1
|
Pai V, Singh BN, Singh AK. Insights into Advances and Applications of Biomaterials for Nerve Tissue Injuries and Neurodegenerative Disorders. Macromol Biosci 2024; 24:e2400150. [PMID: 39348168 DOI: 10.1002/mabi.202400150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 09/12/2024] [Indexed: 10/01/2024]
Abstract
The incidence of nerve tissue injuries, such as peripheral nerve injury, spinal cord injury, traumatic brain injury, and various neurodegenerative diseases (NDs), is continuously increasing because of stress, physical and chemical trauma, and the aging population worldwide. Restoration of the damaged nervous system is challenging because of its structural and functional complexity and limited regenerative ability. Additionally, there is no cure available for NDs except for medications that provide symptomatic relief. Stem cells offer an alternative approach for promoting damage repair, but their efficacy is limited by a compromised survival rate and neurogenesis process. To address these challenges, neural tissue engineering has emerged as a promising strategy in which stem cells are seeded or encapsulated within a suitable biomaterial construct, increasing cell survival and neurogenesis. Numerous biomaterials are utilized to create different types of constructs for this purpose. Researchers are trying to develop ideal scaffolds that combine biomaterials, cells, and molecules that exactly mimic the biological and mechanical properties of the tissue to achieve functional recovery associated with neurological dysfunction. This review focuses on exploring the development and applications of different biomaterials for their potential use in the diagnosis, therapy, nerve tissue regeneration, and treatment of neurological disorders.
Collapse
Affiliation(s)
- Varsha Pai
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, 576 104, India
| | - Bhisham Narayan Singh
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576 104, India
| | - Abhishek Kumar Singh
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, 576 104, India
| |
Collapse
|
2
|
Bruno A, Milillo C, Anaclerio F, Buccolini C, Dell’Elice A, Angilletta I, Gatta M, Ballerini P, Antonucci I. Perinatal Tissue-Derived Stem Cells: An Emerging Therapeutic Strategy for Challenging Neurodegenerative Diseases. Int J Mol Sci 2024; 25:976. [PMID: 38256050 PMCID: PMC10815412 DOI: 10.3390/ijms25020976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Over the past 20 years, stem cell therapy has been considered a promising option for treating numerous disorders, in particular, neurodegenerative disorders. Stem cells exert neuroprotective and neurodegenerative benefits through different mechanisms, such as the secretion of neurotrophic factors, cell replacement, the activation of endogenous stem cells, and decreased neuroinflammation. Several sources of stem cells have been proposed for transplantation and the restoration of damaged tissue. Over recent decades, intensive research has focused on gestational stem cells considered a novel resource for cell transplantation therapy. The present review provides an update on the recent preclinical/clinical applications of gestational stem cells for the treatment of protein-misfolding diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS). However, further studies should be encouraged to translate this promising therapeutic approach into the clinical setting.
Collapse
Affiliation(s)
- Annalisa Bruno
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Innovative Technologies in Medicine & Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Cristina Milillo
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Federico Anaclerio
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Carlotta Buccolini
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Anastasia Dell’Elice
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Ilaria Angilletta
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Marco Gatta
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Innovative Technologies in Medicine & Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Patrizia Ballerini
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Innovative Technologies in Medicine & Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Ivana Antonucci
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
3
|
Wong FSY, Tsang KK, Chan BP, Lo ACY. Both non-coated and polyelectrolytically-coated intraocular collagen-alginate composite gels enhanced photoreceptor survival in retinal degeneration. Biomaterials 2023; 293:121948. [PMID: 36516686 DOI: 10.1016/j.biomaterials.2022.121948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/09/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Treatments of vision-threatening retinal diseases are often hampered by drug delivery difficulties. Polyelectrolytically-coated alginate encapsulated-cell therapy (ECT) systems have shown therapeutic efficacy through prolonged in vivo drug delivery but still face various biocompatibility, viability, drug delivery and mechanical stability issues in clinical trials. Here, novel, injectable alginate-poly-l-lysine (AP)-coated composite alginate-collagen (CAC) ECT gels were developed for sustained ocular drug delivery, and their long-term performance was compared with non-coated CAC ECT gels. All optimised AP-coated gels (AP1- and AP5.5-CAC ECT: 2 mg/ml collagen, 1.5% high molecular weight alginate, 50,000 cells/gel, with 0.01% or 0.05% poly-l-lysine coating for 5 min, followed by 0.15% alginate coating) and non-coated gels showed effective cell proliferation control, cell viability support and continuous delivery of bioactive glial cell-derived neurotrophic factor (GDNF) with no significant gel degradation in vitro and in rat vitreous. Most importantly, intravitreally injected gels demonstrated therapeutic efficacy in Royal College of Surgeons rats with retinal degeneration, resulting in reduced photoreceptor apoptosis and retinal function loss. At 6 months post-implantation, no host-tissue attachment or ingrowth was detected on the retrieved gels. Non-coated gels were mechanically more stable than AP5.5-coated ones under the current cell loading. This study demonstrated that both coated and non-coated ECT gels can serve as well-controlled, sustained drug delivery platforms for treating posterior eye diseases without immunosuppression.
Collapse
Affiliation(s)
- Francisca Siu Yin Wong
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Ken Kin Tsang
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Barbara Pui Chan
- Tissue Engineering Laboratory, Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong, China
| | - Amy Cheuk Yin Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
4
|
Surface Modified Polymeric Nanofibers in Tissue Engineering and Regenerative Medicine. ADVANCES IN POLYMER SCIENCE 2023. [DOI: 10.1007/12_2022_143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
5
|
Lai BQ, Zeng X, Han WT, Che MT, Ding Y, Li G, Zeng YS. Stem cell-derived neuronal relay strategies and functional electrical stimulation for treatment of spinal cord injury. Biomaterials 2021; 279:121211. [PMID: 34710795 DOI: 10.1016/j.biomaterials.2021.121211] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 10/09/2021] [Accepted: 10/20/2021] [Indexed: 01/06/2023]
Abstract
The inability of adult mammals to recover function lost after severe spinal cord injury (SCI) has been known for millennia and is mainly attributed to a failure of brain-derived nerve fiber regeneration across the lesion. Potential approaches to re-establishing locomotor function rely on neuronal relays to reconnect the segregated neural networks of the spinal cord. Intense research over the past 30 years has focused on endogenous and exogenous neuronal relays, but progress has been slow and the results often controversial. Treatments with stem cell-derived neuronal relays alone or together with functional electrical stimulation offer the possibility of improved repair of neuronal networks. In this review, we focus on approaches to recovery of motor function in paralyzed patients after severe SCI based on novel therapies such as implantation of stem cell-derived neuronal relays and functional electrical stimulation. Recent research progress offers hope that SCI patients will one day be able to recover motor function and sensory perception.
Collapse
Affiliation(s)
- Bi-Qin Lai
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Xiang Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Wei-Tao Han
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ming-Tian Che
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Ying Ding
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ge Li
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Yuan-Shan Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China; Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, 510120, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan, School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
6
|
Carvalho IC, Mansur HS, Leonel AG, Mansur AAP, Lobato ZIP. Soft matter polysaccharide-based hydrogels as versatile bioengineered platforms for brain tissue repair and regeneration. Int J Biol Macromol 2021; 182:1091-1111. [PMID: 33892028 DOI: 10.1016/j.ijbiomac.2021.04.116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/12/2021] [Accepted: 04/17/2021] [Indexed: 01/08/2023]
Abstract
Acute or chronic brain injuries promote deaths and the life-long debilitating neurological status where, despite advances in therapeutic strategies, clinical outcome hardly achieves total patient recovery. In recent decades, brain tissue engineering emerged as an encouraging area of research for helping in damaged central nervous system (CNS) recovery. Polysaccharides are abundant naturally occurring biomacromolecules with a great potential enhancement of advanced technologies in brain tissue repair and regeneration (BTRR). Besides carrying rich biological information, polysaccharides can interact and communicate with biomolecules, including glycosaminoglycans present in cell membranes and many signaling moieties, growth factors, chemokines, and axon guidance molecules. This review includes a comprehensive investigation of the current progress on designing and developing polysaccharide-based soft matter biomaterials for BTRR. Although few interesting reviews concerning BTRR have been reported, this is the first report specifically focusing on covering multiple polysaccharides and polysaccharide-based functionalized biomacromolecules in this emerging and intriguing field of multidisciplinary knowledge. This review aims to cover the state of art challenges and prospects of this fascinating field while presenting the richness of possibilities of using these natural biomacromolecules for advanced biomaterials in prospective neural tissue engineering applications.
Collapse
Affiliation(s)
- Isadora C Carvalho
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627 Belo Horizonte/M.G., Brazil
| | - Herman S Mansur
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627 Belo Horizonte/M.G., Brazil.
| | - Alice G Leonel
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627 Belo Horizonte/M.G., Brazil
| | - Alexandra A P Mansur
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627 Belo Horizonte/M.G., Brazil
| | - Zelia I P Lobato
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais - UFMG, Brazil
| |
Collapse
|
7
|
Saghazadeh A, Rezaei N. Biosensing surfaces and therapeutic biomaterials for the central nervous system in COVID-19. EMERGENT MATERIALS 2021; 4:293-312. [PMID: 33718777 PMCID: PMC7944718 DOI: 10.1007/s42247-021-00192-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/17/2021] [Indexed: 05/02/2023]
Abstract
COVID-19 can affect the central nervous system (CNS) indirectly by inflammatory mechanisms and even directly enter the CNS. Thereby, COVID-19 can evoke a range of neurosensory conditions belonging to infectious, inflammatory, demyelinating, and degenerative classes. A broad range of non-specific options, including anti-viral agents and anti-inflammatory protocols, is available with varying therapeutic. Due to the high mortality and morbidity in COVID-19-related brain damage, some changes to these general protocols, however, are necessary for ensuring the delivery of therapeutic(s) to the specific components of the CNS to meet their specific requirements. The biomaterials approach permits crossing the blood-brain barrier (BBB) and drug delivery in a more accurate and sustained manner. Beyond the BBB, drugs can protect neural cells, stimulate endogenous stem cells, and induce plasticity more effectively. Biomaterials for cell delivery exist, providing an efficient tool to improve cell retention, survival, differentiation, and integration. This paper will review the potentials of the biomaterials approach for the damaged CNS in COVID-19. It mainly includes biomaterials for promoting synaptic plasticity and modulation of inflammation in the post-stroke brain, extracellular vesicles, exosomes, and conductive biomaterials to facilitate neural regeneration, and artificial nerve conduits for treatment of neuropathies. Also, biosensing surfaces applicable to the first sensory interface between the host and the virus that encourage the generation of accelerated anti-viral immunity theoretically offer hope in solving COVID-19.
Collapse
Affiliation(s)
- Amene Saghazadeh
- Research Center for Immunodeficiencies, Children’s Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194 Iran
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children’s Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194 Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
8
|
Fornasari BE, Carta G, Gambarotta G, Raimondo S. Natural-Based Biomaterials for Peripheral Nerve Injury Repair. Front Bioeng Biotechnol 2020; 8:554257. [PMID: 33178670 PMCID: PMC7596179 DOI: 10.3389/fbioe.2020.554257] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/23/2020] [Indexed: 01/18/2023] Open
Abstract
Peripheral nerve injury treatment is a relevant problem because of nerve lesion high incidence and because of unsatisfactory regeneration after severe injuries, thus resulting in a reduced patient's life quality. To repair severe nerve injuries characterized by substance loss and to improve the regeneration outcome at both motor and sensory level, different strategies have been investigated. Although autograft remains the gold standard technique, a growing number of research articles concerning nerve conduit use has been reported in the last years. Nerve conduits aim to overcome autograft disadvantages, but they must satisfy some requirements to be suitable for nerve repair. A universal ideal conduit does not exist, since conduit properties have to be evaluated case by case; nevertheless, because of their high biocompatibility and biodegradability, natural-based biomaterials have great potentiality to be used to produce nerve guides. Although they share many characteristics with synthetic biomaterials, natural-based biomaterials should also be preferable because of their extraction sources; indeed, these biomaterials are obtained from different renewable sources or food waste, thus reducing environmental impact and enhancing sustainability in comparison to synthetic ones. This review reports the strengths and weaknesses of natural-based biomaterials used for manufacturing peripheral nerve conduits, analyzing the interactions between natural-based biomaterials and biological environment. Particular attention was paid to the description of the preclinical outcome of nerve regeneration in injury repaired with the different natural-based conduits.
Collapse
Affiliation(s)
- Benedetta E. Fornasari
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| | - Giacomo Carta
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| | - Giovanna Gambarotta
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| | - Stefania Raimondo
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| |
Collapse
|
9
|
Ghane N, Khalili S, Nouri Khorasani S, Esmaeely Neisiany R, Das O, Ramakrishna S. Regeneration of the peripheral nerve via multifunctional electrospun scaffolds. J Biomed Mater Res A 2020; 109:437-452. [PMID: 32856425 DOI: 10.1002/jbm.a.37092] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/18/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022]
Abstract
Over the last two decades, electrospun scaffolds have proved to be advantageous in the field of nerve tissue regeneration by connecting the cavity among the proximal and distal nerve stumps growth cones and leading to functional recovery after injury. Multifunctional nanofibrous structure of these scaffolds provides enormous potential by combining the advantages of nano-scale topography, and biological science. In these structures, selecting the appropriate materials, designing an optimized structure, modifying the surface to enhance biological functions and neurotrophic factors loading, and native cell-like stem cells should be considered as the essential factors. In this systematic review paper, the fabrication methods for the preparation of aligned nanofibrous scaffolds in yarn or conduit architecture are reviewed. Subsequently, the utilized polymeric materials, including natural, synthetic and blend are presented. Finally, their surface modification techniques, as well as, the recent advances and outcomes of the scaffolds, both in vitro and in vivo, are reviewed and discussed.
Collapse
Affiliation(s)
- Nazanin Ghane
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Shahla Khalili
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, Iran
| | | | - Rasoul Esmaeely Neisiany
- Department of Materials and Polymer Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar, Iran
| | - Oisik Das
- Department of Engineering Sciences and Mathematics, Luleå University of Technology, Luleå, Sweden
| | - Seeram Ramakrishna
- Centre for Nanofibers and Nanotechnology, Department of Mechanical Engineering, Faculty of Engineering, Singapore, Singapore
| |
Collapse
|
10
|
Salado-Manzano C, Perpiña U, Straccia M, Molina-Ruiz FJ, Cozzi E, Rosser AE, Canals JM. Is the Immunological Response a Bottleneck for Cell Therapy in Neurodegenerative Diseases? Front Cell Neurosci 2020; 14:250. [PMID: 32848630 PMCID: PMC7433375 DOI: 10.3389/fncel.2020.00250] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/17/2020] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative disorders such as Parkinson's (PD) and Huntington's disease (HD) are characterized by a selective detrimental impact on neurons in a specific brain area. Currently, these diseases have no cures, although some promising trials of therapies that may be able to slow the loss of brain cells are underway. Cell therapy is distinguished by its potential to replace cells to compensate for those lost to the degenerative process and has shown a great potential to replace degenerated neurons in animal models and in clinical trials in PD and HD patients. Fetal-derived neural progenitor cells, embryonic stem cells or induced pluripotent stem cells are the main cell sources that have been tested in cell therapy approaches. Furthermore, new strategies are emerging, such as the use of adult stem cells, encapsulated cell lines releasing trophic factors or cell-free products, containing an enriched secretome, which have shown beneficial preclinical outcomes. One of the major challenges for these potential new treatments is to overcome the host immune response to the transplanted cells. Immune rejection can cause significant alterations in transplanted and endogenous tissue and requires immunosuppressive drugs that may produce adverse effects. T-, B-lymphocytes and microglia have been recognized as the main effectors in striatal graft rejection. This review aims to summarize the preclinical and clinical studies of cell therapies in PD and HD. In addition, the precautions and strategies to ensure the highest quality of cell grafts, the lowest risk during transplantation and the reduction of a possible immune rejection will be outlined. Altogether, the wide-ranging possibilities of advanced therapy medicinal products (ATMPs) could make therapeutic treatment of these incurable diseases possible in the near future.
Collapse
Affiliation(s)
- Cristina Salado-Manzano
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedicine, University of Barcelona, Barcelona, Spain
- Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Unai Perpiña
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedicine, University of Barcelona, Barcelona, Spain
- Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | | | - Francisco J. Molina-Ruiz
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedicine, University of Barcelona, Barcelona, Spain
- Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Emanuele Cozzi
- Department of Cardio-Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
- Transplant Immunology Unit, Padua University Hospital, Padua, Italy
| | - Anne E. Rosser
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Josep M. Canals
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedicine, University of Barcelona, Barcelona, Spain
- Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| |
Collapse
|
11
|
Injectable cell-encapsulating composite alginate-collagen platform with inducible termination switch for safer ocular drug delivery. Biomaterials 2019; 201:53-67. [DOI: 10.1016/j.biomaterials.2019.01.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/27/2018] [Accepted: 01/20/2019] [Indexed: 12/18/2022]
|
12
|
Tang JD, Roloson EB, Amelung CD, Lampe KJ. Rapidly Assembling Pentapeptides for Injectable Delivery (RAPID) Hydrogels as Cytoprotective Cell Carriers. ACS Biomater Sci Eng 2019; 5:2117-2121. [DOI: 10.1021/acsbiomaterials.9b00389] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- James D. Tang
- Department of Chemical Engineering, University of Virginia, 102 Engineers’ Way, Charlottesville, Virginia 22904, United States
| | - Emily B. Roloson
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, Virginia 22904, United States
| | - Connor D. Amelung
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, Virginia 22904, United States
| | - Kyle J. Lampe
- Department of Chemical Engineering, University of Virginia, 102 Engineers’ Way, Charlottesville, Virginia 22904, United States
| |
Collapse
|
13
|
Bucan V, Fliess M, Schnabel R, Peck CT, Vaslaitis D, Fülbier A, Reimers K, Strauss S, Vogt PM, Radtke C. In vitro enhancement and functional characterization of neurite outgrowth by undifferentiated adipose-derived stem cells. Int J Mol Med 2018; 43:593-602. [PMID: 30431135 DOI: 10.3892/ijmm.2018.3979] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 10/22/2018] [Indexed: 11/05/2022] Open
Abstract
Adipose‑derived stem cells (ASCs) can easily be obtained and expanded in vitro for use in autologous cell therapy. Via their production of cytokines and neurotrophic factors, transplanted ASCs provide neuroprotection, neovascularization and induction of axonal sprouting. However, the influencing mechanism of undifferentiated ASCs on nerve regeneration is currently only partially understood. In the present study, undifferentiated ASCs and cutaneous primary afferent dorsal root ganglion (DRG) neurons were co‑cultured in order to investigate their interaction. ASCs were isolated from adult rat fat tissue. The presence of characteristic stem cell markers was determined by flow cytometry in three subsequent passages. Adipogenic, osteogenic, chondrogenic and glial differentiation was performed in order to evaluate their differentiation capacity. A direct co‑culture system with DRG cells was established to determine the effect of undifferentiated pluripotent ASCs on neurite elongation. Neurite outgrowth, length and number was examined in the co‑culture and compared with single‑culture cells and cells stimulated with nerve growth factor (NGF). In ASC cultures, NGF expression was assessed by ELISA. The present results demonstrated that the specific mesenchymal stem cell surface markers CD44, CD73 and CD90 were detected in all three subsequent passages of the isolated ASCs. In accordance, ASC differentiation into adipogenic, osteogenic, chondrogenic and Schwann cell phenotype was conducted successfully. Neurite outgrowth of DRG neurons was enhanced following co‑culture with ASCs, resulting in increased neurite length after 24 h of cultivation. Furthermore, neurite outgrowth of DRG neurons was directed towards the undifferentiated ASC and direct cell‑to‑cell contact was observed. In summary, the results of the present study revealed an interaction between the two cell types with guidance of neurite growth towards the undifferentiated ASC. These findings suggest that the use of undifferentiated ASC optimizing tissue‑engineered constructs may be promising for peripheral nerve repair.
Collapse
Affiliation(s)
- Vesna Bucan
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, D‑30625 Hannover, Germany
| | - Malte Fliess
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, D‑30625 Hannover, Germany
| | - Reinhild Schnabel
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, D‑30625 Hannover, Germany
| | - Claas-Tido Peck
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, D‑30625 Hannover, Germany
| | - Desiree Vaslaitis
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, D‑30625 Hannover, Germany
| | - Angela Fülbier
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, D‑30625 Hannover, Germany
| | - Kerstin Reimers
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, D‑30625 Hannover, Germany
| | - Sarah Strauss
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, D‑30625 Hannover, Germany
| | - Peter M Vogt
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, D‑30625 Hannover, Germany
| | - Christine Radtke
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, D‑30625 Hannover, Germany
| |
Collapse
|
14
|
Farrag M, Leipzig ND. Subcutaneous Maturation of Neural Stem Cell-Loaded Hydrogels Forms Region-Specific Neuroepithelium. Cells 2018; 7:cells7100173. [PMID: 30336590 PMCID: PMC6210402 DOI: 10.3390/cells7100173] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/09/2018] [Accepted: 10/11/2018] [Indexed: 01/14/2023] Open
Abstract
A combinatorial approach integrating stem cells and capable of exploiting available cues is likely needed to regenerate lost neural tissues and ultimately restore neurologic functions. This study investigates the effects of the subcutaneous maturation of adult-derived neural stem cell (aNSCs) seeded into biomaterial constructs on aNSC differentiation and ultimate regional neuronal identity as a first step toward a future spinal cord injury treatment. To achieve this, we encapsulated rat aNSCs in chitosan-based hydrogels functionalized with immobilized azide-tagged interferon-γ inside a chitosan conduit. Then, we implanted these constructs in the subcutaneous tissues in the backs of rats in the cervical, thoracic, and lumbar regions for 4, 6, and 8 weeks. After harvesting the scaffolds, we analyzed cell differentiation qualitatively using immunohistochemical analysis and quantitatively using RT-qPCR. Results revealed that the hydrogels supported aNSC survival and differentiation up to 4 weeks in the subcutaneous environment as marked by the expression of several neurogenesis markers. Most interesting, the aNSCs expressed region-specific Hox genes corresponding to their region of implantation. This study lays the groundwork for further translational work to recapitulate the potentially undiscovered patterning cues in the subcutaneous tissue and provide support for the conceptual premise that our bioengineering approach can form caudalized region-specific neuroepithelium.
Collapse
Affiliation(s)
- Mahmoud Farrag
- Integrated Bioscience Program, The University of Akron, Akron, OH 44325, USA.
| | - Nic D Leipzig
- Integrated Bioscience Program, The University of Akron, Akron, OH 44325, USA.
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH 44325, USA.
| |
Collapse
|
15
|
Wang ZZ, Sakiyama-Elbert SE. Matrices, scaffolds & carriers for cell delivery in nerve regeneration. Exp Neurol 2018; 319:112837. [PMID: 30291854 DOI: 10.1016/j.expneurol.2018.09.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 09/13/2018] [Accepted: 09/28/2018] [Indexed: 12/22/2022]
Abstract
Nerve injuries can be life-long debilitating traumas that severely impact patients' quality of life. While many acellular neural scaffolds have been developed to aid the process of nerve regeneration, complete functional recovery is still very difficult to achieve, especially for long-gap peripheral nerve injury and most cases of spinal cord injury. Cell-based therapies have shown many promising results for improving nerve regeneration. With recent advances in neural tissue engineering, the integration of biomaterial scaffolds and cell transplantation are emerging as a more promising approach to enhance nerve regeneration. This review provides an overview of important considerations for designing cell-carrier biomaterial scaffolds. It also discusses current biomaterials used for scaffolds that provide permissive and instructive microenvironments for improved cell transplantation.
Collapse
Affiliation(s)
- Ze Zhong Wang
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA; Department of Biomedical Engineering, University of Austin at Texas, Austin, TX, USA
| | | |
Collapse
|
16
|
Lai B, Feng B, Che M, Wang L, Cai S, Huang M, Gu H, Jiang B, Ling E, Li M, Zeng X, Zeng Y. A Modular Assembly of Spinal Cord-Like Tissue Allows Targeted Tissue Repair in the Transected Spinal Cord. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800261. [PMID: 30250785 PMCID: PMC6145267 DOI: 10.1002/advs.201800261] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/08/2018] [Indexed: 05/02/2023]
Abstract
Tissue engineering-based neural construction holds promise in providing organoids with defined differentiation and therapeutic potentials. Here, a bioengineered transplantable spinal cord-like tissue (SCLT) is assembled in vitro by simulating the white matter and gray matter composition of the spinal cord using neural stem cell-based tissue engineering technique. Whether the organoid would execute targeted repair in injured spinal cord is evaluated. The integrated SCLT, assembled by white matter-like tissue (WMLT) module and gray matter-like tissue (GMLT) module, shares architectural, phenotypic, and functional similarities to the adult rat spinal cord. Organotypic coculturing with the dorsal root ganglion or muscle cells shows that the SCLT embraces spinal cord organogenesis potentials to establish connections with the targets, respectively. Transplantation of the SCLT into the transected spinal cord results in a significant motor function recovery of the paralyzed hind limbs in rats. Additionally, targeted spinal cord tissue repair is achieved by the modular design of SCLT, as evidenced by an increased remyelination in the WMLT area and an enlarged innervation in the GMLT area. More importantly, the pro-regeneration milieu facilitates the formation of a neuronal relay by the donor neurons, allowing the conduction of descending and ascending neural inputs.
Collapse
Affiliation(s)
- Bi‐Qin Lai
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat‐sen University)Ministry of EducationGuangzhou510080China
- Department of Histology and EmbryologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantong226001China
| | - Bo Feng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat‐sen University)Ministry of EducationGuangzhou510080China
| | - Ming‐Tian Che
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat‐sen University)Ministry of EducationGuangzhou510080China
| | - Lai‐Jian Wang
- Guangdong Provincial Key Laboratory of Brain Function and DiseaseZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Song Cai
- Department of Human AnatomyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Meng‐Yao Huang
- Guangdong Provincial Key Laboratory of Brain Function and DiseaseZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Huai‐Yu Gu
- Department of Human AnatomyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Bing Jiang
- Guangdong Provincial Key Laboratory of Brain Function and DiseaseZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Eng‐Ang Ling
- Department of AnatomyYong Loo Lin School of MedicineNational University of SingaporeSingapore117594Singapore
| | - Meng Li
- Neuroscience and Mental Health Research InstituteSchool of MedicineCardiff UniversityCardiffCF24 4HQUK
| | - Xiang Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat‐sen University)Ministry of EducationGuangzhou510080China
- Department of Histology and EmbryologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
- Institute of Spinal Cord InjurySun Yat‐sen UniversityGuangzhou510120China
| | - Yuan‐Shan Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat‐sen University)Ministry of EducationGuangzhou510080China
- Department of Histology and EmbryologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantong226001China
- Guangdong Provincial Key Laboratory of Brain Function and DiseaseZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
- Institute of Spinal Cord InjurySun Yat‐sen UniversityGuangzhou510120China
| |
Collapse
|
17
|
Davoust C, Plas B, Béduer A, Demain B, Salabert AS, Sol JC, Vieu C, Vaysse L, Loubinoux I. Regenerative potential of primary adult human neural stem cells on micropatterned bio-implants boosts motor recovery. Stem Cell Res Ther 2017; 8:253. [PMID: 29116017 PMCID: PMC5688800 DOI: 10.1186/s13287-017-0702-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/25/2017] [Accepted: 10/18/2017] [Indexed: 01/19/2023] Open
Abstract
Background The adult brain is unable to regenerate itself sufficiently after large injuries. Therefore, hopes rely on therapies using neural stem cell or biomaterial transplantation to sustain brain reconstruction. The aim of the present study was to evaluate the improvement in sensorimotor recovery brought about by human primary adult neural stem cells (hNSCs) in combination with bio-implants. Methods hNSCs were pre-seeded on implants micropatterned for neurite guidance and inserted intracerebrally 2 weeks after a primary motor cortex lesion in rats. Long-term behaviour was significantly improved after hNSC implants versus cell engraftment in the grip strength test. MRI and immunohistological studies were conducted to elucidate the underlying mechanisms of neuro-implant integration. Results hNSC implants promoted tissue reconstruction and limited hemispheric atrophy and glial scar expansion. After 3 months, grafted hNSCs were detected on implants and expressed mature neuronal markers (NeuN, MAP2, SMI312). They also migrated over a short distance to the reconstructed tissues and to the peri-lesional tissues, where 26% integrated as mature neurons. Newly formed host neural progenitors (nestin, DCX) colonized the implants, notably in the presence of hNSCs, and participated in tissue reconstruction. The microstructured bio-implants sustained the guided maturation of both grafted hNSCs and endogenous progenitors. Conclusions These immunohistological results are coherent with and could explain the late improvement observed in sensorimotor recovery. These findings provide novel insights into the regenerative potential of primary adult hNSCs combined with microstructured implants.
Collapse
Affiliation(s)
- Carole Davoust
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Benjamin Plas
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France.,Centre Hospitalier Universitaire de Toulouse, Pôle Neurosciences, CHU Toulouse, Toulouse, France
| | - Amélie Béduer
- LAAS-CNRS, Université de Toulouse, CNRS, INSA, UPS, Toulouse, France
| | - Boris Demain
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Anne-Sophie Salabert
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France.,Centre Hospitalier Universitaire de Toulouse, Pôle Neurosciences, CHU Toulouse, Toulouse, France
| | - Jean Christophe Sol
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France.,Centre Hospitalier Universitaire de Toulouse, Pôle Neurosciences, CHU Toulouse, Toulouse, France
| | - Christophe Vieu
- LAAS-CNRS, Université de Toulouse, CNRS, INSA, UPS, Toulouse, France
| | - Laurence Vaysse
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Isabelle Loubinoux
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France. .,UMR1214-Inserm/UPS-ToNIC, CHU PURPAN, Pavillon Baudot, Place du Dr Baylac, 31024, Toulouse cedex 3, France.
| |
Collapse
|
18
|
Libro R, Bramanti P, Mazzon E. The combined strategy of mesenchymal stem cells and tissue-engineered scaffolds for spinal cord injury regeneration. Exp Ther Med 2017; 14:3355-3368. [PMID: 29042919 PMCID: PMC5639409 DOI: 10.3892/etm.2017.4939] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 08/03/2017] [Indexed: 01/02/2023] Open
Abstract
Spinal cord injury (SCI) is a traumatic lesion that can result in the loss of motor or sensory neurons. Stem cell (SC)-based therapies have been demonstrated to promote neuronal regeneration following SCI, by releasing a range of trophic factors that support endogenous repair or by differentiating into neurons, or glial cells in order to replace the damaged cells. However, numerous limitations remain for therapies based on SC transplantion alone, including a low rate of survival/engraftment. Nevertheless, scaffolds are 3-dimentional substrates that have revealed to support cell survival, proliferation and differentiation in vivo, by mimicking a more favorable endogenous microenvironment. A multidisciplinary approach, which combines engineered scaffolds with SCs has been proposed as a promising strategy for encouraging spinal cord regeneration. The present review has focused on the regenerative potential of mesenchymal SCs isolated from different sources and combined with various scaffold types, in preclinical and clinical SCI studies.
Collapse
Affiliation(s)
- Rosaliana Libro
- Department of Experimental Neurology, IRCCS Centro Neurolesi ‘Bonino-Pulejo’, I-98124 Messina, Italy
| | - Placido Bramanti
- Department of Experimental Neurology, IRCCS Centro Neurolesi ‘Bonino-Pulejo’, I-98124 Messina, Italy
| | - Emanuela Mazzon
- Department of Experimental Neurology, IRCCS Centro Neurolesi ‘Bonino-Pulejo’, I-98124 Messina, Italy
| |
Collapse
|
19
|
Jordan AM, Viswanath V, Kim SE, Pokorski JK, Korley LTJ. Processing and surface modification of polymer nanofibers for biological scaffolds: a review. J Mater Chem B 2016; 4:5958-5974. [PMID: 32263485 DOI: 10.1039/c6tb01303a] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polymeric fibrous constructs possess high surface area-to-volume ratios when compared with solid substrates and are quite commonly used as tissue engineering and cell growth scaffolds. An overview of important design and material considerations for fibrous scaffolds as well as an outline of both established and emerging solution- and melt-based fabrication techniques is provided. Innovative post-process surface modification avenues using "click" chemistry with both single and dual active cues as well as gradient cues, which maintain the fibrous structure are described. By combining process parameters with post-process surface modification, researchers have been able to selectively tune cellular response after seeding and culturing on fibrous constructs.
Collapse
Affiliation(s)
- Alex M Jordan
- Center for Layered Polymeric Systems, Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7202, USA.
| | | | | | | | | |
Collapse
|
20
|
Wong FSY, Wong CCH, Chan BP, Lo ACY. Sustained Delivery of Bioactive GDNF from Collagen and Alginate-Based Cell-Encapsulating Gel Promoted Photoreceptor Survival in an Inherited Retinal Degeneration Model. PLoS One 2016; 11:e0159342. [PMID: 27441692 PMCID: PMC4956057 DOI: 10.1371/journal.pone.0159342] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/30/2016] [Indexed: 11/29/2022] Open
Abstract
Encapsulated-cell therapy (ECT) is an attractive approach for continuously delivering freshly synthesized therapeutics to treat sight-threatening posterior eye diseases, circumventing repeated invasive intravitreal injections and improving local drug availability clinically. Composite collagen-alginate (CAC) scaffold contains an interpenetrating network that integrates the physical and biological merits of its constituents, including biocompatibility, mild gelling properties and availability. However, CAC ECT properties and performance in the eye are not well-understood. Previously, we reported a cultured 3D CAC system that supported the growth of GDNF-secreting HEK293 cells with sustainable GDNF delivery. Here, the system was further developed into an intravitreally injectable gel with 1x104 or 2x105 cells encapsulated in 2mg/ml type I collagen and 1% alginate. Gels with lower alginate concentration yielded higher initial cell viability but faster spheroid formation while increasing initial cell density encouraged cell growth. Continuous GDNF delivery was detected in culture and in healthy rat eyes for at least 14 days. The gels were well-tolerated with no host tissue attachment and contained living cell colonies. Most importantly, gel-implanted in dystrophic Royal College of Surgeons rat eyes for 28 days retained photoreceptors while those containing higher initial cell number yielded better photoreceptor survival. CAC ECT gels offers flexible system design and is a potential treatment option for posterior eye diseases.
Collapse
Affiliation(s)
- Francisca S. Y. Wong
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Calvin C. H. Wong
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Barbara P. Chan
- Tissue Engineering Laboratory, Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong, China
| | - Amy C. Y. Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Research Centre of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- * E-mail:
| |
Collapse
|
21
|
Venugopal C, Chandanala S, Prasad HC, Nayeem D, Bhonde RR, Dhanushkodi A. Regenerative therapy for hippocampal degenerative diseases: lessons from preclinical studies. J Tissue Eng Regen Med 2015; 11:321-333. [PMID: 26118731 DOI: 10.1002/term.2052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 04/08/2015] [Accepted: 04/29/2015] [Indexed: 12/30/2022]
Abstract
Increase in life expectancy has put neurodegenerative diseases on the rise. Amongst these, degenerative diseases involving hippocampus like Alzheimer's disease (AD) and temporal lobe epilepsy (TLE) are ranked higher as it is vulnerable to excitotoxicity induced neuronal dysfunction and death resulting in cognitive impairment. Modern medicines have not succeeded in halting the progression of these diseases rendering them incurable and often fatal. Under such scenario, regenerative studies employing stem cells or their by-products in animal models of AD and TLE have yielded encourageing results. This review focuses on the distinct cell types, such as hippocampal cell lines, neural precursor cells, embryonic stem cells derived neural precursor cells, induced pluripotent stem cells, induced neurons and mesenchymal stem cells, which can be employed to rescue hippocampal functions in neurodegenerative diseases like AD and TLE. Besides, the divergent mechanisms through which cell based therapy confer neuroprotection, current impediments and possible improvements in stem cell transplantation strategies are discussed. Authors are aware of the voluminous literature available on this issue and have made a sincere attempt to put forth the current status of research in the field of cell based therapy concurrently discussing the promise it holds for combating neurodegenerative diseases like AD and TLE in the near future. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Chaitra Venugopal
- School of Regenerative Medicine, Manipal University, Bangalore, India
| | | | | | - Danish Nayeem
- School of Regenerative Medicine, Manipal University, Bangalore, India
| | - Ramesh R Bhonde
- School of Regenerative Medicine, Manipal University, Bangalore, India
| | | |
Collapse
|
22
|
Violatto MB, Santangelo C, Capelli C, Frapolli R, Ferrari R, Sitia L, Tortarolo M, Talamini L, Previdi S, Moscatelli D, Salmona M, Introna M, Bendotti C, Bigini P. Longitudinal tracking of triple labeled umbilical cord derived mesenchymal stromal cells in a mouse model of Amyotrophic Lateral Sclerosis. Stem Cell Res 2015; 15:243-53. [PMID: 26177481 DOI: 10.1016/j.scr.2015.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 05/25/2015] [Accepted: 06/26/2015] [Indexed: 12/13/2022] Open
Abstract
The translational potential of cell therapy to humans requires a deep knowledge of the interaction between transplanted cells and host tissues. In this study, we evaluate the behavior of umbilical cord mesenchymal stromal cells (UC-MSCs), labeled with fluorescent nanoparticles, transplanted in healthy or early symptomatic transgenic SOD1G93A mice (a murine model of Amyotrophic Lateral Sclerosis). The double labeling of cells with nanoparticles and Hoechst-33258 enabled their tracking for a long time in both cells and tissues. Whole-body distribution of UC-MSCs was performed by in-vivo and ex-vivo analyses 1, 7, 21 days after single intravenous or intracerebroventricular administration. By intravenous administration cells were sequestered by the lungs and rapidly cleared by the liver. No difference in biodistribution was found among the two groups. On the other hand, UC-MSCs transplanted in lateral ventricles remained on the choroid plexus for the whole duration of the study even if decreasing in number. Few cells were found in the spinal cord of SOD1G93A mice exclusively. No migration in brain parenchyma was observed. These results suggest that the direct implantation in brain ventricles allows a prolonged permanence of cells close to the damaged areas and makes this method of tracking reliable for future studies of efficacy.
Collapse
Affiliation(s)
| | - Chiara Santangelo
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Chiara Capelli
- USS Centro di Terapia Cellulare "G. Lanzani", A. O. Papa Giovanni XXIII, Bergamo, Italy
| | - Roberta Frapolli
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Raffaele Ferrari
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Leopoldo Sitia
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Massimo Tortarolo
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Laura Talamini
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Sara Previdi
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Davide Moscatelli
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, Milano, Italy
| | - Mario Salmona
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Martino Introna
- USS Centro di Terapia Cellulare "G. Lanzani", A. O. Papa Giovanni XXIII, Bergamo, Italy
| | - Caterina Bendotti
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Paolo Bigini
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| |
Collapse
|
23
|
Gerth DJ, Tashiro J, Thaller SR. Clinical outcomes for Conduits and Scaffolds in peripheral nerve repair. World J Clin Cases 2015; 3:141-147. [PMID: 25685760 PMCID: PMC4317607 DOI: 10.12998/wjcc.v3.i2.141] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/05/2014] [Accepted: 11/19/2014] [Indexed: 02/05/2023] Open
Abstract
The gold standard of peripheral nerve repair is nerve autograft when tensionless repair is not possible. Use of nerve autograft has several shortcomings, however. These include limited availability of donor tissue, sacrifice of a functional nerve, and possible neuroma formation. In order to address these deficiencies, researchers have developed a variety of biomaterials available for repair of peripheral nerve gaps. We review the clinical studies published in the English literature detailing outcomes and reconstructive options. Regardless of the material used or the type of nerve repaired, outcomes are generally similar to nerve autograft in gaps less than 3 cm. New biomaterials currently under preclinical evaluation may provide improvements in outcomes.
Collapse
|
24
|
Myelomeningocele: How we can improve the assessment of the most severe form of spina bifida. Brain Res 2014; 1619:84-90. [PMID: 25498106 DOI: 10.1016/j.brainres.2014.11.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 11/25/2014] [Indexed: 12/18/2022]
Abstract
Myelomeningocele (MMC) is a devastating spinal cord birth defect, which results in significant life-long disabilities, impaired quality of life, and difficult medical management. The pathological progression of MMC involves failure in neural tube and vertebral arch closure at early gestational ages, followed by subsequent impairment in spinal cord and vertebral growth during fetal development. MMC is irreversible at term. Thus, prenatal therapeutic strategies that interrupt progressive pathological processes offer an appealing approach for treatment of MMC. However, a thorough understanding of pathological progression of MMC is mandatory for appropriate treatment to be rendered. This article is part of a Special Issue entitled SI: Spinal cord injury.
Collapse
|