1
|
Ebrat E, Hejazian SM, Ahmadian E, Vahed SZ, Mobasseri M, Ardalan M. The Possible Association of IL-6R Gene Polymorphisms in the Development of Diabetic Nephropathy. Curr Diabetes Rev 2024; 20:55-59. [PMID: 37855360 DOI: 10.2174/0115733998245369231009111221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND Diabetic nephropathy (DN) is a common complication of type 2 diabetes (T2D). Chronic inflammation and a combination of environmental and genetic factors are involved in the pathogenesis and development of DN. OBJECTIVE This case-control study aimed to determine the relationship between rs7529229 and rs2228145 polymorphisms of the IL-6R gene with the incidence of nephropathy among T2D patients. METHODS Fifty-six diabetic patients with nephropathy and 57 T2D patients without nephropathy were included based on inclusion criteria, along with 150 healthy individuals. RESULTS The frequencies of AC and CC genotype distributions of the rs2228145 polymorphism in DN patients were significantly higher than in healthy individuals (24.1 and 9.3% versus 10.7 and 6.7%, respectively, P= 0.02). Moreover, the frequency of allele C was higher in DN patients compared to healthy controls (21.30% versus 12%, P=0.025). However, genotype distribution and allele frequencies of the rs7529229 IL-6R polymorphism in DN patients were not statistically significant in comparison with diabetic patients and healthy individuals (P> 0.05). CONCLUSION The results showed that the allele and genotype distribution frequencies of rs2228145 IL-6R gene polymorphism in patients with DN were significantly higher than in healthy individuals. Therefore, the presence of this polymorphism may be involved in the development of diabetic nephropathy in this population.
Collapse
Affiliation(s)
- Ebrahim Ebrat
- Kidney Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyedeh Mina Hejazian
- Kidney Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Ahmadian
- Kidney Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Zununi Vahed
- Kidney Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Mobasseri
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadreza Ardalan
- Kidney Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Polymorphisms and Gene-Gene Interaction in AGER/IL6 Pathway Might Be Associated with Diabetic Ischemic Heart Disease. J Pers Med 2022; 12:jpm12030392. [PMID: 35330392 PMCID: PMC8950247 DOI: 10.3390/jpm12030392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/10/2022] [Accepted: 02/22/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Although the genetic susceptibility to diabetes and ischemic heart disease (IHD) has been well demonstrated, studies aimed at exploring gene variations associated with diabetic IHD are still limited; Methods: Our study included 204 IHD cases who had been diagnosed with diabetes before the diagnosis of IHD and 882 healthy controls. Logistic regression was used to find the association of candidate SNPs and polygenic risk score (PRS) with diabetic IHD. The diagnostic accuracy was represented with AUC. Generalized multifactor dimensionality reduction (GMDR) was used to illustrate gene-gene interactions; Results: For IL6R rs4845625, the CT and TT genotypes were associated with a lower risk of diabetic IHD than the CC genotype (OR = 0.619, p = 0.033; OR = 0.542, p = 0.025, respectively). Haplotypes in the AGER gene (rs184003-rs1035798-rs2070600-rs1800624) and IL6R gene (rs7529229-rs4845625-rs4129267-rs7514452-rs4072391) were both significantly associated with diabetic IHD. PRS was associated with the disease (OR = 1.100, p = 0.005) after adjusting for covariates, and the AUC were 0.763 (p < 0.001). The GMDR analysis suggested that rs184003 and rs4845625 were the best interaction model after permutation testing (p = 0.001) with a cross-validation consistency of 10/10; Conclusions: SNPs and haplotypes in the AGER and IL6R genes and the interaction of rs184003 and rs4845625 were significantly associated with diabetic IHD.
Collapse
|
3
|
Wang S, Wang E, Chen Q, Yang Y, Xu L, Zhang X, Wu R, Hu X, Wu Z. Uncovering Potential lncRNAs and mRNAs in the Progression From Acute Myocardial Infarction to Myocardial Fibrosis to Heart Failure. Front Cardiovasc Med 2021; 8:664044. [PMID: 34336943 PMCID: PMC8322527 DOI: 10.3389/fcvm.2021.664044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/15/2021] [Indexed: 01/01/2023] Open
Abstract
Background: Morbidity and mortality of heart failure (HF) post-myocardial infarction (MI) remain elevated. The aim of this study was to find potential long non-coding RNAs (lncRNAs) and mRNAs in the progression from acute myocardial infarction (AMI) to myocardial fibrosis (MF) to HF. Methods: Firstly, blood samples from AMI, MF, and HF patients were used for RNA sequencing. Secondly, differentially expressed lncRNAs and mRNAs were obtained in MF vs. AMI and HF vs. MF, followed by functional analysis of shared differentially expressed mRNAs between two groups. Thirdly, interaction networks of lncRNA-nearby targeted mRNA and lncRNA-co-expressed mRNA were constructed in MF vs. AMI and HF vs. MF. Finally, expression validation and diagnostic capability analysis of selected lncRNAs and mRNAs were performed. Results: Several lncRNA-co-expressed/nearby targeted mRNA pairs including AC005392.3/AC007278.2-IL18R1, AL356356.1/AL137145.2-PFKFB3, and MKNK1-AS1/LINC01127-IL1R2 were identified. Several signaling pathways including TNF and cytokine–cytokine receptor interaction, fructose and mannose metabolism and HIF-1, hematopoietic cell lineage and fluid shear stress, and atherosclerosis and estrogen were selected. IL1R2, IRAK3, LRG1, and PLAC4 had a potential diagnostic value for both AMI and HF. Conclusion: Identified AC005392.3/AC007278.2-IL18R1, AL356356.1/AL137145.2-PFKFB3, and MKNK1-AS1/LINC01127-IL1R2 lncRNA-co-expressed/nearby targeted mRNA pairs may play crucial roles in the development of AMI, MF, and HF.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Cardiovasology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Enmao Wang
- Department of Cardiovasology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Qincong Chen
- Department of Cardiovasology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Yan Yang
- Department of Cardiovasology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Lei Xu
- Department of Cardiovasology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Xiaolei Zhang
- Department of Cardiovasology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Rubing Wu
- Department of Cardiovasology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Xitian Hu
- Department of Cardiovasology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Zhihong Wu
- Department of Cardiovasology, Shijiazhuang People's Hospital, Shijiazhuang, China
| |
Collapse
|
4
|
Ishtiaq H, Siddiqui S, Nawaz R, Jamali KS, Khan AG. Sialuria-Related Intellectual Disability in Children and Adolescent of Pakistan: Tenth Patient Described has a Novel Mutation in the GNE Gene. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 19:127-141. [PMID: 32053088 DOI: 10.2174/1871527319666200213115747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 12/23/2019] [Accepted: 01/01/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Sialuria is a rare inborn error of metabolism caused by excessive synthesis of sialic acid due to the mutation in the binding site of the cytidine monophosphate-sialic acid of UDPGlcNAc 2-Epimerase/ManNAc Kinase (GNE/MNK). OBJECTIVE This is the first study investigating the molecular basis of neuronal disorders exhibiting sialuria in Pakistani children/adolescents. METHODS The current study genotyped GNE SNPs rs121908621, rs121908622 and rs121908623 by using PCR, RFLP, and DNA sequencing methods. Socioeconomic and clinical histories were also recorded. RESULTS Our data suggest that clinical symptoms and financial status play a significant role in conferring sialuria related Intellectual Disability (ID). SNP: rs121908623 showed G/A substitution (R263Q) in the GNE gene. CONCLUSION We have identified one case study in Pakistan, so this makes our research a leap forward towards the identification of the 10th case study worldwide.
Collapse
Affiliation(s)
- Hina Ishtiaq
- Department of Neuroscience, Dr. Panjwani Center For Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Sonia Siddiqui
- Department of Neuroscience, Dr. Panjwani Center For Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan.,Department of Biochemistry, Dow University of Health Sciences, Karachi-75290, Pakistan
| | - Rukhsana Nawaz
- Department of Psychology, College of Humanities and Social Sciences, University of UAE, Al-Ain, United Arab Emirates
| | - Khawar Saeed Jamali
- Department of Surgery, Dow University of Health Sciences, Karachi- 75290, Pakistan
| | - Abdul Ghani Khan
- Department of Neuropsychiatry and Rehabilitation, National Institute of Child Health, Jinnah Post Graduate Medical Center, Karachi-75510, Pakistan
| |
Collapse
|
5
|
Association between a Genetic Risk Score Based on Single Nucleotide Polymorphisms of Coronary Artery Disease-Related Genes and Left Main Coronary Artery Disease. BIOMED RESEARCH INTERNATIONAL 2019; 2018:8610368. [PMID: 30671475 PMCID: PMC6323456 DOI: 10.1155/2018/8610368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 12/11/2018] [Indexed: 12/13/2022]
Abstract
Coronary artery disease (CAD) is the leading cause of mortality and morbidity worldwide. Left main coronary artery disease (LMCAD) is a severe phenotype of CAD and has a genetic component. Previous studies identified 3 inflammation-related single nucleotide polymorphisms (SNPs) contributing to the development of LMCAD. We integrated these SNPs into a genetic risk score for the prediction of LMCAD. We enrolled 1544 patients with CAD between 2007 and 2011. The individual associations of the 3 SNPs with LMCAD were assessed. We then calculated the genetic risk score for each patient and stratified patients into low-risk, intermediate-risk, and high-risk categories of genetic risk. In univariable logistic regression analysis, the odds of LMCAD for the high-risk group were 2.81 (95% confidence interval [CI]: 1.72-4.60; P = 0.02) times those of the low-risk group. After adjustment for CAD-related clinical variables, the high-risk group (adjusted OR: 2.78; 95% CI: 1.69-4.58; P = 0.02) had increased odds of LMCAD when compared with the low-risk group. Comparison of model c-statistics showed greater predictive value with regard to LMCAD for the genetic risk score model than the models including single SNPs.
Collapse
|
6
|
Huang L, Zhang L, Li T, Liu YW, Wang Y, Liu BJ. Human Plasma Metabolomics Implicates Modified 9-cis-Retinoic Acid in the Phenotype of Left Main Artery Lesions in Acute ST-Segment Elevated Myocardial Infarction. Sci Rep 2018; 8:12958. [PMID: 30154509 PMCID: PMC6113282 DOI: 10.1038/s41598-018-30219-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 07/23/2018] [Indexed: 12/18/2022] Open
Abstract
The detection of left main coronary artery disease (LMCAD) is crucial before ST-segment elevated myocardial infarction (STEMI) or sudden cardiac death. The aim of this study was to identify characteristic metabolite modifications in the LMCAD phenotype, using the metabolomics technique. Metabolic profiles were generated based on ultra-performance liquid chromatography and mass spectrometry, combined with multivariate statistical analysis. Plasma samples were collected prospectively from a propensity-score matched cohort including 44 STEMI patients (22 consecutive LMCAD and 22 non-LMCAD), and 22 healthy controls. A comprehensive metabolomics data analysis was performed with Metaboanalyst 3.0 version. The retinol metabolism pathway was shown to have the strongest discriminative power for the LMCAD phenotype. According to biomarker analysis through receiver-operating characteristic curves, 9-cis-retinoic acid (9cRA) dominated the first page of biomarkers, with area under the curve (AUC) value 0.888. Next highest were a biomarker panel consisting of 9cRA, dehydrophytosphingosine, 1H-Indole-3-carboxaldehyde, and another seven variants of lysophosphatidylcholines, exhibiting the highest AUC (0.933). These novel data propose that the retinol metabolism pathway was the strongest differential pathway for the LMCAD phenotype. 9cRA was the most critical biomarker of LMCAD, and a ten-metabolite plasma biomarker panel, in which 9cRA remained the weightiest, may help develop a potent predictive model for LMCAD in clinic.
Collapse
Affiliation(s)
- Lei Huang
- Heart Center, Tianjin Third Central Hospital, Tianjin, P.R. China.,Tianjin Institute of Hepatobiliary Disease, Tianjin, P.R. China.,Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin, P.R. China
| | - Lei Zhang
- Tianjin Institute of Hepatobiliary Disease, Tianjin, P.R. China.,Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin, P.R. China.,Department of Clinical Laboratory, Tianjin Third Central Hospital, Tianjin, P.R. China
| | - Tong Li
- Heart Center, Tianjin Third Central Hospital, Tianjin, P.R. China. .,Tianjin Institute of Hepatobiliary Disease, Tianjin, P.R. China. .,Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin, P.R. China.
| | - Ying-Wu Liu
- Heart Center, Tianjin Third Central Hospital, Tianjin, P.R. China.,Tianjin Institute of Hepatobiliary Disease, Tianjin, P.R. China.,Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin, P.R. China
| | - Yu Wang
- Heart Center, Tianjin Third Central Hospital, Tianjin, P.R. China.,Tianjin Institute of Hepatobiliary Disease, Tianjin, P.R. China.,Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin, P.R. China
| | - Bo-Jiang Liu
- Heart Center, Tianjin Third Central Hospital, Tianjin, P.R. China.,Tianjin Institute of Hepatobiliary Disease, Tianjin, P.R. China.,Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin, P.R. China
| |
Collapse
|
7
|
Nibali L. Development of the gingival sulcus at the time of tooth eruption and the influence of genetic factors. Periodontol 2000 2017; 76:35-42. [DOI: 10.1111/prd.12158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
8
|
Mitrokhin V, Nikitin A, Brovkina O, Khodyrev D, Zotov A, Vachrushev N, Dragunov D, Shim A, Mladenov M, Kamkin A. Association between interleukin-6/6R gene polymorphisms and coronary artery disease in Russian population: influence of interleukin-6/6R gene polymorphisms on inflammatory markers. J Inflamm Res 2017; 10:151-160. [PMID: 29042807 PMCID: PMC5633317 DOI: 10.2147/jir.s141682] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
This study determined the genotype effects of interleukin (IL)-6/IL-6R single nucleotide polymorphisms (SNPs) on circulating levels of different cytokines in healthy and coronary artery disease (CAD) patients with different allele frequencies. In the control patients, rs1800795 showed significant differences in IL-18 concentrations between CC and CG and CC and GG genotypes (P=0.003 and 0.004, respectively). Furthermore, circulatory IL-1β was significantly different between GC and GG genotypes from the same SNP (P=0.038). In the diseased patients, significance was determined only for IL-2 (P=0.021) between the C and G homozygote allele carriers of rs1800795. The diseased GC and GG genotype carriers were statistically different for IL-2 (P=0.049) from the rs1800796 and for IL-4 (P=0.049) from the rs2228044. IL-4 was also statistically significant between the GC and CC genotypes from the rs2228043 of the IL-6R gene (P=0.025). The last combination of genotypes in the same gene for the same SNP was statistically significant for IL-10 (P=0.036). According to the logistic regression, only gender (odds ratio [OR] =2.43) and triglycerides (OR =1.98) could be taken as determinants of CAD, while examined SNPs genotypes were not identified as risk factors for CAD. In general, the IL-6 polymorphism genotypes were mainly associated with inflammatory cytokines, while the IL-6R polymorphism genotypes were associated with anti-inflammatory cytokines.
Collapse
Affiliation(s)
- Vadim Mitrokhin
- Department of Fundamental and Applied Physiology, Russian National Research Medical University
| | - Alexey Nikitin
- Federal Scientific Clinical Center for Specialized Types of Medical Assistance and Medical Technologies for the Federal Medical and Biological Agency
| | - Olga Brovkina
- Federal Scientific Clinical Center for Specialized Types of Medical Assistance and Medical Technologies for the Federal Medical and Biological Agency
| | - Dmitry Khodyrev
- Federal Scientific Clinical Center for Specialized Types of Medical Assistance and Medical Technologies for the Federal Medical and Biological Agency
| | - Alexander Zotov
- Federal Scientific Clinical Center for Specialized Types of Medical Assistance and Medical Technologies for the Federal Medical and Biological Agency
| | - Nikita Vachrushev
- Department of Fundamental and Applied Physiology, Russian National Research Medical University
| | - Dmitry Dragunov
- Scientific Research Institute of Healthcare Organization and Medical Management, Moscow, Russia
| | - Andrey Shim
- Department of Fundamental and Applied Physiology, Russian National Research Medical University
| | - Mitko Mladenov
- Department of Fundamental and Applied Physiology, Russian National Research Medical University.,Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, Skopje, Macedonia
| | - Andre Kamkin
- Department of Fundamental and Applied Physiology, Russian National Research Medical University
| |
Collapse
|
9
|
A Variant in COX-2 Gene Is Associated with Left Main Coronary Artery Disease and Clinical Outcomes of Coronary Artery Bypass Grafting. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2924731. [PMID: 28194409 PMCID: PMC5286485 DOI: 10.1155/2017/2924731] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 12/21/2016] [Indexed: 12/02/2022]
Abstract
As a particular severe phenotype of coronary artery disease (CAD), left main coronary artery disease (LMCAD) is heritable. Genetic variants related to prostaglandin metabolism are associated with LMCAD. Cyclooxygenase-2 (COX-2), a key synthase in prostaglandin pathways, displays high density in atherosclerotic lesions and promotes early atherosclerosis in CAD progression. We hypothesized that genetic variants in COX-2 gene contribute to LMCAD phenotype susceptibility compared to more peripheral coronary artery disease (MPCAD). In this study, we genotyped COX-2 rs5275, rs5277, and rs689466 of 1544 CAD patients undergoing coronary artery bypass grafting (CABG) and found that rs5277 C allele carriage was associated with LMCAD (adjusted OR: 1.590; 95% CI: 1.103~2.291; p = 0.013). Furtherly, long-term follow-up data suggested that rs5277 C allele carriage increased risk of major adverse cardiac and cerebrovascular events (MACCE) in the whole cohort (adjusted HR: 1.561; 95% CI: 1.025~2.377; p = 0.038) and LMCAD subgroup (adjusted HR: 2.014; 95% CI: 1.036~3.913; p = 0.039) but not in MPCAD subgroup (adjusted HR: 1.375; 95% CI: 0.791~2.392; p = 0.259). In conclusion, we demonstrate that COX-2 rs5277 C allele increases the risk of left main coronary artery lesion and is also correlated with poor prognosis of LMCAD patients with CABG therapy.
Collapse
|
10
|
Chen X, Chen X, Xu Y, Yang W, Wu N, Ye H, Yang JY, Hong Q, Xin Y, Yang MQ, Deng Y, Duan S. Association of six CpG-SNPs in the inflammation-related genes with coronary heart disease. Hum Genomics 2016; 10 Suppl 2:21. [PMID: 27461004 PMCID: PMC4965732 DOI: 10.1186/s40246-016-0067-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Background Chronic inflammation has been widely considered to be the major risk factor of coronary heart disease (CHD). The goal of our study was to explore the possible association with CHD for inflammation-related single nucleotide polymorphisms (SNPs) involved in cytosine-phosphate-guanine (CpG) dinucleotides. A total of 784 CHD patients and 739 non-CHD controls were recruited from Zhejiang Province, China. Using the Sequenom MassARRAY platform, we measured the genotypes of six inflammation-related CpG-SNPs, including IL1B rs16944, IL1R2 rs2071008, PLA2G7 rs9395208, FAM5C rs12732361, CD40 rs1800686, and CD36 rs2065666). Allele and genotype frequencies were compared between CHD and non-CHD individuals using the CLUMP22 software with 10,000 Monte Carlo simulations. Results Allelic tests showed that PLA2G7 rs9395208 and CD40 rs1800686 were significantly associated with CHD. Moreover, IL1B rs16944, PLA2G7 rs9395208, and CD40 rs1800686 were shown to be associated with CHD under the dominant model. Further gender-based subgroup tests showed that one SNP (CD40 rs1800686) and two SNPs (FAM5C rs12732361 and CD36 rs2065666) were associated with CHD in females and males, respectively. And the age-based subgroup tests indicated that PLA2G7 rs9395208, IL1B rs16944, and CD40 rs1800686 were associated with CHD among individuals younger than 55, younger than 65, and over 65, respectively. Conclusions In conclusion, all the six inflammation-related CpG-SNPs (rs16944, rs2071008, rs12732361, rs2065666, rs9395208, and rs1800686) were associated with CHD in the combined or subgroup tests, suggesting an important role of inflammation in the risk of CHD.
Collapse
Affiliation(s)
- Xiaomin Chen
- Cardiovascular Center of Ningbo First Hospital, Ningbo University, Ningbo, Zhejiang, 315010, China
| | - Xiaoying Chen
- School of Medicine, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Yan Xu
- School of Medicine, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - William Yang
- Texas Advanced Computing Center, University of Texas at Austin, 10100 Burnet Road (R8700), Austin, TX, 78758-4497, USA
| | - Nan Wu
- Cardiovascular Center of Ningbo First Hospital, Ningbo University, Ningbo, Zhejiang, 315010, China.,School of Medicine, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Huadan Ye
- School of Medicine, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jack Y Yang
- MidSouth Bioinformatics Center, Department of Information Science, George Washington Donaghey College of Engineering and Information Science, and Joint Bioinformatics Graduate Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, 2881 S. University Ave, Little Rock, AR, 72204, USA
| | - Qingxiao Hong
- School of Medicine, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Yanfei Xin
- Center of Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang, 310007, China
| | - Mary Qu Yang
- MidSouth Bioinformatics Center, Department of Information Science, George Washington Donaghey College of Engineering and Information Science, and Joint Bioinformatics Graduate Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, 2881 S. University Ave, Little Rock, AR, 72204, USA
| | - Youping Deng
- Medical College, Wuhan University of Science and Technology, Wuhan, 430064, China.,Department of Internal Medicine and Biochemistry, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Shiwei Duan
- School of Medicine, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|