOI: 10.1186/s12917-021-02760-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 01/12/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Brucellosis is a serious zoonosis disease that frequently causes significant economic loss in animal husbandry and threatens human health. Therefore, we established a rapid, accurate, simple and sensitive fluorescent immunochromatographic strip test (ICST) based on quantum dots (QDs) for detection the antibodies of Brucella infection animals serum. RESULTS The test strips were successfully prepared by quantum dot fluorescent microspheres (QDFM) as tracers, which were covalently coupled to an outer membrane protein of Brucella OMP22. The outer membrane protein OMP28 and monoclonal antibodies of OMP22 were separately dispensed onto a nitrocellulose membrane as test and quality control lines, respectively. The critical threshold for determining negative or positive through the ratio of the fluorescent signal of the test line and the control line (HT / HC) is 0.0492. The repeatability was excellent with an overall average CV of 8.78%. Under optimum conditions, the limit of detection was 1.05 ng/mL (1:512 dilution). With regard to the detection of brucellosis in 150 clinical samples, the total coincidence rate of ICST and Rose Bengal plate test (RBPT) was 97.3%, the coincidence rate of positive samples was 98.8%, the coincidence rate of negative samples was 95.3%, the sensitivity of RBPT is 1:32, and no cross reaction with the sera of other related diseases was observed. CONCLUSION In our present study, the QDFM has promising application for on-site screening of brucellosis owing to its high detection speed, high sensitivity, high specificity and low cost.
Collapse
Affiliation(s)
- Yufang Kong
- Institute of Animal Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, 100176, Beijing, China
| | - Huiyu Wang
- Institute of Animal Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, 100176, Beijing, China
| | - Shaoqiang Wu
- Institute of Animal Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, 100176, Beijing, China
| | - Jizhou Lv
- Institute of Animal Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, 100176, Beijing, China
| | - Lin Mei
- Institute of Animal Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, 100176, Beijing, China
| | - Huifang Zhou
- People's Hospital of Jiaxiang, Jiaxiang County, Jining City, 272400, Shandong Province, China
| | - Xiangmei Lin
- Institute of Animal Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, 100176, Beijing, China.
| | - Xueqing Han
- Institute of Animal Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, 100176, Beijing, China.
| |
Collapse
|
4
|
Meng Z, Bi J, Zhang Q, Ren H, Qin W. Recent advances in nanomaterial-assisted detection coupled with capillary and microchip electrophoresis. Electrophoresis 2020; 42:269-278. [PMID: 33159339 DOI: 10.1002/elps.202000293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 11/08/2022]
Abstract
Nanomaterials have drawn much attention because of their unique properties enabling them to play important roles in various applications in different areas. This review covers literature data in the Web of Science from January 2017 to August 2020, focusing on the applications of nanomaterials (nanoparticles, quantum dots, nanotubes, and graphene) in CE and MCE to achieve enhanced sensitivity of several detection techniques: fluorescence, colorimetry, amperometry, and chemiluminescence /electrochemiluminescence. For the articles surveyed, the types of nanomaterials used, detection mechanisms, analytical performance, and applications are presented and discussed.
Collapse
Affiliation(s)
- Zhao Meng
- College of Chemistry, Beijing Normal University, Beijing, P. R. China
| | - Junmin Bi
- College of Chemistry, Beijing Normal University, Beijing, P. R. China
| | - Qianqian Zhang
- College of Chemistry, Beijing Normal University, Beijing, P. R. China
| | - Hang Ren
- College of Chemistry, Beijing Normal University, Beijing, P. R. China
| | - Weidong Qin
- College of Chemistry, Beijing Normal University, Beijing, P. R. China
| |
Collapse
|
5
|
Li G, Rong Z, Wang S, Zhao H, Piao D, Yang X, Tian G, Jiang H. Rapid detection of brucellosis using a quantum dot-based immunochromatographic test strip. PLoS Negl Trop Dis 2020; 14:e0008557. [PMID: 32976512 PMCID: PMC7540878 DOI: 10.1371/journal.pntd.0008557] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 10/07/2020] [Accepted: 07/02/2020] [Indexed: 11/18/2022] Open
Abstract
Novel diagnostic tools are a major challenge for brucellosis research, especially in developing countries. Herein, we established a handheld quantum dot (QD) immunochromatographic device for the fast detection of brucellosis antibodies in the field. Total bacterial protein extracted from Brucella 104M served as labelling and coating antigen. QD labelling and immunochromatography methods were used to optimise reaction conditions, labelling conditions, reaction temperature and storage temperature. QD test strips were employed to test brucellosis serum to determine their sensitivity, specificity and stability. Test strips were compared with Rose Bengal test, standard agglutination test and colloidal gold immunochromatographic assay. Labelled Brucella total protein displayed good specificity and no cross-reactivity. The concentration of labelled total bacterial protein was 3.9 mg/ml, the coating concentration was 2.0 mg/ ml, and the serum titre with the lowest detection sensitivity was 1:25. The optimal reaction temperature for the test strip was 25-30°C. The test strip was stable after storage at room temperature and the repeatability was high, with a coefficient of variation of 4.0%. After testing 199 serum samples, the sensitivity of the QD test strip was 98.53%, the specificity was 93.57%, and the coincidence rate with the standard agglutination test was 96.98%. The developed QD immunochromatographic method can be used for rapid detection and preliminary screening of brucellosis in the field.
Collapse
Affiliation(s)
- Guangqiang Li
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Center for Disease Control and Prevention, Western Theater Command, Lanzhou, China
| | - Zhen Rong
- Beijing Institute of Radiation Medicine, Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing, China
| | - Shengqi Wang
- Beijing Institute of Radiation Medicine, Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing, China
| | - Hongyan Zhao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dongri Piao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaowen Yang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Guozhong Tian
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hai Jiang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- * E-mail:
| |
Collapse
|
6
|
Song D, Qu X, Liu Y, Li L, Yin D, Li J, Xu K, Xie R, Zhai Y, Zhang H, Bao H, Zhao C, Wang J, Song X, Song W. A Rapid Detection Method of Brucella with Quantum Dots and Magnetic Beads Conjugated with Different Polyclonal Antibodies. NANOSCALE RESEARCH LETTERS 2017; 12:179. [PMID: 28282974 PMCID: PMC5344867 DOI: 10.1186/s11671-017-1941-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/21/2017] [Indexed: 05/14/2023]
Abstract
Brucella spp. are facultative intracellular bacteria that cause zoonotic disease of brucellosis worldwide. Traditional methods for detection of Brucella spp. take 48-72 h that does not meet the need of rapid detection. Herein, a new rapid detection method of Brucella was developed based on polyclonal antibody-conjugating quantum dots and antibody-modified magnetic beads. First, polyclonal antibodies IgG and IgY were prepared and then the antibody conjugated with quantum dots (QDs) and immunomagnetic beads (IMB), respectively, which were activated by N-(3-dimethylaminopropyl)-N'-ethylcar-bodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) to form probes. We used the IMB probe to separate the Brucella and labeled by the QD probe, and then detected the fluorescence intensity with a fluorescence spectrometer. The detection method takes 105 min with a limit of detection of 103 CFU/mL and ranges from 10 to 105 CFU/mL (R 2 = 0.9983), and it can be well used in real samples.
Collapse
Affiliation(s)
- Dandan Song
- Department of Health Laboratory, School of Public Health, Jilin University, 130021 Changchun, China
| | - Xiaofeng Qu
- Department of Health Laboratory, School of Public Health, Jilin University, 130021 Changchun, China
| | - Yushen Liu
- Department of Health Laboratory, School of Public Health, Jilin University, 130021 Changchun, China
| | - Li Li
- Department of Health Laboratory, School of Public Health, Jilin University, 130021 Changchun, China
| | - Dehui Yin
- School of Public Health, Xuzhou Medical University, 221000 Xuzhou, China
| | - Juan Li
- Department of Health Laboratory, School of Public Health, Jilin University, 130021 Changchun, China
| | - Kun Xu
- Department of Health Laboratory, School of Public Health, Jilin University, 130021 Changchun, China
| | - Renguo Xie
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 130000 Changchun, China
| | - Yue Zhai
- Department of Health Laboratory, School of Public Health, Jilin University, 130021 Changchun, China
| | - Huiwen Zhang
- Department of Health Laboratory, School of Public Health, Jilin University, 130021 Changchun, China
| | - Hao Bao
- Department of Health Laboratory, School of Public Health, Jilin University, 130021 Changchun, China
| | - Chao Zhao
- Department of Health Laboratory, School of Public Health, Jilin University, 130021 Changchun, China
| | - Juan Wang
- Department of Health Laboratory, School of Public Health, Jilin University, 130021 Changchun, China
| | - Xiuling Song
- Department of Health Laboratory, School of Public Health, Jilin University, 130021 Changchun, China
| | - Wenzhi Song
- China-Japan Union Hospital, Jilin University, 130000 Changchun, China
| |
Collapse
|
7
|
Adam V, Vaculovicova M. CE and nanomaterials - Part II: Nanomaterials in CE. Electrophoresis 2017; 38:2405-2430. [DOI: 10.1002/elps.201700098] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Vojtech Adam
- Department of Chemistry and Biochemistry; Mendel University in Brno; Brno Czech Republic
- Central European Institute of Technology; Brno University of Technology; Brno Czech Republic
| | - Marketa Vaculovicova
- Department of Chemistry and Biochemistry; Mendel University in Brno; Brno Czech Republic
- Central European Institute of Technology; Brno University of Technology; Brno Czech Republic
| |
Collapse
|
8
|
Wang J, Li J, Li J, Qin Y, Wang C, Qiu L, Jiang P. In-capillary self-assembly study of quantum dots and protein using fluorescence coupled capillary electrophoresis. Electrophoresis 2015; 36:1523-8. [PMID: 25809142 DOI: 10.1002/elps.201500073] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 02/26/2015] [Accepted: 03/08/2015] [Indexed: 11/06/2022]
Abstract
As a vast number of novel materials in particular inorganic nanoparticles have been invented and introduced to all aspects of life, public concerns about how they might affect our ecosystem and human life continue to arise. Such incertitude roots at a fundamental question of how inorganic nanoparticles self-assemble with biomolecules in solution. Various techniques have been developed to probe the interaction between particles and biomolecules, but very few if any can provide advantages of both rapid and convenient. Herein, we report a systematic investigation on quantum dots (QDs) and protein self-assembly inside a capillary. QDs and protein were injected to a capillary one after another. They were mixed inside the capillary when a high voltage was applied. Online separation and detection were then achieved. This new method can also be used to study the self-assembly kinetics of QDs and protein using the Hill equation, the KD value for the self-assembly of QDs and protein was calculated to be 8.8 μM. The obtained results were compared with the previous out of-capillary method and confirmed the effectiveness of the present method.
Collapse
Affiliation(s)
- Jianhao Wang
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, Jiangsu, P. R. China
| | - Jingyan Li
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, Jiangsu, P. R. China
| | - Jinchen Li
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, Jiangsu, P. R. China
| | - Yuqin Qin
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, Jiangsu, P. R. China
| | - Cheli Wang
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, Jiangsu, P. R. China
| | - Lin Qiu
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, Jiangsu, P. R. China
| | - Pengju Jiang
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, Jiangsu, P. R. China.,State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| |
Collapse
|