1
|
Gao W, Liu YF, Zhang YX, Wang Y, Jin YQ, Yuan H, Liang XY, Ji XY, Jiang QY, Wu DD. The potential role of hydrogen sulfide in cancer cell apoptosis. Cell Death Discov 2024; 10:114. [PMID: 38448410 PMCID: PMC10917771 DOI: 10.1038/s41420-024-01868-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 02/05/2024] [Accepted: 02/14/2024] [Indexed: 03/08/2024] Open
Abstract
For a long time, hydrogen sulfide (H2S) has been considered a toxic compound, but recent studies have found that H2S is the third gaseous signaling molecule which plays a vital role in physiological and pathological conditions. Currently, a large number of studies have shown that H2S mediates apoptosis through multiple signaling pathways to participate in cancer occurrence and development, for example, PI3K/Akt/mTOR and MAPK signaling pathways. Therefore, the regulation of the production and metabolism of H2S to mediate the apoptotic process of cancer cells may improve the effectiveness of cancer treatment. In this review, the role and mechanism of H2S in cancer cell apoptosis in mammals are summarized.
Collapse
Affiliation(s)
- Wei Gao
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Ya-Fang Liu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yan-Xia Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yan Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yu-Qing Jin
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Hang Yuan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Xiao-Yi Liang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
- Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, 450064, China.
| | - Qi-Ying Jiang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
- School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.
- Department of Stomatology, Huaihe Hospital of Henan University, Kaifeng, Henan, 475000, China.
| |
Collapse
|
2
|
Duan SF, Zhang MM, Zhang X, Liu W, Zhang SH, Yang B, Dong Q, Han JG, Yu HL, Li T, Ji XY, Wu DD, Zhang XJ. HA-ADT suppresses esophageal squamous cell carcinoma progression via apoptosis promotion and autophagy inhibition. Exp Cell Res 2022; 420:113341. [PMID: 36075445 DOI: 10.1016/j.yexcr.2022.113341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 08/22/2022] [Accepted: 09/01/2022] [Indexed: 11/04/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a major cause of cancer-related deaths. We have previously connected a non-sulfated glycosaminoglycan, hyaluronic acid (HA), with a common hydrogen sulfide (H2S) donor, 5-(4-hydroxyphenyl)-3H-1,2-dithiol-3-thione (ADT-OH), to reconstruct a novel conjugate, HA-ADT. In this study, we determined the effect of HA-ADT on the growth of ESCC. Our data suggested that HA-ADT exerted more potent effects than sodium hydrosulfide (NaHS, a fast H2S-releasing donor) and morpholin-4-ium (4-methoxyphenyl)-morpholin-4-ylsulfanylidenesulfido-λ5-phosphane (GYY4137, a slow H2S-releasing donor) on inhibiting the viability, proliferation, migration, and invasion of human ESCC cells. HA-ADT increased apoptosis by suppressing the protein expressions of phospho (p)-Ser473-protein kinase B (PKB/AKT), p-Tyr199/Tyr458-phosphatidylinositol 3-kinase (PI3K), and p-Ser2448-mammalian target of rapamycin (mTOR), but suppressed autophagy through the inhibition of the protein levels of p-Ser552-β-catenin, p-Ser9-glycogen synthase kinase-3β (GSK-3β), and Wnt3a in human ESCC cells. In addition, HA-ADT was more effective in terms of the growth inhibition of human ESCC xenograft tumor than NaHS and GYY4137. In conclusion, HA-ADT can suppress ESCC progression via apoptosis promotion and autophagy inhibition. HA-ADT might be efficacious for the treatment of cancer.
Collapse
Affiliation(s)
- Shao-Feng Duan
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Meng-Meng Zhang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Xin Zhang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Wei Liu
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Shi-Hui Zhang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Bo Yang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Qian Dong
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Ju-Guo Han
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Hai-Lan Yu
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Tao Li
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China; School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.
| | - Xiao-Ju Zhang
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, China.
| |
Collapse
|
3
|
Cascajosa-Lira A, Andreo-Martínez P, Prieto AI, Baños A, Guillamón E, Jos A, Cameán AM. In Vitro Toxicity Studies of Bioactive Organosulfur Compounds from Allium spp. with Potential Application in the Agri-Food Industry: A Review. Foods 2022; 11:2620. [PMID: 36076806 PMCID: PMC9455835 DOI: 10.3390/foods11172620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/05/2022] [Accepted: 08/25/2022] [Indexed: 11/25/2022] Open
Abstract
Organosulfur compounds (OSCs) are secondary metabolites produced by different Allium species which present important biological activities such as antimicrobial, antioxidant, anti-inflammatory antidiabetic, anticarcinogenic, antispasmodic, etc. In recent years, their use has been promoted in the agri-food industry as a substitute for synthetic preservatives, increasing potential accumulative exposure to consumers. Before their application in the food industry, it is necessary to pass a safety assessment as specified by the European Food Safety Authority (EFSA). This work reviews the scientific literature on OSCs regarding their in vitro toxicity evaluation following PRISMA guidelines for systematic reviews. Four electronic research databases were searched (Web of Science, Scopus, Science Database and PubMed) and a total of 43 works were selected according to predeterminate inclusion and exclusion criteria. Different data items and the risk of bias for each study were included. Currently, there are very few in vitro studies focused on investigating the potential toxicity of OSCs. Most research studies aimed to evaluate the cytotoxicity of OSCs to elucidate their antiproliferative effects focusing on their therapeutic aspects using cancer cell lines as the main experimental model. The results showed that diallyl disulfide (DADS) is the compound most studied, followed by diallyl trisulfide (DATS), diallyl sulfide (DAS), Allicin and Ajoene. Only 4 studies have been performed specifically to explore the safety of OSCs for agri-food applications, and genotoxicity studies are limited. More toxicity studies of OSCs are necessary to ensure consumers safety and should mainly be focused on the evaluation of genotoxicity and long-term toxicity effects.
Collapse
Affiliation(s)
- Antonio Cascajosa-Lira
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, Profesor García González n 2, 41012 Seville, Spain
| | - Pedro Andreo-Martínez
- Department of Agricultural Chemistry, Faculty of Chemistry, Campus of Espinardo, University of Murcia, 30100 Murcia, Spain
| | - Ana Isabel Prieto
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, Profesor García González n 2, 41012 Seville, Spain
| | - Alberto Baños
- DMC Research Center, Camino de Jayena, 82, 18620 Alhendín, Spain
| | | | - Angeles Jos
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, Profesor García González n 2, 41012 Seville, Spain
| | - Ana M. Cameán
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, Profesor García González n 2, 41012 Seville, Spain
| |
Collapse
|
4
|
Mitra S, Das R, Emran TB, Labib RK, Noor-E-Tabassum, Islam F, Sharma R, Ahmad I, Nainu F, Chidambaram K, Alhumaydhi FA, Chandran D, Capasso R, Wilairatana P. Diallyl Disulfide: A Bioactive Garlic Compound with Anticancer Potential. Front Pharmacol 2022; 13:943967. [PMID: 36071845 PMCID: PMC9441672 DOI: 10.3389/fphar.2022.943967] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/21/2022] [Indexed: 12/11/2022] Open
Abstract
Cancer is a life-threatening disease caused by the uncontrolled division of cells, which culminates in a solid mass of cells known as a tumor or liquid cancer. It is the leading cause of mortality worldwide, and the number of cancer patients has been increasing at an alarming rate, with an estimated 20 million cases expected by 2030. Thus, the use of complementary or alternative therapeutic techniques that can help prevent cancer has been the subject of increased attention. Garlic, the most widely used plant medicinal product, exhibits a wide spectrum of biological activities, including antibacterial, hypo-lipidemic, antithrombotic, and anticancer effects. Diallyl disulfide (DADS) is a major organosulfur compound contained within garlic. Recently, several experimental studies have demonstrated that DADS exhibits anti-tumor activity against many types of tumor cells, including gynecological cancers (cervical cancer, ovarian cancer), hematological cancers (leukemia, lymphoma), lung cancer, neural cancer, skin cancer, prostate cancer, gastrointestinal tract and associated cancers (esophageal cancer, gastric cancer, colorectal cancer), hepatocellular cancer cell line, etc. The mechanisms behind the anticancer action of DADS include epithelial-mesenchymal transition (EMT), invasion, and migration. This article aims to review the available information regarding the anti-cancer potential of DADS, as well as summarize its mechanisms of action, bioavailability, and pharmacokinetics from published clinical and toxicity studies.
Collapse
Affiliation(s)
- Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Rafiuddin Khan Labib
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Noor-E-Tabassum
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Islamudin Ahmad
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Mulawarman University, Samarinda, Indonesia
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Kumarappan Chidambaram
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore, India
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
5
|
Zhou Y, Li X, Luo W, Zhu J, Zhao J, Wang M, Sang L, Chang B, Wang B. Allicin in Digestive System Cancer: From Biological Effects to Clinical Treatment. Front Pharmacol 2022; 13:903259. [PMID: 35770084 PMCID: PMC9234177 DOI: 10.3389/fphar.2022.903259] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/23/2022] [Indexed: 12/24/2022] Open
Abstract
Allicin is the main active ingredient in freshly-crushed garlic and some other allium plants, and its anticancer effect on cancers of digestive system has been confirmed in many studies. The aim of this review is to summarize epidemiological studies and in vitro and in vivo investigations on the anticancer effects of allicin and its secondary metabolites, as well as their biological functions. In epidemiological studies of esophageal cancer, liver cancer, pancreatic cancer, and biliary tract cancer, the anticancer effect of garlic has been confirmed consistently. However, the results obtained from epidemiological studies in gastric cancer and colon cancer are inconsistent. In vitro studies demonstrated that allicin and its secondary metabolites play an antitumor role by inhibiting tumor cell proliferation, inducing apoptosis, controlling tumor invasion and metastasis, decreasing angiogenesis, suppressing Helicobacter pylori, enhancing the efficacy of chemotherapeutic drugs, and reducing the damage caused by chemotherapeutic drugs. In vivo studies further demonstrate that allicin and its secondary metabolites inhibit cancers of the digestive system. This review describes the mechanisms against cancers of digestive system and therapeutic potential of allicin and its secondary metabolites.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, China
- The Second Clinical College, China Medical University, Shenyang, China
| | - Xingxuan Li
- The Second Clinical College, China Medical University, Shenyang, China
| | - Wenyu Luo
- The Second Clinical College, China Medical University, Shenyang, China
| | - Junfeng Zhu
- Department of Clinical Laboratory, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Jingwen Zhao
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Mengyao Wang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lixuan Sang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bing Chang
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Bing Chang,
| | - Bingyuan Wang
- Department of Geriatric Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
6
|
Yu X, Huang M, Yang G. Long non‑coding RNA BANCR promotes proliferation, invasion and migration in esophageal squamous cell carcinoma cells via the Raf/MEK/ERK signaling pathway. Mol Med Rep 2021; 23:465. [PMID: 33880577 PMCID: PMC8097753 DOI: 10.3892/mmr.2021.12104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 03/01/2021] [Indexed: 12/24/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a major histological type of esophageal cancer, identified as a leading cause of tumor-associated death worldwide. In addition, long non-coding RNA (lncRNA) BRAF-activated non-coding RNA (BANCR) expression is increased in the plasma of patients with ESCC, which can be reversed by tumor resection. Thus, the aim of the present study was to investigate the underlying mechanism of BANCR in ESCC progression. The relative mRNA expression of BANCR was determined via reverse transcription-quantitative PCR. The cell behaviors of Eca-109 cells were detected using Cell Counting Kit-8, colony formation, wound healing and Transwell chamber assays. Finally, the expression levels of proteins involved in the Raf/MEK/ERK signaling pathway and cell metastasis were analyzed with western blotting. The results revealed that lncRNA BANCR was highly expressed in ESCC cells compared with in normal esophageal cells. BANCR overexpression enhanced proliferation, migration and invasion of ESCC cells, and BANCR silencing exerted opposite effects. Moreover, BANCR overexpression induced activation of the Raf/MEK/ERK signaling pathway in ESCC cells. Notably, U0126, a specific MEK inhibitor, decreased MEK and ERK expression, and blocked the promotive effects of BANCR overexpression on the proliferation, migration and invasion of ESCC cells. Overall, lncRNA BANCR facilitated the proliferation, migration and invasion of ESCC cells via the Raf/MEK/ERK signaling pathway. Thus, lncRNA BANCR may be a promising target for inhibiting ESCC growth and metastasis.
Collapse
Affiliation(s)
- Xiaogang Yu
- Department of Gastroenterology and Hepatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Meng Huang
- Department of Radiology, Suining Municipal Hospital of TCM, Suining, Sichuan 629000, P.R. China
| | - Guodong Yang
- Department of Gastroenterology and Hepatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| |
Collapse
|
7
|
De Greef D, Barton EM, Sandberg EN, Croley CR, Pumarol J, Wong TL, Das N, Bishayee A. Anticancer potential of garlic and its bioactive constituents: A systematic and comprehensive review. Semin Cancer Biol 2020; 73:219-264. [PMID: 33301861 DOI: 10.1016/j.semcancer.2020.11.020] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023]
Abstract
Vegetables of the Allium genus, such as garlic (Allium sativum L.), onions, shallots, leaks, and chives, have been used for many years for food consumption and for medicinal purposes. Historical medical texts have indicated the therapeutic applications of garlic as an antitumor, laxative, diuretic, antibacterial and antifungal agent. Specifically, garlic's antitumor abilities have been traced back 3500 years as a chemotherapeutic agent used in Egypt. Other beneficial effects of garlic consumption include lowering blood pressure, blood cholesterol, sugar and lipids. The processing and aging of garlic result in the production of non-toxic organosulfur by-products. These sulfur-containing compounds, such as allicin, diallyl sulfide, diallyl disulfide, diallyl trisulfide, alliin, S-allylcysteine, and S-allylmercaptocysteine, impact various stages of carcinogenesis. The anticancer mechanisms of action of these garlic-derived phytochemicals include altering mitochondrial permeability, inhibiting angiogenesis, enhancing antioxidative and proapoptotic properties, and regulating cell proliferation. All these effects of garlic's sulfur-compounds have been demonstrated in various human cancers. The intent of this literature research is to explore the potential of garlic-derived products and bioactive organosulfur compounds as cancer chemopreventive and chemotherapeutic agents. This investigation employs criteria for systematic review and critically analyzes published in vitro, in vivo and clinical studies. Concerns and limitations that have arisen in past studies regarding standards of measurement, bioavailability, and method of delivery are addressed. Overall, it is hoped that through this systematic and comprehensive review, future researchers can be acquainted with the updated data assembled on anticancer properties of garlic and its phytoconstituents.
Collapse
Affiliation(s)
| | - Emily M Barton
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Elise N Sandberg
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | | | - Joshua Pumarol
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Tin Lok Wong
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Niranjan Das
- Department of Chemistry, Iswar Chandra Vidyasagar College, Belonia 799 155, Tripura, India
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
8
|
Almatroodi SA, Alsahli MA, Almatroudi A, Rahmani AH. Garlic and its Active Compounds: A Potential Candidate in The Prevention of Cancer by Modulating Various Cell Signalling Pathways. Anticancer Agents Med Chem 2020; 19:1314-1324. [PMID: 30963982 DOI: 10.2174/1871520619666190409100955] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/07/2019] [Accepted: 03/15/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Cancer is a multi-factorial disease including alterations in the cell signalling pathways. Currently, several drugs are in use to treat cancer but such drugs show negative side effects on normal cells and cause severe toxicity. METHODS The current research is mainly focused on medicinal plants with potential therapeutic efficacy in the treatment of cancer without any adverse effects on normal cells. In this regard, garlic and its active compounds including diallyl sulfide, diallyl trisulfide, ajoene, and allicin have been established to suppress the growth of cancer and killing of cancer cells. RESULT The review focuses on garlic and its active compounds chemopreventive effect through modulating various cell signalling pathways. Additionally, garlic and its active compound were established to induce cell cycle arrest at the G0/G1 phase and G2/M phases in cancer cells, increase the expression of tumor suppressor genes, inhibit the angiogenesis process, induction of apoptosis and modulation of various other genetic pathways. CONCLUSION This review sketches the diverse chemopreventive activities of garlic and their active ingredients in the management of cancer mainly focusing on cell signalling pathways.
Collapse
Affiliation(s)
- Saleh A Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Mohammed A Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Arshad H Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
9
|
Jin LL, Zhang SJ, Lu GX, Lv F, Shang R, Yang J. miR-574-3p inhibits proliferation and invasion in esophageal cancer by targeting FAM3C and MAPK1. Kaohsiung J Med Sci 2019; 36:318-327. [PMID: 31880039 DOI: 10.1002/kjm2.12176] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022] Open
Abstract
Esophageal cancer is considered as one of the leading malignancies. MicroRNA-574-3p (miR-574-3p) was used as a postoperative prognostic indicator in patients with esophageal squamous cell carcinoma. However, the underlying mechanism miR-574-3p involvement in esophageal cancer remains unclear. In this study, the expression of miR-574-3p was reduced in esophageal cancer tissues and cells. In vitro, miR-574-3p mimics and inhibitor were transfected into esophageal cancer cells (TE-1 and TE-8 cells) to up- or downregulating of miR-574-3p. miR-574-3p inhibited proliferation, migration and invasion, and promoted apoptosis in esophageal cancer cells. In addition, miR-574-3p was confirmed to target family with sequence similarity 3 member C (FAM3C) and mitogen-activated protein kinase 1 (MAPK1). miR-574-3p suppressed phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) and rapidly accelerated fibrosarcoma (Raf)/mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling via regulating FAM3C and MAPK1. In vivo, overexpression of miR-574-3p suppressed tumor growth in mice. Our findings indicated that miR-574-3p repressed proliferation and invasion of esophageal cancer via regulation of FAM3C and MAPK1, which provides a new biomarker for esophageal cancer treatment.
Collapse
Affiliation(s)
- Ling-Li Jin
- Department of Gastroenterology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, P.R. China
| | - Shao-Jun Zhang
- Department of Health Management Center, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, P.R. China
| | - Guang-Xin Lu
- Department of Gastroenterology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, P.R. China
| | - Fei Lv
- Department of Gastroenterology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, P.R. China
| | - Rui Shang
- Department of Gastroenterology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, P.R. China
| | - Jie Yang
- Department of Health Management Center, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, P.R. China
| |
Collapse
|
10
|
Wen Z, Jiang R, Huang Y, Wen Z, Rui D, Liao X, Ling Z. Inhibition of lung cancer cells and Ras/Raf/MEK/ERK signal transduction by ectonucleoside triphosphate phosphohydrolase-7 (ENTPD7). Respir Res 2019; 20:194. [PMID: 31443651 PMCID: PMC6708200 DOI: 10.1186/s12931-019-1165-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 08/13/2019] [Indexed: 12/11/2022] Open
Abstract
Background The aim of this study was to investigate the effects and mechanisms of ectonucleoside triphosphate phosphohydrolase-7 (ENTPD7) on lung cancer cells. Methods The expression characteristics of ENTPD7 and its effect on the survival of lung cancer patients were analyzed by referring to The Cancer Genome Atlas (TCGA). Streptavidin-peroxidase (SP) staining was performed to detect the ENTPD7 protein in tumor tissues and adjacent tissues. Plasmid transfection technology was also applied to silence ENTPD7 gene. Crystal violet staining and flow cytometry were performed to determine cell proliferation and apoptosis. Tumor-bearing nude mice model was established to investigate the effect of sh-ENTPD7 on tumors. Results The results showed that patients with low levels of ENTPD7 had higher survival rates. ENTPD7 was up-regulated in lung cancer tissues and cells. Down-regulation of the expression of ENTPD7 inhibited proliferation but promoted apoptosis of lung cancer cell. Silencing ENTPD7 also inhibited the expression levels of Ras and Raf proteins and the phosphorylation of mitogen-activated protein kinase (MEK) and extracellular signal-regulated kinase (ERK). Tumor-bearing nude mice experiments showed that silencing ENTPD7 had an inhibitory effect on lung cancer cells. Conclusions ENTPD7 was overexpressed in lung cancer cells. Down-regulating ENTPD7 could inhibit lung cancer cell proliferation and promote apoptosis via inhibiting the Ras/Raf/MEK/ERK pathway.
Collapse
Affiliation(s)
- Zhongwei Wen
- Department of Respiratory and Critical Care Medicine, the Fourth Affiliated Hospital of Guangxi Medical University, No. 1 Liushi Road, Liuzhou, 545005, Guangxi Province, China
| | - Rongfang Jiang
- Department of Respiratory and Critical Care Medicine, the Fourth Affiliated Hospital of Guangxi Medical University, No. 1 Liushi Road, Liuzhou, 545005, Guangxi Province, China
| | - Ying Huang
- Department of Respiratory and Critical Care Medicine, the Fourth Affiliated Hospital of Guangxi Medical University, No. 1 Liushi Road, Liuzhou, 545005, Guangxi Province, China
| | - Zhineng Wen
- Department of Respiratory and Critical Care Medicine, the Fourth Affiliated Hospital of Guangxi Medical University, No. 1 Liushi Road, Liuzhou, 545005, Guangxi Province, China
| | - Dong Rui
- Department of Respiratory and Critical Care Medicine, the Fourth Affiliated Hospital of Guangxi Medical University, No. 1 Liushi Road, Liuzhou, 545005, Guangxi Province, China
| | - Xiaoxiao Liao
- Department of Respiratory and Critical Care Medicine, the Fourth Affiliated Hospital of Guangxi Medical University, No. 1 Liushi Road, Liuzhou, 545005, Guangxi Province, China
| | - Zhougui Ling
- Department of Respiratory and Critical Care Medicine, the Fourth Affiliated Hospital of Guangxi Medical University, No. 1 Liushi Road, Liuzhou, 545005, Guangxi Province, China.
| |
Collapse
|
11
|
Tian Q, Liu J, Xia S, Wang L, Zhu W. Association between HPV16 infection and expression of ERK12 signaling pathway in cervical cancer. Minerva Med 2019; 112:157-158. [PMID: 31282136 DOI: 10.23736/s0026-4806.19.06183-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qiaoxian Tian
- Department of Gynecology, The Second Affiliated Hospital of Scoochow University, Suzhou, China
| | - Jianhua Liu
- Department of Gynecology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Shuhua Xia
- Department of Gynecology, Shanghai Ninth People's Hospital Fengcheng Branch, Shanghai, China
| | - Lingyun Wang
- Department of Gynecology, Shanghai Ninth People's Hospital Fengcheng Branch, Shanghai, China
| | - Weipei Zhu
- Department of Gynecology, The Second Affiliated Hospital of Scoochow University, Suzhou, China -
| |
Collapse
|
12
|
Exogenous Hydrogen Sulfide Regulates the Growth of Human Thyroid Carcinoma Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6927298. [PMID: 31223424 PMCID: PMC6541980 DOI: 10.1155/2019/6927298] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/24/2019] [Accepted: 04/23/2019] [Indexed: 12/21/2022]
Abstract
Hydrogen sulfide (H2S) is involved in the development and progression of many types of cancer. However, the effect and mechanism of H2S on the growth of human thyroid carcinoma cells remain unknown. In the present study, we found that the proliferation, viability, migration, and invasion of human thyroid carcinoma cells were enhanced by 25–50 μM NaHS (an H2S donor) and inhibited by 200 μM NaHS. However, H2S showed no obvious effects on the proliferation, viability, and migration of human normal thyroid cells. Administration of 50 μM NaHS increased the expression levels of CBS, SQR, and TST, while 200 μM NaHS showed reverse effects in human thyroid carcinoma cells. After treatment with 25-50 μM NaHS, the ROS levels were decreased and the protein levels of p-PI3K, p-AKT, p-mTOR, H-RAS, p-RAF, p-MEK1/2, and p-ERK1/2 were increased, whereas 200 μM NaHS exerted opposite effects in human thyroid carcinoma cells. Furthermore, 1.4-2.8 mg/kg/day NaHS promoted the tumor growth and blood vessel formation in human thyroid carcinoma xenograft tumors, while 11.2 mg/kg/day NaHS inhibited the tumor growth and angiogenesis. In conclusion, our results demonstrate that exogenous H2S regulates the growth of human thyroid carcinoma cells through ROS/PI3K/Akt/mTOR and RAS/RAF/MEK/ERK signaling pathways. Novel H2S-releasing donors/drugs can be designed and applied for the treatment of thyroid cancer.
Collapse
|
13
|
Salehi B, Zucca P, Orhan IE, Azzini E, Adetunji CO, Mohammed SA, Banerjee SK, Sharopov F, Rigano D, Sharifi-Rad J, Armstrong L, Martorell M, Sureda A, Martins N, Selamoğlu Z, Ahmad Z. Allicin and health: A comprehensive review. Trends Food Sci Technol 2019; 86:502-516. [DOI: 10.1016/j.tifs.2019.03.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Kim WT, Seo SP, Byun YJ, Kang HW, Kim YJ, Lee SC, Jeong P, Song HJ, Choe SY, Kim DJ, Kim SK, Ha YS, Moon SK, Lee GT, Kim IY, Yun SJ, Kim WJ. The Anticancer Effects of Garlic Extracts on Bladder Cancer Compared to Cisplatin: A Common Mechanism of Action via Centromere Protein M. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:689-705. [PMID: 29595070 DOI: 10.1142/s0192415x18500362] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although garlic induces apoptosis in cancer cells, it is unclear whether the effects are similar to those of cisplatin against bladder cancer (BC). Therefore, this study investigated whether garlic extracts and cisplatin show similar activity when used to treat BC. The effect of garlic on T24 BC cell line was examined in a BALB/C-nude mouse xenograft model and compared with that of cisplatin. Tissue microarray analysis and gene network analysis were performed to identify differences in gene expression by control tumors and tumors exposed to garlic extract or cisplatin. Investigation of gene expression based on tissues from 165 BC patients and normal controls was then performed to identify common targets of garlic and cisplatin. Tumor volume and tumor weight in cisplatin (0.05[Formula: see text]mg/kg)- and garlic-treated mice were significantly smaller than those in negative control mice. However, cisplatin-treated mice also showed a significant reduction in body weight. Microarray analysis of tumor tissue identified 515 common anticancer genes in the garlic and cisplatin groups ([Formula: see text]). Gene network analysis of 252 of these genes using the Cytoscape and ClueGo software packages mapped 17 genes and 9 gene ontologies to gene networks. BC (NMIBC and MIBC) patients with low expression of centromere protein M (CENPM) showed significantly better progression-free survival than those with high expression. Garlic extract shows anticancer activity in vivo similar to that of cisplatin, with no evident of side effects. Both appear to act by targeting protein-DNA complex assembly; in particular, expression of CENPM.
Collapse
Affiliation(s)
- Won Tae Kim
- * Department of Urology, Chungbuk National University College of Medicine, Cheongju, Chungbuk, South Korea.,† Department of Urology, Chungbuk National University Hospital, Cheongju, Chungbuk, South Korea
| | - Sung-Pil Seo
- † Department of Urology, Chungbuk National University Hospital, Cheongju, Chungbuk, South Korea
| | - Young Joon Byun
- * Department of Urology, Chungbuk National University College of Medicine, Cheongju, Chungbuk, South Korea
| | - Ho-Won Kang
- † Department of Urology, Chungbuk National University Hospital, Cheongju, Chungbuk, South Korea
| | - Yong-June Kim
- * Department of Urology, Chungbuk National University College of Medicine, Cheongju, Chungbuk, South Korea.,† Department of Urology, Chungbuk National University Hospital, Cheongju, Chungbuk, South Korea
| | - Sang-Cheol Lee
- * Department of Urology, Chungbuk National University College of Medicine, Cheongju, Chungbuk, South Korea.,† Department of Urology, Chungbuk National University Hospital, Cheongju, Chungbuk, South Korea
| | - Pildu Jeong
- * Department of Urology, Chungbuk National University College of Medicine, Cheongju, Chungbuk, South Korea
| | | | - Soo Young Choe
- ‡ EBO Co. Ltd., Cheongju, South Korea.,§ Department of Biology, School of Life Sciences, Chungbuk National University, Cheongju, South Korea
| | | | - Seon-Kyu Kim
- ∥ Medical Genomics Research Center, Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Department of Functional Genomics, University of Science and Technology, Daejeon, South Korea
| | - Yun Sok Ha
- ** Department of Urology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Sung-Kwon Moon
- †† School of Food Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Geun Taek Lee
- ‡‡ Section of Urological Oncology, The Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Isaac Yi Kim
- ‡‡ Section of Urological Oncology, The Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Seok Joong Yun
- * Department of Urology, Chungbuk National University College of Medicine, Cheongju, Chungbuk, South Korea.,† Department of Urology, Chungbuk National University Hospital, Cheongju, Chungbuk, South Korea
| | - Wun-Jae Kim
- * Department of Urology, Chungbuk National University College of Medicine, Cheongju, Chungbuk, South Korea.,† Department of Urology, Chungbuk National University Hospital, Cheongju, Chungbuk, South Korea
| |
Collapse
|
15
|
Liu R, Yang YN, Yi L, Qing J, Li QY, Wang WS, Wang J, Tang YX, Tan H. Diallyl disulfide effect on the invasion and migration ability of HL-60 cells with a high expression of DJ-1 in the nucleus through the suppression of the Src signaling pathway. Oncol Lett 2018; 15:6377-6385. [PMID: 29725397 PMCID: PMC5920463 DOI: 10.3892/ol.2018.8139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/04/2018] [Indexed: 12/18/2022] Open
Abstract
The present study examined the effect of diallyl disulfide (DADS) on the invasion and migration ability of HL-60 cells with a high expression of parkinsonism associated deglycase (DJ-1) in the nucleus (HHDN), and its molecular mechanism. A western blot assay was used to measure the effects of DADS and an Src inhibitor on the expression of DJ-1 and the Src signal pathway in HHDN. The effects of DADS and Src inhibitors on the invasion and migration ability of HHDN was detected using Transwell migration and invasion chamber experiments. The experiments were divided into three groups: A control group (HL-60 cells), an empty vector group and a high expression group (HHDN cells). Western blot assays revealed that the expression of DJ-1 in HHDN was inhibited in a time-dependent manner following treatment with DADS for 24, 48 and 72 h. Following DADS treatment, the expression of phosphorylated Src (p-Src) and phosphorylated Fak (p-Fak) were significantly decreased in all groups compared with the untreated groups, however the expression level of Src, Fak and integrin did not change significantly. Western blot analysis results revealed that following treatment with DADS and Src inhibitor, the expression levels of p-Src and p-Fak significantly decreased in all three groups compared with untreated groups, whereas the expression levels of Src, Fak and integrin did not change significantly. The expression of DJ-1 in HHND was inhibited in time-dependent manner following treatment with DADS and Src inhibitor for 24, 48 and 72 h. Transwell migration and invasion assay results revealed that DADS and Src inhibitors may suppress migration and invasion in leukemic cells, and a combination of the two treatments may result in more efficient suppression. DADS may downregulate DJ-1-mediated invasion and migration in leukemic cells through suppressing the Src-Fak-Integrin signaling pathway, and the Src inhibitor may enhance the antitumor effect of DADS.
Collapse
Affiliation(s)
- Ran Liu
- Cancer Research Institute, Key Laboratory of Tumor Cellular and Molecular Pathology, College of Hunan Province, University of South China, Hunan 421001, P.R. China.,Department of Pathology, The First Hospital of Changsha, Changsha, Hunan 410005, P.R. China
| | - Ye-Ning Yang
- Department of Pathology, The First People's Hospital of Youxian, Youxian, Hunan 412300, P.R. China
| | - Lan Yi
- Cancer Research Institute, Key Laboratory of Tumor Cellular and Molecular Pathology, College of Hunan Province, University of South China, Hunan 421001, P.R. China
| | - Jing Qing
- Cancer Research Institute, Key Laboratory of Tumor Cellular and Molecular Pathology, College of Hunan Province, University of South China, Hunan 421001, P.R. China
| | - Qing-Ye Li
- Cancer Research Institute, Key Laboratory of Tumor Cellular and Molecular Pathology, College of Hunan Province, University of South China, Hunan 421001, P.R. China
| | - Wen-Song Wang
- Cancer Research Institute, Key Laboratory of Tumor Cellular and Molecular Pathology, College of Hunan Province, University of South China, Hunan 421001, P.R. China
| | - Juan Wang
- Cancer Research Institute, Key Laboratory of Tumor Cellular and Molecular Pathology, College of Hunan Province, University of South China, Hunan 421001, P.R. China
| | - Yu-Xian Tang
- Cancer Research Institute, Key Laboratory of Tumor Cellular and Molecular Pathology, College of Hunan Province, University of South China, Hunan 421001, P.R. China
| | - Hui Tan
- Cancer Research Institute, Key Laboratory of Tumor Cellular and Molecular Pathology, College of Hunan Province, University of South China, Hunan 421001, P.R. China
| |
Collapse
|
16
|
Ma X, Liu Y, Tan Y, Qu K, He X, Zhang H, Wang Z. Diallyl disulphide inhibits apolipoprotein(a) expression in HepG2 cells through the MEK1-ERK1/2-ELK-1 pathway. Lipids Health Dis 2017; 16:223. [PMID: 29178936 PMCID: PMC5702159 DOI: 10.1186/s12944-017-0616-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/16/2017] [Indexed: 11/24/2022] Open
Abstract
Background Lipoprotein(a) [LP(a)] is implicated as a common and independent risk factor for cardiovascular diseases. The therapeutic options currently available for reducing plasma LP(a) concentrations are limited. Diallyl disulphide (DADS), the main component of garlic, regulates lipid metabolism in hepatocytes and adipocytes through ERK1/2 signalling. This study aimed to assess the effect of DADS on apolipoprotein(a) [apo(a)] in HepG2 cells. We also determined the effects of DADS on apo(a) expression and secretion in HepG2 cells as well as the underlying mechanisms. Methods We examined the role of DADS on apo(a) expression in HepG2 cells by treating cell with different concentrations of DADS (10, 20, 40 and 80 μg/mL) for 24 h or treating cells with 40 μg/mL DADS for 0, 6, 12, 24 and 48 h. Then we used quantitative real-time PCR to analysis apo(a) mRNA levels, used Western blot to analysis apo(a) protein levels and used enzyme-linked immunosorbent assay to test apo(a) secreted levels. To farther determined the role of DADS, we applied Transfection of small interfering RNA to knockdown ELK-1levels and applied PD98059, a specific inhibitor of ERK1/2, to block ERK1/2 signal. Results The results show DADS inhibited apo(a) at both the mRNA and protein levels in HepG2 cells in a dose-dependent manner. DADS-mediated inhibition of apoa(a) expression in HepG2 cells was attenuated when the cells were cultured in medium containing PD98059 (ERK1/2 inhibitor) or were transfected with siRNAs against MEK1 or ELK-1. Overexpression of apo(a) yielded similar results. Conclusions This study reveals that DADS can downregulate apo(a) expression in a dose-dependent manner via the MEK-ERK12-ELK-1 pathway.
Collapse
Affiliation(s)
- Xiaofeng Ma
- Department of Cardiology, Affiliated Nanhua Hospital of University of South China, Hengyang, 421001, China.,Institute of Cardiovascular disease, Key Laboratory for Atherosclerology of Human Province, University of South China, Hengyang, 421001, China
| | - Yami Liu
- Institute of Cardiovascular disease, Key Laboratory for Atherosclerology of Human Province, University of South China, Hengyang, 421001, China
| | - Yanmei Tan
- Department of Pathology, Changde Vocational Technical College, Changde, 415000, China
| | - Kai Qu
- Institute of Cardiovascular disease, Key Laboratory for Atherosclerology of Human Province, University of South China, Hengyang, 421001, China
| | - Xinglan He
- Women and Children Healthcare Hospital of Zhu zhou, Zhuzhou, 412000, China
| | - Hai Zhang
- Department of Pathology, The First Affiliated Hospital of University of South China, Hengyang, 421001, China.
| | - Zuo Wang
- Institute of Cardiovascular disease, Key Laboratory for Atherosclerology of Human Province, University of South China, Hengyang, 421001, China.
| |
Collapse
|
17
|
Garlic-derived organosulfur compound exerts antitumor efficacy via activation of MAPK pathway and modulation of cytokines in SGC-7901 tumor-bearing mice. Int Immunopharmacol 2017; 48:135-145. [DOI: 10.1016/j.intimp.2017.05.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 04/09/2017] [Accepted: 05/03/2017] [Indexed: 12/25/2022]
|
18
|
Lefranc F, Tabanca N, Kiss R. Assessing the anticancer effects associated with food products and/or nutraceuticals using in vitro and in vivo preclinical development-related pharmacological tests. Semin Cancer Biol 2017; 46:14-32. [PMID: 28602819 DOI: 10.1016/j.semcancer.2017.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 06/02/2017] [Accepted: 06/02/2017] [Indexed: 10/19/2022]
Abstract
This review is part of a special issue entitled "Role of dietary pattern, foods, nutrients and nutraceuticals in supporting cancer prevention and treatment" and describes a pharmacological strategy to determine the potential contribution of food-related components as anticancer agents against established cancer. Therefore, this review does not relate to chemoprevention, which is analysed in several other reviews in the current special issue, but rather focuses on the following: i) the biological events that currently represent barriers against the treatment of certain types of cancers, primarily metastatic cancers; ii) the in vitro and in vivo pharmacological pre-clinical tests that can be used to analyse the potential anticancer effects of food-related components; and iii) several examples of food-related components with anticancer effects. This review does not represent a catalogue-based listing of food-related components with more or less anticancer activity. By contrast, this review proposes an original pharmacological strategy that researchers can use to analyse the potential anticancer activity of any food-related component-e.g., by considering the crucial characteristics of cancer biological aggressiveness. This review also highlights that cancer patients undergoing chemotherapy should restrict the use of "food complements" without supervision by a medical nutritionist. By contrast, an equilibrated diet that includes the food-related components listed herein would be beneficial for cancer patients who are not undergoing chemotherapy.
Collapse
Affiliation(s)
- Florence Lefranc
- Service de Neurochirurgie, Hôpital Erasme, Université Libre de Bruxelles, 808 route de Lennik, 1070 Brussels, Belgium.
| | - Nurhayat Tabanca
- U.S Department of Agriculture-Agricultural Research Service, Subtropical Horticulture Research Station,13601 Old Cutler Rd., Miami, FL 33158, USA.
| | - Robert Kiss
- Retired-formerly at the Fonds National de la Recherche Scientifique (FRS-FNRS, Brussels, Belgium), 5 rue d'Egmont, 1000 Brussels, Belgium.
| |
Collapse
|
19
|
Kim WT, Seo SP, Byun YJ, Kang HW, Kim YJ, Lee SC, Jeong P, Seo Y, Choe SY, Kim DJ, Kim SK, Moon SK, Choi YH, Lee GT, Kim IY, Yun SJ, Kim WJ. Garlic extract in bladder cancer prevention: Evidence from T24 bladder cancer cell xenograft model, tissue microarray, and gene network analysis. Int J Oncol 2017; 51:204-212. [PMID: 28498422 DOI: 10.3892/ijo.2017.3993] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/07/2017] [Indexed: 11/06/2022] Open
Abstract
There is a growing interest in the use of naturally occurring agents in cancer prevention. This study investigated the garlic extract affects in bladder cancer (BC) prevention. The effect of garlic extract in cancer prevention was evaluated using the T24 BC BALB/C-nude mouse xenograft model. Microarray analysis of tissues was performed to identify differences in gene expression between garlic extract intake and control diet, and gene network analysis was performed to assess candidate mechanisms of action. Furthermore, we investigated the expression value of selected genes in the data of 165 BC patients. Compared to the control group, significant differences in tumor volume and tumor weight were observed in the groups fed 20 mg/kg (p<0.05), 200 mg/kg, and 1000 mg/kg of garlic extract (p<0.01). Genes (645) were identified as cancer prevention-related genes (fold change >2 and p<0.05) by tissue microarray analysis. A gene network analysis of 279 of these genes (p<0.01) was performed using Cytoscape/ClueGo software: 36 genes and 37 gene ontologies were mapped to gene networks. Protein kinase A (PKA) signaling pathway including AKAP12, RDX, and RAB13 genes were identified as potential mechanisms for the activity of garlic extract in cancer prevention. In BC patients, AKAP12 and RDX were decreased but, RAB13 was increased. Oral garlic extract has strong cancer prevention activity in vivo and an acceptable safety profile. PKA signaling process, especially increasing AKAP12 and RDX and decreasing RAB13, are candidate pathways that may mediate this prevention effect.
Collapse
Affiliation(s)
- Won Tae Kim
- Department of Urology, Chungbuk National University College of Medicine, Cheongju, Chungbuk 28644, Republic of Korea
| | - Sung-Pil Seo
- Department of Urology, Chungbuk National University Hospital, Cheongju, Chungbuk 28644, Republic of Korea
| | - Young Joon Byun
- Department of Urology, Chungbuk National University College of Medicine, Cheongju, Chungbuk 28644, Republic of Korea
| | - Ho-Won Kang
- Department of Urology, Chungbuk National University College of Medicine, Cheongju, Chungbuk 28644, Republic of Korea
| | - Yong-June Kim
- Department of Urology, Chungbuk National University College of Medicine, Cheongju, Chungbuk 28644, Republic of Korea
| | - Sang-Cheol Lee
- Department of Urology, Chungbuk National University College of Medicine, Cheongju, Chungbuk 28644, Republic of Korea
| | - Pildu Jeong
- Department of Urology, Chungbuk National University College of Medicine, Cheongju, Chungbuk 28644, Republic of Korea
| | - Yoonhee Seo
- EBO Co. Ltd., Cheongju, Chungbuk 28116, Republic of Korea
| | - Soo Young Choe
- EBO Co. Ltd., Cheongju, Chungbuk 28116, Republic of Korea
| | - Dong-Joon Kim
- TNT Research Co. Ltd., Anyang, Gyeonggi 14059, Republic of Korea
| | - Seon-Kyu Kim
- Medical Genomics Research Center, Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Department of Functional Genomics, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Sung-Kwon Moon
- School of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi 17546, Republic of Korea
| | - Yung-Hyun Choi
- Department of Biochemistry, Dongeui University College of Oriental Medicine, Busan, South Gyeongsang 47340, Republic of Korea
| | - Geun Taek Lee
- Section of Urological Oncology, The Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
| | - Isaac Yi Kim
- Section of Urological Oncology, The Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
| | - Seok Joong Yun
- Department of Urology, Chungbuk National University College of Medicine, Cheongju, Chungbuk 28644, Republic of Korea
| | - Wun-Jae Kim
- Department of Urology, Chungbuk National University College of Medicine, Cheongju, Chungbuk 28644, Republic of Korea
| |
Collapse
|
20
|
Kim DG, Kang MJ, Hong SS, Choi YH, Shin JH. Antiinflammatory Effects of Functionally Active Compounds Isolated from Aged Black Garlic. Phytother Res 2016; 31:53-61. [DOI: 10.1002/ptr.5726] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 08/16/2016] [Accepted: 08/21/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Dong-gyu Kim
- Namhae Garlic Research Institute; Gyeongnam 52430 Korea
| | - Min Jung Kang
- Namhae Garlic Research Institute; Gyeongnam 52430 Korea
| | - Seong Su Hong
- Bio-Center, Gyeonggi Institute of Science and Technology Promotion; Suwon 16229 Korea
| | - Yun-Hyeok Choi
- Bio-Center, Gyeonggi Institute of Science and Technology Promotion; Suwon 16229 Korea
| | - Jung Hye Shin
- Namhae Garlic Research Institute; Gyeongnam 52430 Korea
| |
Collapse
|
21
|
Yagdi E, Cerella C, Dicato M, Diederich M. Garlic-derived natural polysulfanes as hydrogen sulfide donors: Friend or foe? Food Chem Toxicol 2016; 95:219-33. [DOI: 10.1016/j.fct.2016.07.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 02/06/2023]
|
22
|
Zheng J, Zhou Y, Li Y, Xu DP, Li S, Li HB. Spices for Prevention and Treatment of Cancers. Nutrients 2016; 8:E495. [PMID: 27529277 PMCID: PMC4997408 DOI: 10.3390/nu8080495] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/22/2016] [Accepted: 08/05/2016] [Indexed: 12/14/2022] Open
Abstract
Spices have been widely used as food flavorings and folk medicines for thousands of years. Numerous studies have documented the antioxidant, anti-inflammatory and immunomodulatory effects of spices, which might be related to prevention and treatment of several cancers, including lung, liver, breast, stomach, colorectum, cervix, and prostate cancers. Several spices are potential sources for prevention and treatment of cancers, such as Curcuma longa (tumeric), Nigella sativa (black cumin), Zingiber officinale (ginger), Allium sativum (garlic), Crocus sativus (saffron), Piper nigrum (black pepper) and Capsicum annum (chili pepper), which contained several important bioactive compounds, such as curcumin, thymoquinone, piperine and capsaicin. The main mechanisms of action include inducing apoptosis, inhibiting proliferation, migration and invasion of tumors, and sensitizing tumors to radiotherapy and chemotherapy. This review summarized recent studies on some spices for prevention and treatment of cancers, and special attention was paid to bioactive components and mechanisms of action.
Collapse
Affiliation(s)
- Jie Zheng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Yue Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Ya Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Dong-Ping Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Sha Li
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
- South China Sea Bioresource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
23
|
Zhou L, Zhang H, Wu J. Effects of nitric oxide on the biological behavior of HepG2 human hepatocellular carcinoma cells. Exp Ther Med 2016; 11:1875-1880. [PMID: 27168820 DOI: 10.3892/etm.2016.3128] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 02/11/2016] [Indexed: 12/18/2022] Open
Abstract
Many studies have found the function of nitric oxide (NO) in cancer as a pro-neoplastic vs. an anti-neoplastic effector, but the role of NO in hepatocellular carcinoma (HCC) remains unclear. The present study aimed to investigate the effects of nitric oxide (NO) on the biological behavior of the human hepatocellular carcinoma cell line HepG2. HepG2 cell was cultured in vitro and treated with or without sodium nitroprusside (SNP), a NO donor. Subsequently, we evaluated the effects of NO in cell proliferation, cell cycle, apoptosis, migration and invasion by MTT assay, flow cytometry, wound healing assay and Matrigel invasion assay. We demonstrate that NO significantly inhibited HepG2 cell proliferation by inducing G0/G1 phase arrest in a dose-dependent manner. In addition, compared to the control group, cells treated with SNP showed obviously higher apoptosis ratios in a dose-dependent manner. Furthermore, we revealed that NO effectively inhibited the ability of migration and invasion of HepG2 cells. Taken together, our results suggested that NO has an important role in the regulation of biological behavior in HepG2 cells and the potential for use in the prevention and treatment of HCC.
Collapse
Affiliation(s)
- Lei Zhou
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Heng Zhang
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Jie Wu
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| |
Collapse
|
24
|
Diallyl disulfide attenuated carbon ion irradiation-induced apoptosis in mouse testis through changing the ratio of Tap73/ΔNp73 via mitochondrial pathway. Sci Rep 2015; 5:16020. [PMID: 26526304 PMCID: PMC4630619 DOI: 10.1038/srep16020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 10/08/2015] [Indexed: 12/11/2022] Open
Abstract
Diallyl disulfide (DADS), a major organosulfur compound derived from garlic, has various biological properties, including anti-cancer effects. However, the protective mechanism of DADS against radiation-induced mouse testis cell apoptosis has not been elucidated. In this study, the magnitude of radiation effects evoked by carbon ion irradiation was marked by morphology changes, significant rise in apoptotic cells, activation expression of p53, up regulation the ratio of pro-apoptotic Tap73/anti-apoptotic ΔNp73, as well as alterations of crucial mediator of the mitochondrial pathway. Interestingly, pretreatment with DADS attenuated carbon ion irradiation-induced morphology damages and apoptotic cells. Additionally, DADS elevated radiation-induced p53 and p21 expression, suggesting that p53 might be involved in the inhibition of cell cycle progression through up regulation of p21. Furthermore, administration with DADS prevented radiation-induced Tap73/ΔNp73 expression and consequently down regulated Bax/Bcl-2 ratio, cytochrome c release and caspase-3 expression, indicating that the balance between Tap73 and ΔNp73 had potential to activate p53 responsive genes. Thus, our results showed that radio protection effect of DADS on mouse testis is mediated by blocking apoptosis through changing the ratio of Tap73/ΔNp73 via mitochondrial pathway, suggesting that DADS could be used as a potential radio protection agent for the testis against heavy-ion radiation.
Collapse
|
25
|
Curcumol Inhibits Growth and Induces Apoptosis of Colorectal Cancer LoVo Cell Line via IGF-1R and p38 MAPK Pathway. Int J Mol Sci 2015; 16:19851-67. [PMID: 26307972 PMCID: PMC4581329 DOI: 10.3390/ijms160819851] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/27/2015] [Accepted: 07/30/2015] [Indexed: 01/07/2023] Open
Abstract
Curcumol, isolated from the traditional medical plant Rhizoma Curcumae, is the bioactive component of Zedoary oil, whose potential anti-tumor effect has attracted considerable attention in recent years. Though many researchers have reported curcumol and its bioactivity, the potential molecular mechanism for its anti-cancer effect in colorectal cancer LoVo cells still remains unclear. In the present study, we found that curcumol showed growth inhibition and induced apoptosis of LoVo cells in a dose- and time-dependent manner. The occurrence of its proliferation inhibition and apoptosis came with suppression of IGF-1R expression, and then increased the phosphorylation of p38 mitogen activated protein kinase (MAPK), which might result in a cascade response by inhibiting the CREB survival pathway and finally triggered Bax/Bcl-2 and poly(ADP-ribose) polymerase 1 (PARP-1) apoptosis signals. Moreover, curcumol inhibited colorectal cancer in xenograft models of nude mice. Immunohistochemical and Western blot analysis revealed that curcumol could decrease the expression of ki-67, Bcl-2 as well as CREB1, and increase the expression of Bax and the phosphorylation of p38, which were consistent with our in vitro study. Overall, our in vitro and in vivo data confirmed the anti-cancer activity of curcumol, which was related to a significant inhibition of IGF-1R and activation of p38 MAPKs, indicating that curcumol may be a potential anti-tumor agent for colorectal carcinoma therapy.
Collapse
|
26
|
Activation of transient receptor potential vanilloid 4 induces apoptosis in hippocampus through downregulating PI3K/Akt and upregulating p38 MAPK signaling pathways. Cell Death Dis 2015; 6:e1775. [PMID: 26043075 PMCID: PMC4669828 DOI: 10.1038/cddis.2015.146] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 03/30/2015] [Accepted: 04/06/2015] [Indexed: 12/21/2022]
Abstract
Transient receptor potential vanilloid 4 (TRPV4) is a calcium-permeable cation channel that is sensitive to cell swelling, arachidonic acid and its metabolites, epoxyeicosatrienoic acids, which are associated with cerebral ischemia. The activation of TRPV4 induces cytotoxicity in many types of cells, accompanied by an increase in the intracellular free calcium concentration. TRPV4 activation modulates the mitogen-activated protein kinase (MAPK) and phosphatidyl inositol 3 kinase (PI3K)/ protein kinase B (Akt) signaling pathways that regulate cell death and survival. Herein, we examined TRPV4-induced neuronal apoptosis by intracerebroventricular (ICV) injection of a TRPV4 agonist (GSK1016790A) and assessed its involvement in cerebral ischemic injury. ICV injection of GSK1016790A dose-dependently induced apoptosis in the mouse hippocampi (GSK-injected mice). The protein level of phosphorylated p38 MAPK (p-p38 MAPK) was markedly increased and that of phosphorylated c-Jun N-terminal protein kinase (p-JNK) was virtually unchanged. TRPV4 activation also decreased Bcl-2/Bax protein ratio and increased the cleaved caspase-3 protein level, and these effects were blocked by a PI3K agonist and a p38 MAPK antagonist, but were unaffected by a JNK antagonist. ICV injection of the TRPV4 antagonist HC-067047 reduced brain infarction after reperfusion for 48 h in mice with middle cerebral artery occlusion (MCAO). In addition, HC-067047 treatment attenuated the decrease in the phosphorylated Akt protein level and the increase in p-p38 MAPK protein level at 48 h after MCAO, while the increase in p-JNK protein level remained unchanged. Finally, the decreased Bcl-2/Bax protein ratio and the increased cleaved caspase-3 protein level at 48 h after MCAO were markedly attenuated by HC-067047. We conclude that activation of TRPV4 induces apoptosis by downregulating PI3K/Akt and upregulating p38 MAPK signaling pathways, which is involved in cerebral ischemic injury.
Collapse
|
27
|
Immunomodulation and anti-inflammatory effects of garlic compounds. J Immunol Res 2015; 2015:401630. [PMID: 25961060 PMCID: PMC4417560 DOI: 10.1155/2015/401630] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/24/2015] [Accepted: 01/25/2015] [Indexed: 01/01/2023] Open
Abstract
The benefits of garlic to health have been proclaimed for centuries; however, only recently have Allium sativum and its derivatives been proposed as promising candidates for maintaining the homeostasis of the immune system. The complex biochemistry of garlic makes it possible for variations in processing to yield different preparations with differences in final composition and compound proportion. In this review, we assess the most recent experimental results, which indicate that garlic appears to enhance the functioning of the immune system by stimulating certain cell types, such as macrophages, lymphocytes, natural killer (NK) cells, dendritic cells, and eosinophils, by mechanisms including modulation of cytokine secretion, immunoglobulin production, phagocytosis, and macrophage activation. Finally, because immune dysfunction plays an important role in the development and progress of several diseases, we critically examined immunoregulation by garlic extracts and compounds isolated, which can contribute to the treatment and prevention of pathologies such as obesity, metabolic syndrome, cardiovascular disorders, gastric ulcer, and even cancer. We concluded that A. sativum modulates cytokine secretion and that such modulation may provide a mechanism of action for many of their therapeutic effects.
Collapse
|
28
|
Zhong WZ, Zhou SF. Molecular science for drug development and biomedicine. Int J Mol Sci 2014; 15:20072-8. [PMID: 25375190 PMCID: PMC4264156 DOI: 10.3390/ijms151120072] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/24/2014] [Indexed: 01/21/2023] Open
Affiliation(s)
- Wei-Zhu Zhong
- Gordon Life Science Institute, Belmont, MA 02478, USA.
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33620, USA.
| |
Collapse
|