1
|
Latif A, Azam S, Shahid N, Javed MR, Haider Z, Yasmeen A, Sadaqat S, Shad M, Husnain T, Rao AQ. Overexpression of the AGL42 gene in cotton delayed leaf senescence through downregulation of NAC transcription factors. Sci Rep 2022; 12:21093. [PMID: 36473939 PMCID: PMC9727159 DOI: 10.1038/s41598-022-25640-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Premature leaf senescence negatively influences the physiology and yield of cotton plants. The conserved IDLNL sequence in the C-terminal region of AGL42 MADS-box determines its repressor potential for the down regulation of senescence-related genes. To determine the delay in premature leaf senescence, Arabidopsis AGL42 gene was overexpressed in cotton plants. The absolute quantification of transgenic cotton plants revealed higher mRNA expression of AGL42 compared to that of the non-transgenic control. The spatial expression of GUS fused with AGL42 and the mRNA level was highest in the petals, abscission zone (flower and bud), 8 days post anthesis (DPA) fiber, fresh mature leaves, and senescenced leaves. The mRNA levels of different NAC senescence-promoting genes were significantly downregulated in AGL42 transgenic cotton lines than those in the non-transgenic control. The photosynthetic rate and chlorophyll content were higher in AGL42 transgenic cotton lines than those in the non-transgenic control. Fluorescence in situ hybridization of the AG3 transgenic cotton line revealed a fluorescent signal on chromosome 1 in the hemizygous form. Moreover, the average number of bolls in the transgenic cotton lines was significantly higher than that in the non-transgenic control because of the higher retention of floral buds and squares, which has the potential to improve cotton fiber yield.
Collapse
Affiliation(s)
- Ayesha Latif
- grid.11173.350000 0001 0670 519XCentre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Saira Azam
- grid.11173.350000 0001 0670 519XCentre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Naila Shahid
- grid.11173.350000 0001 0670 519XCentre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Muhammad R. Javed
- grid.411786.d0000 0004 0637 891XDepartment of Bioinformatics and Biotechnology, Government College University Faisalabad, (GCUF), Allama Iqbal Road, Faisalabad, 38000 Pakistan
| | - Zeshan Haider
- grid.411786.d0000 0004 0637 891XDepartment of Bioinformatics and Biotechnology, Government College University Faisalabad, (GCUF), Allama Iqbal Road, Faisalabad, 38000 Pakistan
| | - Aneela Yasmeen
- grid.11173.350000 0001 0670 519XCentre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Sahar Sadaqat
- grid.11173.350000 0001 0670 519XCentre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Mohsin Shad
- grid.11173.350000 0001 0670 519XCentre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Tayyab Husnain
- grid.11173.350000 0001 0670 519XCentre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Abdul Q. Rao
- grid.11173.350000 0001 0670 519XCentre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| |
Collapse
|
2
|
Li L, Wei Y, Liu Y, Xiang S, Zhang H, Shang Y. Identification of matB used as an endogenous reference gene for the qualitative and real-time quantitative polymerase chain reaction detection of Lentinus edodes. Food Sci Nutr 2022; 10:2550-2557. [PMID: 35959267 PMCID: PMC9361445 DOI: 10.1002/fsn3.2860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/23/2022] [Accepted: 03/17/2022] [Indexed: 11/24/2022] Open
Abstract
Lentinus edodes is a fungus with rich nutritional value and good medicinal value and has accordingly become a substitute for other expensive wild edible mushrooms. In this study, for the first time, the matB gene was selected as an endogenous reference gene of L. edodes and identified as the species-specific gene. The matB genes of L. edodes and 18 non-L. edodes species were determined by qualitative polymerase chain reaction (PCR), but no amplification was found in non-L. edodes species. In SYBR Green quantitative PCR analysis, the detection limit was as low as 16 pg/µl of DNA template. All of these experiments indicated that the matB gene is an ideal reference gene and can detect L. edodes material through qualitative and quantitative PCR assays. It also provides a convenient and accurate approach for the detection of L. edodes products and the adulteration in wild edible mushroom products.
Collapse
Affiliation(s)
- Ling Li
- Faculty of Food Science and EngineeringKunming University of Science and TechnologyKunmingChina
| | - Yuanmiao Wei
- Faculty of Food Science and EngineeringKunming University of Science and TechnologyKunmingChina
| | - Yao Liu
- Faculty of Food Science and EngineeringKunming University of Science and TechnologyKunmingChina
| | - Shuna Xiang
- Faculty of Food Science and EngineeringKunming University of Science and TechnologyKunmingChina
| | - Hanyue Zhang
- Faculty of Food Science and EngineeringKunming University of Science and TechnologyKunmingChina
| | - Ying Shang
- Faculty of Food Science and EngineeringKunming University of Science and TechnologyKunmingChina
| |
Collapse
|
3
|
Liu Y, Li L, Wei Y, Zhang H, Xiang S, Shang Y. A specific gene, TSA, used as endogenous reference gene for qualitative and real-time quantitative PCR detection of Termitomyces albuminosus. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Zhang Y, Wang S, Li H, Liu C, Mi F, Wang R, Mo M, Xu J. Evidence for Persistent Heteroplasmy and Ancient Recombination in the Mitochondrial Genomes of the Edible Yellow Chanterelles From Southwestern China and Europe. Front Microbiol 2021; 12:699598. [PMID: 34335532 PMCID: PMC8317506 DOI: 10.3389/fmicb.2021.699598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/23/2021] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial genes and genomes have patterns of inheritance that are distinctly different from those of nuclear genes and genomes. In nature, the mitochondrial genomes in eukaryotes are generally considered non-recombining and homoplasmic. If heteroplasmy and recombination exist, they are typically very limited in both space and time. Here we show that mitochondrial heteroplasmy and recombination may not be limited to a specific population nor exit only transiently in the basidiomycete Cantharellus cibarius and related species. These edible yellow chanterelles are an ecologically very important group of fungi and among the most prominent wild edible mushrooms in the Northern Hemisphere. At present, very little is known about the genetics and population biology of these fungia cross large geographical distances. Our study here analyzed a total of 363 specimens of edible yellow chanterelles from 24 geographic locations in Yunnan in southwestern China and six geographic locations in five countries in Europe. For each mushroom sample, we obtained the DNA sequences at two genes, one in the nuclear genome and one in the mitochondrial genome. Our analyses of the nuclear gene, translation elongation factor 1-alpha (tef-1) and the DNA barcode of C. cibarius and related species, suggested these samples belong to four known species and five potential new species. Interestingly, analyses of the mitochondrial ATP synthase subunit 6 (atp6) gene fragment revealed evidence of heteroplasmy in two geographic samples in Yunnan and recombination within the two new putative species in Yunnan. Specifically, all four possible haplotypes at two polymorphic nucleotide sites within the mitochondrial atp6 gene were found distributed across several geographic locations in Yunnan. Furthermore, these four haplotypes were broadly distributed across multiple phylogenetic clades constructed based on nuclear tef-1 sequences. Our results suggest that heteroplasmy and mitochondrial recombination might have happened repeatedly during the evolution of the yellow chanterelles. Together, our results suggest that the edible yellow chanterelles represent an excellent system from which to study the evolution of mitochondrial-nuclear genome relationships.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
| | - Shaojuan Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
- Qicai Yunnan Primary School Affiliated with Yunnan Normal University, Kunming, China
| | - Haixia Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Chunli Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
- Kunming Edible Fungi Institute of All-China Federation of Supply and Marketing Cooperatives, Kunming, China
| | - Fei Mi
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
- Research Institute of Nutrition and Food Science, Kunming Medical University, Kunming, China
| | - Ruirui Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Meizi Mo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Jianping Xu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
- Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
5
|
Ma X, Zhang L, Zhang L, Wang C, Guo X, Yang Y, Wang L, Li X, Ma N. Validation and identification of reference genes in Chinese hamster ovary cells for Fc-fusion protein production. Exp Biol Med (Maywood) 2020; 245:690-702. [PMID: 32216463 DOI: 10.1177/1535370220914058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
IMPACT STATEMENT In order to reveal potential genotype-phenotype relationship, RT-qPCR reactions are frequently applied which require validated and reliable reference genes. With the investigation on long-term passage and fed-batch cultivation of CHO cells producing an Fc-fusion protein, four new reference genes-Akr1a1, Gpx1, Aprt, and Rps16, were identified from 20 candidates with the aid of geNorm, NormFinder, BestKeeper, and ΔCt programs and methods. This article provided more verified options in reference gene selection in related research on CHO cells.
Collapse
Affiliation(s)
- Xiaonan Ma
- Wuya college of Innovation; College of life science and biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ling Zhang
- Wuya college of Innovation; College of life science and biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Luming Zhang
- Wuya college of Innovation; College of life science and biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chenglong Wang
- Wuya college of Innovation; College of life science and biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaorui Guo
- Wuya college of Innovation; College of life science and biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu Yang
- Wuya college of Innovation; College of life science and biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lin Wang
- Wuya college of Innovation; College of life science and biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiangru Li
- Wuya college of Innovation; College of life science and biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ningning Ma
- Wuya college of Innovation; College of life science and biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
6
|
Sforça DA, Vautrin S, Cardoso-Silva CB, Mancini MC, Romero-da Cruz MV, Pereira GDS, Conte M, Bellec A, Dahmer N, Fourment J, Rodde N, Van Sluys MA, Vicentini R, Garcia AAF, Forni-Martins ER, Carneiro MS, Hoffmann HP, Pinto LR, Landell MGDA, Vincentz M, Berges H, de Souza AP. Gene Duplication in the Sugarcane Genome: A Case Study of Allele Interactions and Evolutionary Patterns in Two Genic Regions. FRONTIERS IN PLANT SCIENCE 2019; 10:553. [PMID: 31134109 PMCID: PMC6514446 DOI: 10.3389/fpls.2019.00553] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/11/2019] [Indexed: 05/25/2023]
Abstract
Sugarcane (Saccharum spp.) is highly polyploid and aneuploid. Modern cultivars are derived from hybridization between S. officinarum and S. spontaneum. This combination results in a genome exhibiting variable ploidy among different loci, a huge genome size (~10 Gb) and a high content of repetitive regions. An approach using genomic, transcriptomic, and genetic mapping can improve our knowledge of the behavior of genetics in sugarcane. The hypothetical HP600 and Centromere Protein C (CENP-C) genes from sugarcane were used to elucidate the allelic expression and genomic and genetic behaviors of this complex polyploid. The physically linked side-by-side genes HP600 and CENP-C were found in two different homeologous chromosome groups with ploidies of eight and ten. The first region (Region01) was a Sorghum bicolor ortholog region with all haplotypes of HP600 and CENP-C expressed, but HP600 exhibited an unbalanced haplotype expression. The second region (Region02) was a scrambled sugarcane sequence formed from different noncollinear genes containing partial duplications of HP600 and CENP-C (paralogs). This duplication resulted in a non-expressed HP600 pseudogene and a recombined fusion version of CENP-C and the orthologous gene Sobic.003G299500 with at least two chimeric gene haplotypes expressed. It was also determined that it occurred before Saccharum genus formation and after the separation of sorghum and sugarcane. A linkage map was constructed using markers from nonduplicated Region01 and for the duplication (Region01 and Region02). We compare the physical and linkage maps, demonstrating the possibility of mapping markers located in duplicated regions with markers in nonduplicated region. Our results contribute directly to the improvement of linkage mapping in complex polyploids and improve the integration of physical and genetic data for sugarcane breeding programs. Thus, we describe the complexity involved in sugarcane genetics and genomics and allelic dynamics, which can be useful for understanding complex polyploid genomes.
Collapse
Affiliation(s)
| | - Sonia Vautrin
- Centre National de Ressources Genomiques Vegetales (CNRGV), Institut National de la Recherche Agronomique (INRA), Castanet Tolosan, France
| | | | | | | | | | - Mônica Conte
- Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Arnaud Bellec
- Centre National de Ressources Genomiques Vegetales (CNRGV), Institut National de la Recherche Agronomique (INRA), Castanet Tolosan, France
| | - Nair Dahmer
- Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Joelle Fourment
- Centre National de Ressources Genomiques Vegetales (CNRGV), Institut National de la Recherche Agronomique (INRA), Castanet Tolosan, France
| | - Nathalie Rodde
- Centre National de Ressources Genomiques Vegetales (CNRGV), Institut National de la Recherche Agronomique (INRA), Castanet Tolosan, France
| | | | | | | | | | | | - Hermann Paulo Hoffmann
- Centro de Ciências Agrárias, Universidade Federal de São Carlos (UFSCAR), Araras, Brazil
| | | | | | - Michel Vincentz
- Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Helene Berges
- Centre National de Ressources Genomiques Vegetales (CNRGV), Institut National de la Recherche Agronomique (INRA), Castanet Tolosan, France
| | | |
Collapse
|
7
|
Giraldo PA, Cogan NOI, Spangenberg GC, Smith KF, Shinozuka H. Development and Application of Droplet Digital PCR Tools for the Detection of Transgenes in Pastures and Pasture-Based Products. FRONTIERS IN PLANT SCIENCE 2019; 9:1923. [PMID: 30671074 PMCID: PMC6331530 DOI: 10.3389/fpls.2018.01923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 12/11/2018] [Indexed: 06/09/2023]
Abstract
Implementation of molecular biotechnology, such as transgenic technologies, in forage species can improve agricultural profitability through achievement of higher productivity, better use of resources such as soil nutrients, water, or light, and reduced environmental impact. Development of detection and quantification techniques for genetically modified plants are necessary to comply with traceability and labeling requirements prior to regulatory approval for release. Real-time PCR has been the standard method used for detection and quantification of genetically modified events, and droplet digital PCR is a recent alternative technology that offers a higher accuracy. Evaluation of both technologies was performed using a transgenic high-energy forage grass as a case study. Two methods for detection and quantification of the transgenic cassette, containing modified fructan biosynthesis genes, and a selectable marker gene, hygromycin B phosphotransferase used for transformation, were developed. Real-time PCR was assessed using two detection techniques, SYBR Green I and fluorescent probe-based methods. A range of different agricultural commodities were tested including fresh leaves, tillers, seeds, pollen, silage and hay, simulating a broad range of processed agricultural commodities that are relevant in the commercial use of genetically modified pastures. The real-time and droplet digital PCR methods were able to detect both exogenous constructs in all agricultural products. However, a higher sensitivity and repeatability in transgene detection was observed with the droplet digital PCR technology. Taking these results more broadly, it can be concluded that the droplet digital PCR technology provides the necessary resolution for quantitative analysis and detection, allowing absolute quantification of the target sequence at the required limits of detection across all jurisdictions globally. The information presented here provides guidance and resources for pasture-based biotechnology applications that are required to comply with traceability requirements.
Collapse
Affiliation(s)
- Paula A. Giraldo
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Noel O. I. Cogan
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - German C. Spangenberg
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
- Agriculture Victoria, Hamilton, VIC, Australia
| | - Kevin F. Smith
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
- Agriculture Victoria, Hamilton, VIC, Australia
| | - Hiroshi Shinozuka
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| |
Collapse
|
8
|
Zhou D, Liu X, Gao S, Guo J, Su Y, Ling H, Wang C, Li Z, Xu L, Que Y. Foreign cry1Ac gene integration and endogenous borer stress-related genes synergistically improve insect resistance in sugarcane. BMC PLANT BIOLOGY 2018; 18:342. [PMID: 30526526 PMCID: PMC6288918 DOI: 10.1186/s12870-018-1536-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 11/19/2018] [Indexed: 05/10/2023]
Abstract
BACKGROUND Sugarcane (Saccharum spp. hybrids) is considered the most globally important sugar-producing crop and raw material for biofuel. Insect attack is a major issue in sugarcane cultivation, resulting in yield losses and sucrose content reductions. Stem borer (Diatraea saccharalis F.) causes serious yield losses in sugarcane worldwide. However, insect-resistant germplasms for sugarcane are not available in any collections all over the world, and the molecular mechanism of insect resistance has not been elucidated. In this study, cry1Ac transgenic sugarcane lines were obtained and the biological characteristics and transgene dosage effect were investigated and a global exploration of gene expression by transcriptome analysis was performed. RESULTS The transgene copies of foreign cry1Ac were variable and random. The correlation between the cry1Ac protein and cry1Ac gene copies differed between the transgenic lines from FN15 and ROC22. The medium copy lines from FN15 showed a significant linear relationship, while ROC22 showed no definite dosage effect. The transgenic lines with medium copies of cry1Ac showed an elite phenotype. Transcriptome analysis by RNA sequencing indicated that up/down regulated differentially expressed genes were abundant among the cry1Ac sugarcane lines and the receptor variety. Foreign cry1Ac gene and endogenous borer stress-related genes may have a synergistic effect. Three lines, namely, A1, A5, and A6, were selected for their excellent stem borer resistance and phenotypic traits and are expected to be used directly as cultivars or crossing parents for sugarcane borer resistance breeding. CONCLUSIONS Cry1Ac gene integration dramatically improved sugarcane insect resistance. The elite transgenic offspring contained medium transgene copies. Foreign cry1Ac gene integration and endogenous borer stress-related genes may have a synergistic effect on sugarcane insect resistance improvement.
Collapse
Affiliation(s)
- Dinggang Zhou
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Fujian Agriculture and Forestry University, Ministry of Agriculture, Fuzhou, 350002 Fujian China
- Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-Polluted Soils, Hunan University of Science and Technology, School of Life Science, Xiangtan, 411201 Hunan China
| | - Xiaolan Liu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Fujian Agriculture and Forestry University, Ministry of Agriculture, Fuzhou, 350002 Fujian China
- Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-Polluted Soils, Hunan University of Science and Technology, School of Life Science, Xiangtan, 411201 Hunan China
| | - Shiwu Gao
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Fujian Agriculture and Forestry University, Ministry of Agriculture, Fuzhou, 350002 Fujian China
| | - Jinlong Guo
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Fujian Agriculture and Forestry University, Ministry of Agriculture, Fuzhou, 350002 Fujian China
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Fujian Agriculture and Forestry University, Ministry of Agriculture, Fuzhou, 350002 Fujian China
| | - Hui Ling
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Fujian Agriculture and Forestry University, Ministry of Agriculture, Fuzhou, 350002 Fujian China
| | - Chunfeng Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Fujian Agriculture and Forestry University, Ministry of Agriculture, Fuzhou, 350002 Fujian China
| | - Zhu Li
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Fujian Agriculture and Forestry University, Ministry of Agriculture, Fuzhou, 350002 Fujian China
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Fujian Agriculture and Forestry University, Ministry of Agriculture, Fuzhou, 350002 Fujian China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Fujian Agriculture and Forestry University, Ministry of Agriculture, Fuzhou, 350002 Fujian China
| |
Collapse
|
9
|
Snyman SJ, Komape DM, Khanyi H, van den Berg J, Cilliers D, Lloyd Evans D, Barnard S, Siebert SJ. Assessing the Likelihood of Gene Flow From Sugarcane ( Saccharum Hybrids) to Wild Relatives in South Africa. Front Bioeng Biotechnol 2018; 6:72. [PMID: 29930938 PMCID: PMC5999724 DOI: 10.3389/fbioe.2018.00072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/17/2018] [Indexed: 01/17/2023] Open
Abstract
Pre-commercialization studies on environmental biosafety of genetically modified (GM) crops are necessary to evaluate the potential for sexual hybridization with related plant species that occur in the release area. The aim of the study was a preliminary assessment of factors that may contribute to gene flow from sugarcane (Saccharum hybrids) to indigenous relatives in the sugarcane production regions of Mpumalanga and KwaZulu-Natal provinces, South Africa. In the first instance, an assessment of Saccharum wild relatives was conducted based on existing phylogenies and literature surveys. The prevalence, spatial overlap, proximity, distribution potential, and flowering times of wild relatives in sugarcane production regions based on the above, and on herbaria records and field surveys were conducted for Imperata, Sorghum, Cleistachne, and Miscanthidium species. Eleven species were selected for spatial analyses based on their presence within the sugarcane cultivation region: four species in the Saccharinae and seven in the Sorghinae. Secondly, fragments of the nuclear internal transcribed spacer (ITS) regions of the 5.8s ribosomal gene and two chloroplast genes, ribulose-bisphosphate carboxylase (rbcL), and maturase K (matK) were sequenced or assembled from short read data to confirm relatedness between Saccharum hybrids and its wild relatives. Phylogenetic analyses of the ITS cassette showed that the closest wild relative species to commercial sugarcane were Miscanthidium capense, Miscanthidium junceum, and Narenga porphyrocoma. Sorghum was found to be more distantly related to Saccharum than previously described. Based on the phylogeny described in our study, the only species to highlight in terms of evolutionary divergence times from Saccharum are those within the genus Miscanthidium, most especially M. capense, and M. junceum which are only 3 million years divergent from Saccharum. Field assessment of pollen viability of 13 commercial sugarcane cultivars using two stains, iodine potassium iodide (IKI) and triphenyl tetrazolium chloride, showed decreasing pollen viability (from 85 to 0%) from the north to the south eastern regions of the study area. Future work will include other aspects influencing gene flow such as cytological compatibility and introgression between sugarcane and Miscanthidium species.
Collapse
Affiliation(s)
- Sandy J Snyman
- Crop Biology Resource Centre, South African Sugarcane Research Institute, Mount Edgecombe, South Africa.,Department of Biology, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| | - Dennis M Komape
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Hlobisile Khanyi
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Johnnie van den Berg
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Dirk Cilliers
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Dyfed Lloyd Evans
- Crop Biology Resource Centre, South African Sugarcane Research Institute, Mount Edgecombe, South Africa.,Department of Biology, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa.,BeauSci Ltd., Waterbeach, Cambridge, United Kingdom
| | - Sandra Barnard
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Stefan J Siebert
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
10
|
Gao S, Yang Y, Xu L, Guo J, Su Y, Wu Q, Wang C, Que Y. Particle Bombardment of the cry2A Gene Cassette Induces Stem Borer Resistance in Sugarcane. Int J Mol Sci 2018; 19:E1692. [PMID: 29882818 PMCID: PMC6032331 DOI: 10.3390/ijms19061692] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/31/2018] [Accepted: 06/04/2018] [Indexed: 11/21/2022] Open
Abstract
Sugarcane borer is the most common and harmful pest in Chinese sugarcane fields, and can cause damage to the whole plant during the entire growing season. To improve borer resistance in sugarcane, we constructed a plant expression vector pGcry2A0229 with the bar gene as the marker and the cry2A gene as the target, and introduced it into embryogenic calli of most widely cultivated sugarcane cultivar ROC22 by particle bombardment. After screening with phosphinothricin in vitro and Basta spray, 21 resistance-regenerated plants were obtained, and 10 positive transgenic lines harboring the cry2A gene were further confirmed by conventional PCR detection. Real-time quantitative PCR (RT-qPCR) analysis showed that the copy number of the cry2A gene varied among different transgenic lines but did not exceed four copies. Quantitative ELISA analysis showed that there was no linear relationship with copy number but negatively correlated with the percentage of borer-infested plants. The analysis of industrial and agronomic traits showed that the theoretical sugar yields of transgenic lines TR-4 and TR-10 were slightly lower than that of the control in both plant cane and ratoon cane; nevertheless, TR-4 and TR-10 lines exhibited markedly lower in frequency of borer-infested plants in plant cane and in the ratoon cane compared to the control. Our results indicate that the introduction of the cry2A gene via bombardment produces transgenic lines with obviously increased stem borer resistance and comparable sugar yield, providing a practical value in direct commercial cultivation and crossbreeding for ROC22 has been used as the most popular elite genitor in various breeding programs in China.
Collapse
Affiliation(s)
- Shiwu Gao
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Key Laboratory of Crop Genetics and Breeding and Comprehensive Utilization, College of Crop Science, Fujian Agriculture and Forestry University, Ministry of Education, Fuzhou 350002, China.
| | - Yingying Yang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Key Laboratory of Crop Genetics and Breeding and Comprehensive Utilization, College of Crop Science, Fujian Agriculture and Forestry University, Ministry of Education, Fuzhou 350002, China.
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Key Laboratory of Crop Genetics and Breeding and Comprehensive Utilization, College of Crop Science, Fujian Agriculture and Forestry University, Ministry of Education, Fuzhou 350002, China.
| | - Jinlong Guo
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Key Laboratory of Crop Genetics and Breeding and Comprehensive Utilization, College of Crop Science, Fujian Agriculture and Forestry University, Ministry of Education, Fuzhou 350002, China.
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Key Laboratory of Crop Genetics and Breeding and Comprehensive Utilization, College of Crop Science, Fujian Agriculture and Forestry University, Ministry of Education, Fuzhou 350002, China.
| | - Qibin Wu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Key Laboratory of Crop Genetics and Breeding and Comprehensive Utilization, College of Crop Science, Fujian Agriculture and Forestry University, Ministry of Education, Fuzhou 350002, China.
| | - Chunfeng Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Key Laboratory of Crop Genetics and Breeding and Comprehensive Utilization, College of Crop Science, Fujian Agriculture and Forestry University, Ministry of Education, Fuzhou 350002, China.
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Key Laboratory of Crop Genetics and Breeding and Comprehensive Utilization, College of Crop Science, Fujian Agriculture and Forestry University, Ministry of Education, Fuzhou 350002, China.
| |
Collapse
|
11
|
Belide S, Vanhercke T, Petrie JR, Singh SP. Robust genetic transformation of sorghum ( Sorghum bicolor L.) using differentiating embryogenic callus induced from immature embryos. PLANT METHODS 2017; 13:109. [PMID: 29234458 PMCID: PMC5723044 DOI: 10.1186/s13007-017-0260-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/28/2017] [Indexed: 05/23/2023]
Abstract
BACKGROUND Sorghum (Sorghum bicolor L.) is one of the world's most important cereal crops grown for multiple applications and has been identified as a potential biofuel crop. Despite several decades of study, sorghum has been widely considered as a recalcitrant major crop for transformation due to accumulation of phenolic compounds, lack of model genotypes, low regeneration frequency and loss of regeneration potential through sub-cultures. Among different explants used for genetic transformation of sorghum, immature embryos are ideal over other explants. However, the continuous supply of quality immature embryos for transformation is labour intensive and expensive. In addition, transformation efficiencies are also influenced by environmental conditions (light and temperature). Despite these challenges, immature embryos remain the predominant choice because of their success rate and also due to non-availability of other dependable explants without compromising the transformation efficiency. RESULTS We report here a robust genetic transformation method for sorghum (Tx430) using differentiating embryogenic calli (DEC) with nodular structures induced from immature embryos and maintained for more than a year without losing regeneration potential on modified MS media. The addition of lipoic acid (LA) to callus induction media along with optimized growth regulators increased callus induction frequency from 61.3 ± 3.2 to 79 ± 6.5% from immature embryos (1.5-2.0 mm in length) isolated 12-15 days after pollination. Similarly, the regeneration efficiency and the number of shoots from DEC tissue was enhanced by LA. The optimized regeneration system in combination with particle bombardment resulted in an average transformation efficiency (TE) of 27.2 or 46.6% based on the selection strategy, 25% to twofold higher TE than published reports in Tx430. Up to 100% putative transgenic shoots were positive for npt-II by PCR and 48% of events had < 3 copies of transgenes as determined by digital droplet PCR. Reproducibility of this method was demonstrated by generating ~ 800 transgenic plants using 10 different gene constructs. CONCLUSIONS This protocol demonstrates significant improvements in both efficiency and ease of use over existing sorghum transformation methods using PDS, also enables quick hypothesis testing in the production of various high value products in sorghum.
Collapse
|
12
|
Sun Y, Joyce PA. Application of droplet digital PCR to determine copy number of endogenous genes and transgenes in sugarcane. PLANT CELL REPORTS 2017; 36:1775-1783. [PMID: 28849385 DOI: 10.1007/s00299-017-2193-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/02/2017] [Indexed: 05/25/2023]
Abstract
Droplet digital PCR combined with the low copy ACT allele as endogenous reference gene, makes accurate and rapid estimation of gene copy number in Q208 A and Q240 A attainable. Sugarcane is an important cultivated crop with both high polyploidy and aneuploidy in its 10 Gb genome. Without a known copy number reference gene, it is difficult to accurately estimate the copy number of any gene of interest by PCR-based methods in sugarcane. Recently, a new technology, known as droplet digital PCR (ddPCR) has been developed which can measure the absolute amount of the target DNA in a given sample. In this study, we deduced the true copy number of three endogenous genes, actin depolymerizing factor (ADF), adenine phosphoribosyltransferase (APRT) and actin (ACT) in three Australian sugarcane varieties, using ddPCR by comparing the absolute amounts of the above genes with a transgene of known copy number. A single copy of the ACT allele was detected in Q208 A , two copies in Q240 A , but was absent in Q117. Copy number variation was also observed for both APRT and ADF, and ranged from 9 to 11 in the three tested varieties. Using this newly developed ddPCR method, transgene copy number was successfully determined in 19 transgenic Q208 A and Q240 A events using ACT as the reference endogenous gene. Our study demonstrates that ddPCR can be used for high-throughput genetic analysis and is a quick, accurate and reliable alternative method for gene copy number determination in sugarcane. This discovered ACT allele would be a suitable endogenous reference gene for future gene copy number variation and dosage studies of functional genes in Q208 A and Q240 A .
Collapse
Affiliation(s)
- Yue Sun
- Sugar Research Australia, 50 Meiers Road, Indooroopilly, QLD, 4068, Australia.
| | - Priya Aiyar Joyce
- Sugar Research Australia, 50 Meiers Road, Indooroopilly, QLD, 4068, Australia
| |
Collapse
|
13
|
Identification and validation of superior reference gene for gene expression normalization via RT-qPCR in staminate and pistillate flowers of Jatropha curcas - A biodiesel plant. PLoS One 2017; 12:e0172460. [PMID: 28234941 PMCID: PMC5325260 DOI: 10.1371/journal.pone.0172460] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 02/06/2017] [Indexed: 11/19/2022] Open
Abstract
Physic nut (Jatropha curcas L) seed oil is a natural resource for the alternative production of fossil fuel. Seed oil production is mainly depended on seed yield, which was restricted by the low ratio of staminate flowers to pistillate flowers. Further, the mechanism of physic nut flower sex differentiation has not been fully understood yet. Quantitative Real Time-Polymerase Chain Reaction is a reliable and widely used technique to quantify the gene expression pattern in biological samples. However, for accuracy of qRT-PCR, appropriate reference gene is highly desirable to quantify the target gene level. Hence, the present study was aimed to identify the stable reference genes in staminate and pistillate flowers of J. curcas. In this study, 10 candidate reference genes were selected and evaluated for their expression stability in staminate and pistillate flowers, and their stability was validated by five different algorithms (ΔCt, BestKeeper, NormFinder, GeNorm and RefFinder). Resulting, TUB and EF found to be the two most stably expressed reference for staminate flower; while GAPDH1 and EF found to be the most stably expressed reference gene for pistillate flowers. Finally, RT-qPCR assays of target gene AGAMOUS using the identified most stable reference genes confirmed the reliability of selected reference genes in different stages of flower development. AGAMOUS gene expression levels at different stages were further proved by gene copy number analysis. Therefore, the present study provides guidance for selecting appropriate reference genes for analyzing the expression pattern of floral developmental genes in staminate and pistillate flowers of J. curcas.
Collapse
|
14
|
Li J, Han X, Wang C, Qi W, Zhang W, Tang L, Zhao X. Validation of Suitable Reference Genes for RT-qPCR Data in Achyranthes bidentata Blume under Different Experimental Conditions. FRONTIERS IN PLANT SCIENCE 2017; 8:776. [PMID: 28559905 PMCID: PMC5432617 DOI: 10.3389/fpls.2017.00776] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/25/2017] [Indexed: 05/13/2023]
Abstract
Real-time quantitative polymerase chain reaction (RT-qPCR) is a sensitive technique for gene expression studies. However, choosing the appropriate reference gene is essential to obtain reliable results for RT-qPCR assays. In the present work, the expression of eight candidate reference genes, EF1-α (elongation factor 1-α), GAPDH (glyceraldehyde 3-phosphate dehydrogenase), UBC (ubiquitin-conjugating enzyme), UBQ (polyubiquitin), ACT (actin), β-TUB (β-tubulin), APT1 (adenine phosphoribosyltransferase 1), and 18S rRNA (18S ribosomal RNA), was evaluated in Achyranthes bidentata samples using two algorithms, geNorm and NormFinder. The samples were classified into groups according to developmental stages, various tissues, stresses (cold, heat, drought, NaCl), and hormone treatments (MeJA, IBA, SA). Suitable combination of reference genes for RT-qPCR normalization should be applied according to different experimental conditions. In this study, EF1-α, UBC, and ACT genes were verified as the suitable reference genes across all tested samples. To validate the suitability of the reference genes, we evaluated the relative expression of CAS, which is a gene that may be involved in phytosterol synthesis. Our results provide the foundation for gene expression analysis in A. bidentata and other species of Amaranthaceae.
Collapse
Affiliation(s)
- Jinting Li
- College of Life Sciences, Henan Normal UniversityXinxiang, China
- Engineering Technology Research Center of Nursing and Utilization of Genuine Chinese Crude DrugsXinxiang, China
- *Correspondence: Jinting Li,
| | - Xueping Han
- College of Life Sciences, Henan Normal UniversityXinxiang, China
| | - Can Wang
- College of Life Sciences, Henan Normal UniversityXinxiang, China
| | - Wanzhen Qi
- College of Life Sciences, Henan Normal UniversityXinxiang, China
| | - Weiyu Zhang
- College of Life Sciences, Henan Normal UniversityXinxiang, China
| | - Li Tang
- College of Life Sciences, Henan Normal UniversityXinxiang, China
| | - Xiting Zhao
- College of Life Sciences, Henan Normal UniversityXinxiang, China
- Engineering Technology Research Center of Nursing and Utilization of Genuine Chinese Crude DrugsXinxiang, China
| |
Collapse
|
15
|
Xu X, Peng C, Wang X, Chen X, Wang Q, Xu J. Comparison of droplet digital PCR with quantitative real-time PCR for determination of zygosity in transgenic maize. Transgenic Res 2016; 25:855-864. [PMID: 27632191 DOI: 10.1007/s11248-016-9982-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 08/29/2016] [Indexed: 11/29/2022]
Abstract
This study evaluated the applicability of droplet digital PCR (ddPCR) as a tool for maize zygosity determination using quantitative real-time PCR (qPCR) as a reference technology. Quantitative real-time PCR is commonly used to determine transgene copy number or GMO zygosity characterization. However, its effectiveness is based on identical reaction efficiencies for the transgene and the endogenous reference gene. Additionally, a calibrator sample should be utilized for accuracy. Droplet digital PCR is a DNA molecule counting technique that directly counts the absolute number of target and reference DNA molecules in a sample, independent of assay efficiency or external calibrators. The zygosity of the transgene can be easily determined using the ratio of the quantity of the target gene to the reference single copy endogenous gene. In this study, both the qPCR and ddPCR methods were used to determine insect-resistant transgenic maize IE034 zygosity. Both methods performed well, but the ddPCR method was more convenient because of its absolute quantification property.
Collapse
Affiliation(s)
- Xiaoli Xu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Cheng Peng
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiaofu Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiaoyun Chen
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Qiang Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Junfeng Xu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
16
|
Gao S, Yang Y, Wang C, Guo J, Zhou D, Wu Q, Su Y, Xu L, Que Y. Transgenic Sugarcane with a cry1Ac Gene Exhibited Better Phenotypic Traits and Enhanced Resistance against Sugarcane Borer. PLoS One 2016; 11:e0153929. [PMID: 27093437 PMCID: PMC4836700 DOI: 10.1371/journal.pone.0153929] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/06/2016] [Indexed: 11/19/2022] Open
Abstract
We developed sugarcane plants with improved resistance to the sugarcane borer, Diatraea saccharalis (F). An expression vector pGcry1Ac0229, harboring the cry1Ac gene and the selectable marker gene, bar, was constructed. This construct was introduced into the sugarcane cultivar FN15 by particle bombardment. Transformed plantlets were identified after selection with Phosphinothricin (PPT) and Basta. Plantlets were then screened by PCR based on the presence of cry1Ac and 14 cry1Ac positive plantlets were identified. Real-time quantitative PCR (RT-qPCR) revealed that the copy number of cry1Ac gene in the transgenic lines varied from 1 to 148. ELISA analysis showed that Cry1Ac protein levels in 7 transgenic lines ranged from 0.85 μg/FWg to 70.92 μg/FWg in leaves and 0.04 μg/FWg to 7.22 μg/FWg in stems, and negatively correlated to the rate of insect damage that ranged from 36.67% to 13.33%, respectively. Agronomic traits of six transgenic sugarcane lines with medium copy numbers were similar to the non-transgenic parental line. However, phenotype was poor in lines with high or low copy numbers. Compared to the non-transgenic control plants, all transgenic lines with medium copy numbers had relatively equal or lower sucrose yield and significantly improved sugarcane borer resistance, which lowered susceptibility to damage by insects. This suggests that the transgenic sugarcane lines harboring medium copy numbers of the cry1Ac gene may have significantly higher resistance to sugarcane borer but the sugarcane yield in these lines is similar to the non-transgenic control thus making them superior to the control lines.
Collapse
Affiliation(s)
- Shiwu Gao
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Yingying Yang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Chunfeng Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Jinlong Guo
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Dinggang Zhou
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Qibin Wu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- * E-mail: (LX); (YQ)
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- * E-mail: (LX); (YQ)
| |
Collapse
|
17
|
Zhou D, Wang C, Li Z, Chen Y, Gao S, Guo J, Lu W, Su Y, Xu L, Que Y. Detection of Bar Transgenic Sugarcane with a Rapid and Visual Loop-Mediated Isothermal Amplification Assay. FRONTIERS IN PLANT SCIENCE 2016; 7:279. [PMID: 27014303 PMCID: PMC4782128 DOI: 10.3389/fpls.2016.00279] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/21/2016] [Indexed: 06/05/2023]
Abstract
Genetic engineering offers an attractive alternative in sugarcane breeding for increasing cane and sugar yields as well as disease and insect resistance. Bar transgenic sugarcane employing the herbicide tolerance is a useful agronomical trait in weed control. In this study, a loop-mediated isothermal amplification (LAMP) assay for rapid detection of the bar gene in transgenic sugarcane has been developed and evaluated. A set of six primers was designed for LAMP-based amplification of the bar gene. The LAMP reaction conditions were optimized as follows: 5.25 mM of Mg(2+), 6:1 ratio of inner vs. outer primer, and 6.0 U of Bst DNA polymerase in a reaction volume of 25.0 μL. The detection limit of the recombinant plasmid 1Ac0229 was as low as 10 copies in the developed LAMP, which was 10-fold higher sensitive than that of conventional PCR. In 100 putative transgenic lines, the bar gene was detected in 100/100 cases (100%) by LAMP and 97/100 cases (97%) by conventional PCR, respectively. In conclusion, the developed LAMP assay is visual, rapid, sensitive, reliable, and cost-effective for detection of the bar specific transgenic sugarcane.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Fujian Agriculture and Forestry University, Ministry of AgricultureFuzhou, China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Fujian Agriculture and Forestry University, Ministry of AgricultureFuzhou, China
| |
Collapse
|
18
|
He Y, Yan H, Hua W, Huang Y, Wang Z. Selection and Validation of Reference Genes for Quantitative Real-time PCR in Gentiana macrophylla. FRONTIERS IN PLANT SCIENCE 2016; 7:945. [PMID: 27446172 PMCID: PMC4925707 DOI: 10.3389/fpls.2016.00945] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/14/2016] [Indexed: 05/03/2023]
Abstract
Real time quantitative PCR (RT-qPCR or qPCR) has been extensively applied for analyzing gene expression because of its accuracy, sensitivity, and high throughput. However, the unsuitable choice of reference gene(s) can lead to a misinterpretation of results. We evaluated the stability of 10 candidates - five traditional housekeeping genes (UBC21, GAPC2, EF-1α4, UBQ10, and UBC10) and five novel genes (SAND1, FBOX, PTB1, ARP, and Expressed1) - using the transcriptome data of Gentiana macrophylla. Common statistical algorithms ΔC t, GeNorm, NormFinder, and BestKeeper were run with samples collected from plants under various experimental conditions. For normalizing expression levels from tissues at different developmental stages, GAPC2 and UBC21 had the highest rankings. Both SAND1 and GAPC2 proved to be the optimal reference genes for roots from plants exposed to abiotic stresses while EF-1α4 and SAND1 were optimal when examining expression data from the leaves of stressed plants. Based on a comprehensive ranking of stability under different experimental conditions, we recommend that SAND1 and EF-1α4 are the most suitable overall. In this study, to find a suitable reference gene and its real-time PCR assay for G. macrophylla DNA content quantification, we evaluated three target genes including WRKY30, G10H, and SLS, through qualitative and absolute quantitative PCR with leaves under elicitors stressed experimental conditions. Arbitrary use of reference genes without previous evaluation can lead to a misinterpretation of the data. Our results will benefit future research on the expression of genes related to secoiridoid biosynthesis in this species under different experimental conditions.
Collapse
Affiliation(s)
- Yihan He
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal UniversityXi’an, China
- School of Geography and Life Science, Qinghai Normal UniversityXining, China
| | - Hailing Yan
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal UniversityXi’an, China
| | - Wenping Hua
- Department of Life Sciences, Shaanxi XueQian Normal UniversityXi’an, China
| | - Yaya Huang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal UniversityXi’an, China
| | - Zhezhi Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal UniversityXi’an, China
- *Correspondence: Zhezhi Wang,
| |
Collapse
|
19
|
Guo J, Gao S, Lin Q, Wang H, Que Y, Xu L. Transgenic sugarcane resistant to Sorghum mosaic virus based on coat protein gene silencing by RNA interference. BIOMED RESEARCH INTERNATIONAL 2015; 2015:861907. [PMID: 25685813 PMCID: PMC4317601 DOI: 10.1155/2015/861907] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 07/30/2014] [Accepted: 08/21/2014] [Indexed: 11/18/2022]
Abstract
As one of the critical diseases of sugarcane, sugarcane mosaic disease can lead to serious decline in stalk yield and sucrose content. It is mainly caused by Potyvirus sugarcane mosaic virus (SCMV) and/or Sorghum mosaic virus (SrMV), with additional differences in viral strains. RNA interference (RNAi) is a novel strategy for producing viral resistant plants. In this study, based on multiple sequence alignment conducted on genomic sequences of different strains and isolates of SrMV, the conserved region of coat protein (CP) genes was selected as the target gene and the interference sequence with size of 423 bp in length was obtained through PCR amplification. The RNAi vector pGII00-HACP with an expression cassette containing both hairpin interference sequence and cp4-epsps herbicide-tolerant gene was transferred to sugarcane cultivar ROC22 via Agrobacterium-mediated transformation. After herbicide screening, PCR molecular identification, and artificial inoculation challenge, anti-SrMV positive transgenic lines were successfully obtained. SrMV resistance rate of the transgenic lines with the interference sequence was 87.5% based on SrMV challenge by artificial inoculation. The genetically modified SrMV-resistant lines of cultivar ROC22 provide resistant germplasm for breeding lines and can also serve as resistant lines having the same genetic background for study of resistance mechanisms.
Collapse
Affiliation(s)
- Jinlong Guo
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- National Research and Development Center for Sugarcane Industry Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shiwu Gao
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- National Research and Development Center for Sugarcane Industry Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qinliang Lin
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- National Research and Development Center for Sugarcane Industry Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hengbo Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- National Research and Development Center for Sugarcane Industry Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- National Research and Development Center for Sugarcane Industry Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- National Research and Development Center for Sugarcane Industry Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|