1
|
Li J, Gao M, Gabriel DW, Liang W, Song L. Secretome-Wide Analysis of Lysine Acetylation in Fusarium oxysporum f. sp. lycopersici Provides Novel Insights Into Infection-Related Proteins. Front Microbiol 2020; 11:559440. [PMID: 33013791 PMCID: PMC7506082 DOI: 10.3389/fmicb.2020.559440] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/18/2020] [Indexed: 01/13/2023] Open
Abstract
Fusarium oxysporum f. sp. lycopersici (Fol) is the causal agent of Fusarium wilt disease in tomato. Proteins secreted by this pathogen during initial host colonization largely determine the outcome of pathogen-host interactions. Lysine acetylation (Kac) plays a vital role in the functions of many proteins, but little is known about Kac in Fol secreted proteins. In this study, we analyzed lysine acetylation of the entire Fol secretome. Using high affinity enrichment of Kac peptides and LC-MS/MS analysis, 50 potentially secreted Fol proteins were identified and acetylation sites determined. Bioinformatics analysis revealed 32 proteins with canonical N-terminal signal peptide leaders, and most of them were predicted to be enzymes involved in a variety of biological processes and metabolic pathways. Remarkably, all 32 predicted secreted proteins were novel and encoded on the core chromosomes rather than on the previously identified LS pathogenicity chromosomes. Homolog scanning of the secreted proteins among 40 different species revealed 4 proteins that were species specific, 3 proteins that were class-specific in the Ascomycota phylum, and 25 proteins that were more widely conserved genes. These secreted proteins provide a starting resource for investigating putative novel pathogenic genes, with 26 up-regulated genes encoding Kac proteins that may play an important role during initial symptomless infection stages.
Collapse
Affiliation(s)
- Jingtao Li
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Mingming Gao
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Dean W Gabriel
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Wenxing Liang
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China.,Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China
| | - Limin Song
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
2
|
Locascio A, Andrés-Colás N, Mulet JM, Yenush L. Saccharomyces cerevisiae as a Tool to Investigate Plant Potassium and Sodium Transporters. Int J Mol Sci 2019; 20:E2133. [PMID: 31052176 PMCID: PMC6539216 DOI: 10.3390/ijms20092133] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 12/20/2022] Open
Abstract
Sodium and potassium are two alkali cations abundant in the biosphere. Potassium is essential for plants and its concentration must be maintained at approximately 150 mM in the plant cell cytoplasm including under circumstances where its concentration is much lower in soil. On the other hand, sodium must be extruded from the plant or accumulated either in the vacuole or in specific plant structures. Maintaining a high intracellular K+/Na+ ratio under adverse environmental conditions or in the presence of salt is essential to maintain cellular homeostasis and to avoid toxicity. The baker's yeast, Saccharomyces cerevisiae, has been used to identify and characterize participants in potassium and sodium homeostasis in plants for many years. Its utility resides in the fact that the electric gradient across the membrane and the vacuoles is similar to plants. Most plant proteins can be expressed in yeast and are functional in this unicellular model system, which allows for productive structure-function studies for ion transporting proteins. Moreover, yeast can also be used as a high-throughput platform for the identification of genes that confer stress tolerance and for the study of protein-protein interactions. In this review, we summarize advances regarding potassium and sodium transport that have been discovered using the yeast model system, the state-of-the-art of the available techniques and the future directions and opportunities in this field.
Collapse
Affiliation(s)
- Antonella Locascio
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain.
| | - Nuria Andrés-Colás
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain.
| | - José Miguel Mulet
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain.
| | - Lynne Yenush
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain.
| |
Collapse
|
3
|
Li J, Zhang X, Li L, Liu J, Zhang Y, Pan H. Proteomics Analysis of SsNsd1-Mediated Compound Appressoria Formation in Sclerotinia sclerotiorum. Int J Mol Sci 2018; 19:E2946. [PMID: 30262736 PMCID: PMC6213358 DOI: 10.3390/ijms19102946] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 12/25/2022] Open
Abstract
Sclerotinia sclerotiorum (Lib.) de Bary is a devastating necrotrophic fungal pathogen attacking a broad range of agricultural crops. In this study, although the transcript accumulation of SsNsd1, a GATA-type IVb transcription factor, was much lower during the vegetative hyphae stage, its mutants completely abolished the development of compound appressoria. To further elucidate how SsNsd1 influenced the appressorium formation, we conducted proteomics-based analysis of the wild-type and ΔSsNsd1 mutant by two-dimensional electrophoresis (2-DE). A total number of 43 differentially expressed proteins (≥3-fold change) were observed. Of them, 77% were downregulated, whereas 14% were upregulated. Four protein spots fully disappeared in the mutants. Further, we evaluated these protein sequences by mass spectrometry analysis of the peptide mass and obtained functionally annotated 40 proteins, among which only 17 proteins (38%) were identified to have known functions including energy production, metabolism, protein fate, stress response, cellular organization, and cell growth and division. However, the remaining 23 proteins (56%) were characterized as hypothetical proteins among which four proteins (17%) were predicted to contain the signal peptides. In conclusion, the differentially expressed proteins identified in this study shed light on the ΔSsNsd1 mutant-mediated appressorium deficiency and can be used in future investigations to better understand the signaling mechanisms of SsNsd1 in S. sclerotiorum.
Collapse
Affiliation(s)
- Jingtao Li
- College of Plant Science, Jilin University, Changchun 130062, China.
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China.
| | - Xianghui Zhang
- College of Plant Science, Jilin University, Changchun 130062, China.
| | - Le Li
- College of Plant Science, Jilin University, Changchun 130062, China.
| | - Jinliang Liu
- College of Plant Science, Jilin University, Changchun 130062, China.
| | - Yanhua Zhang
- College of Plant Science, Jilin University, Changchun 130062, China.
| | - Hongyu Pan
- College of Plant Science, Jilin University, Changchun 130062, China.
| |
Collapse
|
4
|
Sun X, Yu G, Li J, Liu J, Wang X, Zhu G, Zhang X, Pan H. AcERF2, an ethylene-responsive factor of Atriplex canescens, positively modulates osmotic and disease resistance in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 274:32-43. [PMID: 30080618 DOI: 10.1016/j.plantsci.2018.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/02/2018] [Accepted: 05/05/2018] [Indexed: 05/02/2023]
Abstract
Ethylene-responsive factors (ERFs) comprise a large family of transcription factors in plants and play important roles in developmental processes and stress responses. Here, we characterized a novel AP2/ERF transcription factor, AcERF2, from the halophyte Atriplex canescens (four-wing saltbush, Chenopodiaceae). AcERF2 was proved to be a transcriptional activator in yeast and localized to the nucleus upon transient expression in Nicotiana benthamiana, indicating its potential role as a transcription factor. Overexpression of AcERF2 driven by a CaMV35S promoter led to decreased accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA), and increased antioxidant enzymatic activities, as well as rapid stomatal closure under osmotic treatment in Arabidopsis. Arabidopsis plants overexpressing AcERF2 were hypersensitive to abscisic acid (ABA) during germination, seedling establishment, and primary root elongation, and exhibited significant tolerance to osmotic stress. Furthermore, overexpression of AcERF2 induced transcript accumulation of plant defense-related genes (PR1, PR2, PR5, ERF1 and ERF3) and increased Arabidopsis resistance to the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 and the necrotrophic fungal pathogen Botrytis cinerea. These results suggest that AcERF2 may play a positive modulation role in response to osmotic stress and pathogen infection in plants.
Collapse
Affiliation(s)
- Xinhua Sun
- College of Plant Sciences, Jilin University, Changchun, Jilin, 130062, PR China.
| | - Gang Yu
- College of Plant Sciences, Jilin University, Changchun, Jilin, 130062, PR China.
| | - Jingtao Li
- College of Plant Sciences, Jilin University, Changchun, Jilin, 130062, PR China.
| | - Jinliang Liu
- College of Plant Sciences, Jilin University, Changchun, Jilin, 130062, PR China.
| | - Xueliang Wang
- College of Plant Sciences, Jilin University, Changchun, Jilin, 130062, PR China.
| | - Genglin Zhu
- College of Plant Sciences, Jilin University, Changchun, Jilin, 130062, PR China.
| | - Xianghui Zhang
- College of Plant Sciences, Jilin University, Changchun, Jilin, 130062, PR China.
| | - Hongyu Pan
- College of Plant Sciences, Jilin University, Changchun, Jilin, 130062, PR China.
| |
Collapse
|
5
|
Yu G, Li J, Sun X, Liu Y, Wang X, Zhang H, Pan H. Exploration for the Salinity Tolerance-Related Genes from Xero-Halophyte Atriplex canescens Exploiting Yeast Functional Screening System. Int J Mol Sci 2017; 18:ijms18112444. [PMID: 29149055 PMCID: PMC5713411 DOI: 10.3390/ijms18112444] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 12/22/2022] Open
Abstract
Plant productivity is limited by salinity stress, both in natural and agricultural systems. Identification of salt stress-related genes from halophyte can provide insights into mechanisms of salt stress tolerance in plants. Atriplex canescens is a xero-halophyte that exhibits optimum growth in the presence of 400 mM NaCl. A cDNA library derived from highly salt-treated A. canescens plants was constructed based on a yeast expression system. A total of 53 transgenic yeast clones expressing enhanced salt tolerance were selected from 10⁵ transformants. Their plasmids were sequenced and the gene characteristics were annotated using a BLASTX search. Retransformation of yeast cells with the selected plasmids conferred salt tolerance to the resulting transformants. The expression patterns of 28 of these stress-related genes were further investigated in A. canescens leaves by quantitative reverse transcription-PCR. In this study, we provided a rapid and robust assay system for large-scale screening of genes for varied abiotic stress tolerance with high efficiency in A. canescens.
Collapse
Affiliation(s)
- Gang Yu
- College of Plant Sciences, Jilin University, Changchun 130062, China.
| | - Jingtao Li
- College of Plant Sciences, Jilin University, Changchun 130062, China.
| | - Xinhua Sun
- College of Plant Sciences, Jilin University, Changchun 130062, China.
| | - Yanzhi Liu
- College of Plant Sciences, Jilin University, Changchun 130062, China.
| | - Xueliang Wang
- College of Plant Sciences, Jilin University, Changchun 130062, China.
| | - Hao Zhang
- College of Resource and Environment, Jilin Agricultural University, Changchun 130062, China.
| | - Hongyu Pan
- College of Plant Sciences, Jilin University, Changchun 130062, China.
| |
Collapse
|
6
|
Huang X, Yang L, Jin Y, Lin J, Liu F. Generation, Annotation, and Analysis of a Large-Scale Expressed Sequence Tag Library from Arabidopsis pumila to Explore Salt-Responsive Genes. FRONTIERS IN PLANT SCIENCE 2017; 8:955. [PMID: 28638397 PMCID: PMC5461257 DOI: 10.3389/fpls.2017.00955] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 05/22/2017] [Indexed: 06/29/2023]
Abstract
Arabidopsis pumila is an ephemeral plant, and a close relative of the model plant Arabidopsis thaliana, but it possesses higher photosynthetic efficiency, higher propagation rate, and higher salinity tolerance compared to those A. thaliana, thus providing a candidate plant system for gene mining for environmental adaption and salt tolerance. However, A. pumila is an under-explored resource for understanding the genetic mechanisms underlying abiotic stress adaptation. To improve our understanding of the molecular and genetic mechanisms of salt stress adaptation, more than 19,900 clones randomly selected from a cDNA library constructed previously from leaf tissue exposed to high-salinity shock were sequenced. A total of 16,014 high-quality expressed sequence tags (ESTs) were generated, which have been deposited in the dbEST GenBank under accession numbers JZ932319 to JZ948332. Clustering and assembly of these ESTs resulted in the identification of 8,835 unique sequences, consisting of 2,469 contigs and 6,366 singletons. The blastx results revealed 8,011 unigenes with significant similarity to known genes, while only 425 unigenes remained uncharacterized. Functional classification demonstrated an abundance of unigenes involved in binding, catalytic, structural or transporter activities, and in pathways of energy, carbohydrate, amino acid, or lipid metabolism. At least seven main classes of genes were related to salt-tolerance among the 8,835 unigenes. Many previously reported salt tolerance genes were also manifested in this library, for example VP1, H+-ATPase, NHX1, SOS2, SOS3, NAC, MYB, ERF, LEA, P5CS1. In addition, 251 transcription factors were identified from the library, classified into 42 families. Lastly, changes in expression of the 12 most abundant unigenes, 12 transcription factor genes, and 19 stress-related genes in the first 24 h of exposure to high-salinity stress conditions were monitored by qRT-PCR. The large-scale EST library obtained in this study provides first-hand information on gene sequences expressed in young leaves of A. pumila exposed to salt shock. The rapid discovery of known or unknown genes related to salinity stress response in A. pumila will facilitate the understanding of complex adaptive mechanisms for ephemerals.
Collapse
|
7
|
Dassanayake M, Larkin JC. Making Plants Break a Sweat: the Structure, Function, and Evolution of Plant Salt Glands. FRONTIERS IN PLANT SCIENCE 2017; 8:406. [PMID: 28400779 PMCID: PMC5368257 DOI: 10.3389/fpls.2017.00406] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/09/2017] [Indexed: 05/25/2023]
Abstract
Salt stress is a complex trait that poses a grand challenge in developing new crops better adapted to saline environments. Some plants, called recretohalophytes, that have naturally evolved to secrete excess salts through salt glands, offer an underexplored genetic resource for examining how plant development, anatomy, and physiology integrate to prevent excess salt from building up to toxic levels in plant tissue. In this review we examine the structure and evolution of salt glands, salt gland-specific gene expression, and the possibility that all salt glands have originated via evolutionary modifications of trichomes. Salt secretion via salt glands is found in more than 50 species in 14 angiosperm families distributed in caryophyllales, asterids, rosids, and grasses. The salt glands of these distantly related clades can be grouped into four structural classes. Although salt glands appear to have originated independently at least 12 times, they share convergently evolved features that facilitate salt compartmentalization and excretion. We review the structural diversity and evolution of salt glands, major transporters and proteins associated with salt transport and secretion in halophytes, salt gland relevant gene expression regulation, and the prospect for using new genomic and transcriptomic tools in combination with information from model organisms to better understand how salt glands contribute to salt tolerance. Finally, we consider the prospects for using this knowledge to engineer salt glands to increase salt tolerance in model species, and ultimately in crops.
Collapse
Affiliation(s)
- Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University, Baton RougeLA, USA
| | - John C. Larkin
- Department of Biological Sciences, Louisiana State University, Baton RougeLA, USA
| |
Collapse
|
8
|
Li J, Yu G, Sun X, Zhang X, Liu J, Pan H. AcEBP1, an ErbB3-Binding Protein (EBP1) from halophyte Atriplex canescens, negatively regulates cell growth and stress responses in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 248:64-74. [PMID: 27181948 DOI: 10.1016/j.plantsci.2016.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/13/2016] [Accepted: 04/21/2016] [Indexed: 06/05/2023]
Abstract
An ErbB-3-binding protein gene AcEBP1, also known as proliferation-associated 2G4 gene (PA2G4s) belonging to the M24 superfamily, was obtained from the saltbush Atriplex canescens. Subcellular localization imaging showed the fusion protein AcEBP1-eGFP was located in the nucleus of epidermal cells in Nicotiana benthamiana. The AcEBP1 gene expression levels were up-regulated under salt, osmotic stress, and hormones treatment as revealed by qRT-PCR. Overexpression of AcEBP1 in Arabidopsis demonstrated that AcEBP1 was involved in root cell growth and stress responses (NaCl, osmotic stress, ABA, low temperature, and drought). These phenotypic data were correlated with the expression patterns of stress responsive genes and PR genes. The AcEBP1 transgenic Arabidopsis plants also displayed increased sensitivity under low temperature and evaluated resistance to drought stress. Together, these results demonstrate that AcEBP1 negatively affects cell growth and is a regulator under stress conditions.
Collapse
Affiliation(s)
- Jingtao Li
- College of Plant Science, Jilin University, Changchun, 130062 Jilin, China.
| | - Gang Yu
- College of Plant Science, Jilin University, Changchun, 130062 Jilin, China.
| | - Xinhua Sun
- College of Plant Science, Jilin University, Changchun, 130062 Jilin, China.
| | - Xianghui Zhang
- College of Plant Science, Jilin University, Changchun, 130062 Jilin, China.
| | - Jinliang Liu
- College of Plant Science, Jilin University, Changchun, 130062 Jilin, China.
| | - Hongyu Pan
- College of Plant Science, Jilin University, Changchun, 130062 Jilin, China.
| |
Collapse
|
9
|
Li J, Yu G, Sun X, Liu Y, Liu J, Zhang X, Jia C, Pan H. AcPIP2, a plasma membrane intrinsic protein from halophyte Atriplex canescens, enhances plant growth rate and abiotic stress tolerance when overexpressed in Arabidopsis thaliana. PLANT CELL REPORTS 2015; 34:1401-15. [PMID: 25947559 DOI: 10.1007/s00299-015-1796-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 04/10/2015] [Accepted: 04/19/2015] [Indexed: 05/21/2023]
Abstract
An aquaporin protein AcPIP2 from Atriplex canescens was involved in plant growth rate, abiotic stress tolerance in Arabidopsis. Under limited water condition, AcPIP2 leaded to the sensitivity to drought stress. An aquaporin protein (AcPIP2) was obtained from the saltbush Atriplex canescens, which was in PIP2 subgroup belonging to the PIP subfamily, MIP superfamily. The subcellular localization of AcPIP2 showed the fusion protein AcPIP2-eGFP located at the plasma membrane in Nicotiana benthamiana. Overexpression of AcPIP2 in Arabidopsis fully proved that AcPIP2 was involved in plant growth rate, transpiration rate and abiotic stress tolerance (NaCl, drought and NaHCO3) in Arabidopsis, which is mostly in correspondence to gene expression pattern characterized by qRT-PCR performed in A. canescens. And under limited water condition, AcPIP2 overexpression leaded to the sensitivity to drought stress. In the view of the resistant effect in transgenic Arabidopsis overexpressing AcPIP2, the AcPIP2 may throw some light into understanding how the A. canescens plants cope with abiotic stress, and could be used in the genetic engineering to improve plant growth or selective tolerance to the abiotic stress.
Collapse
Affiliation(s)
- Jingtao Li
- College of Plant Sciences, Jilin University, Changchun, 130062, Jilin, China,
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Sun XH, Yu G, Li JT, Jia P, Zhang JC, Jia CG, Zhang YH, Pan HY. A heavy metal-associated protein (AcHMA1) from the halophyte, Atriplex canescens (Pursh) Nutt., confers tolerance to iron and other abiotic stresses when expressed in Saccharomyces cerevisiae. Int J Mol Sci 2014; 15:14891-906. [PMID: 25153638 PMCID: PMC4159888 DOI: 10.3390/ijms150814891] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 08/15/2014] [Accepted: 08/18/2014] [Indexed: 11/16/2022] Open
Abstract
Many heavy metals are essential for metabolic processes, but are toxic at elevated levels. Metal tolerance proteins provide resistance to this toxicity. In this study, we identified and characterized a heavy metal-associated protein, AcHMA1, from the halophyte, Atriplex canescens. Sequence analysis has revealed that AcHMA1 contains two heavy metal binding domains. Treatments with metals (Fe, Cu, Ni, Cd or Pb), PEG6000 and NaHCO3 highly induced AcHMA1 expression in A. canescens, whereas NaCl and low temperature decreased its expression. The role of AcHMA1 in metal stress tolerance was examined using a yeast expression system. Expression of the AcHMA1 gene significantly increased the ability of yeast cells to adapt to and recover from exposure to excess iron. AcHMA1 expression also provided salt, alkaline, osmotic and oxidant stress tolerance in yeast cells. Finally, subcellular localization of an AcHMA1/GFP fusion protein expressed in tobacco cells showed that AcHMA1 was localized in the plasma membrane. Thus, our results suggest that AcHMA1 encodes a membrane-localized metal tolerance protein that mediates the detoxification of iron in eukaryotes. Furthermore, AcHMA1 also participates in the response to abiotic stress.
Collapse
Affiliation(s)
- Xin-Hua Sun
- College of Plant Science, Jilin University, Changchun130062, Jilin, China.
| | - Gang Yu
- College of Plant Science, Jilin University, Changchun130062, Jilin, China.
| | - Jing-Tao Li
- College of Plant Science, Jilin University, Changchun130062, Jilin, China.
| | - Pan Jia
- College of Plant Science, Jilin University, Changchun130062, Jilin, China.
| | - Ji-Chao Zhang
- College of Plant Science, Jilin University, Changchun130062, Jilin, China.
| | - Cheng-Guo Jia
- College of Plant Science, Jilin University, Changchun130062, Jilin, China.
| | - Yan-Hua Zhang
- College of Plant Science, Jilin University, Changchun130062, Jilin, China.
| | - Hong-Yu Pan
- College of Plant Science, Jilin University, Changchun130062, Jilin, China.
| |
Collapse
|