1
|
Segunda MN, Cortez J, Díaz C, Arancibia R, Torres CG, Parraguez VH, De Los Reyes M, Peralta OA. Potential of mesenchymal stromal/stem cells and spermatogonial stem cells for survival and colonization in bull recipient testes after allogenic transplantation. Theriogenology 2024; 230:192-202. [PMID: 39332379 DOI: 10.1016/j.theriogenology.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/18/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Stem cell transplantation into seminiferous tubules of recipient testis could become a tool for fertility restoration, genetic improvement, or conservation of endangered species. Spermatogonial stem cells (SSCs) are primary candidates for transplantation; however, limited abundance, complexity for isolation and culture, and lack of specific markers have limited their use. Mesenchymal stromal/stem cells (MSCs) are multipotent progenitors that are simple to isolate and culture and possess specific markers for identification, and immune evasive and migratory capacities. The objective of the present study was to evaluate the potential for survival and colonization in seminiferous tubules of two different concentrations of bovine fetal adipose tissue-derived MSCs (AT-MSCs), native of pre-induced, and to compare the fate of bovine adult peripheral blood-derived MSCs (PB-MSCs) and SSCs after allogenic transplantation in testis of recipient bulls. In experiment 1, AT-MSCs at two concentrations (1x107 and 2x107; n = 3) or pre-exposed to 2 μM testosterone and 1 μM retinoic acid (RA) for 14 days (n = 5) were evaluated. In experiment 2, adult PB-MSCs and SSCs (4x107 cells each) pre-exposed to Sertoli cell conditioned media (SCs/CM; n = 4) for 14 days were compared. Each cell type was separately labelled with PKH26 and then transplanted into testes of 8-month-old recipient bulls. Four weeks (Exp. 1) and two weeks (Exp. 2) after transplantation, testicular tissue was processed for confocal microscopy detection of PKH26-positive cells. Mean number of PKH26-positive cells were higher (P < 0.05) in testis transplanted with 2x107 AT-MSCs in the proximal (6.7 ± 3.7) and medial (6.6 ± 3.2) sections compared to testis transplanted with 1x107 AT-MSCs (proximal: 1.9 ± 1; medial: 1.9 ± 1) sections or pre-induced AT-MSCs (proximal: 4.7 ± 5.6; medial: 3.8 ± 4.1). In Exp. 2, mean number of PKH26-positive SSCs in medial testicular section (22.5 ± 1.3) were higher (P < 0.05) compared to respective section in PB-MSCs group (17 ± 4.2). Thus, in vivo data indicates that a higher number of transplanted AT-MSCs resulted in more cells surviving and colonizing seminiferous tubules; however, pre-induction with testosterone and RA did not improve these capacities. SSCs displayed a greater capacity for survival and colonization in recipient seminiferous tubules; however, PB-MSCs were observed in all sections of testis after two weeks of transplantation.
Collapse
Affiliation(s)
- Moisés N Segunda
- Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, 8820808, Santiago, Chile; Doctorate Program of Forestry, Agriculture, and Veterinary Sciences (DCSAV), University of Chile, Santa Rosa 11315, 8820808, Santiago, Chile; Faculdade de Medicina Veterinária, Universidade José Eduardo Dos Santos, Bairro Santo António-Avenida Nuno Alvarez, 555, Huambo, Angola
| | - Jahaira Cortez
- Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, 8820808, Santiago, Chile; Doctorate Program of Forestry, Agriculture, and Veterinary Sciences (DCSAV), University of Chile, Santa Rosa 11315, 8820808, Santiago, Chile
| | - Carlos Díaz
- Doctorate Program in Sciences, UNED, Bravo Murillo 38, 28015, Madrid, Spain
| | - Richard Arancibia
- Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, 8820808, Santiago, Chile
| | - Cristian G Torres
- Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, 8820808, Santiago, Chile
| | - Víctor H Parraguez
- Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, 8820808, Santiago, Chile
| | - Mónica De Los Reyes
- Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, 8820808, Santiago, Chile
| | - Oscar A Peralta
- Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, 8820808, Santiago, Chile; Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, 7820436, Santiago, Chile.
| |
Collapse
|
2
|
Al Turki HA, Al-Suhaibani SS, AlShamlan DY, Ahmed A, Alhawaj HA. Autologous Bone Marrow-Derived Mesenchymal Stem Cells in the Reversal of Unobstructed Azoospermia in Rats. Stem Cells Cloning 2024; 17:33-39. [PMID: 39464173 PMCID: PMC11512562 DOI: 10.2147/sccaa.s481267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024] Open
Abstract
Background and Objective Non-obstructive azoospermia (NOA) is an important cause of male infertility. This study is being proposed to assess the efficacy of autologous bone marrow-derived mesenchymal stem cells (MSCs) in the reversal of busulfan-induced NOA in rats. Methods Twenty adult 3-month-old male rats were divided into two groups: a control group and a study group. In the study group, bone marrow was aspirated to culture MSCs. NOA was created by stopping endogenous spermatogenesis in all the animals by injecting two doses of busulfan 10 mg/kg body weight with a 3 week interval. Four weeks after the last dose of busulfan, two animals were euthanized and the testes were studied histologically to confirm complete azoospermia. In the study group, five million MSCs in 1 mL normal saline were injected into seminiferous tubules; and in the control group, 1 mL of normal saline was injected. After 4 weeks of MSC injection, all the rats were euthanized and epididymis tails and testes were harvested and sent for measurement of serological indices, including luminal, cellular, and total diameters, luminal, cellular, and cross-sectional areas, number of tubules per unit area of testis, numerical density of the tubules, and spermatogenesis index, pre- and post-MSC transplantation. Results The effect of busulfan on the testicular tissue was universally devastating. In the control group, there was variable length and width of markedly necrotic seminiferous tubules, whereas in the group treated with autologous bone marrow-derived MSCs there was variable height of germinal epithelium in seminiferous tubules, with active spermatogenesis, showing spermatogonia, spermatocytes, and sperm. Conclusion MSC injection in the testis has the potential to reverse the testicular function of spermatogenesis after cytotoxic therapy. Human trials should be undertaken to confirm our findings and bring the results into clinical practice.
Collapse
Affiliation(s)
- Haifa A Al Turki
- Department of Obstetrics and Gynecology, Imam AbdulRahman Bin Faisal University, Dammam and King Fahd Hospital of the University, AlKhobar, Saudi Arabia
| | - Shaheed S Al-Suhaibani
- Department of Urology, Imam AbdulRahman Bin Faisal University, Dammam and King Fahd Hospital of the University, AlKhobar, Saudi Arabia
| | - Danah Y AlShamlan
- Department of Obstetrics and Gynecology, Imam AbdulRahman Bin Faisal University, Dammam and King Fahd Hospital of the University, AlKhobar, Saudi Arabia
| | - Ayesha Ahmed
- Department of Pathology, Imam AbdulRahman Bin Faisal University, Dammam and King Fahd Hospital of the University, AlKhobar, Saudi Arabia
| | - Hussain A Alhawaj
- Department of Animal House, Imam AbdulRahman Bin Faisal University, Dammam and King Fahd Hospital of the University, AlKhobar, Saudi Arabia
| |
Collapse
|
3
|
Mohammadi A, Bashiri Z, Rafiei S, Asgari H, Shabani R, Hosseini S, Koruji M. Testicular niche repair after gonadotoxic treatments: Current knowledge and future directions. Biol Cell 2024; 116:e2300123. [PMID: 38470182 DOI: 10.1111/boc.202300123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/25/2024] [Indexed: 03/13/2024]
Abstract
The testicular niche, which includes the germ cells, somatic cells, and extracellular matrix, plays a crucial role in maintaining the proper functions of the testis. Gonadotoxic treatments, such as chemotherapy and radiation therapy, have significantly improved the survival rates of cancer patients but have also been shown to have adverse effects on the testicular microenvironment. Therefore, repairing the testicular niche after gonadotoxic treatments is essential to restore its function. In recent years, several approaches, such as stem cell transplantation, gene therapy, growth factor therapy, and pharmacological interventions have been proposed as potential therapeutic strategies to repair the testicular niche. This comprehensive review aims to provide an overview of the current understanding of testis damage and repair mechanisms. We will cover a range of topics, including the mechanism of gonadotoxic action, repair mechanisms, and treatment approaches. Overall, this review highlights the importance of repairing the testicular niche after gonadotoxic treatments and identifies potential avenues for future research to improve the outcomes for cancer survivors.
Collapse
Affiliation(s)
- Amirhossein Mohammadi
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Bashiri
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Omid Fertility & Infertility Clinic, Hamedan, Iran
| | - Sara Rafiei
- Department of Botany and Plant Sciences, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Hamidreza Asgari
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ronak Shabani
- Reproductive Sciences and Technology Research Center, Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - SeyedJamal Hosseini
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Koruji
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Alhefnawy MA, Elmorsy G, Bakry S, El-Amrosy H, Mearaj I, Sabra EA, Badr OM, Ibraheem D, Khalifa T. Evaluation of human bone marrow mesenchymal stem cells in the treatment of non obstructive azoospermia. Arch Ital Urol Androl 2024; 96:12285. [PMID: 38451258 DOI: 10.4081/aiua.2024.12285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/09/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Non-obstructive azoospermia (NOA) represents an infertility problem that is usually difficult to treat. Such patients usually have testicular biopsy of germ cell aplasia or spermatogenic arrest. In recent decades, mesenchymal stem cells (MSCs) had been studied thoroughly and proved safe and effective regarding their capability for trans-differentiation into different cell types. The aim of this study was to evaluate the effect of MSCs local intratesticular injection in induction of spermatogenesis. PATIENTS AND METHOD The current study included 87 infertile non-obstructive azoospermic patients. Clinical assessment and repeated semen analysis with centrifugation were done to confirm azoospermia. Karyotyping and AZF study were done. Some of the patients had previous testicular biopsy proving a lack of sperm in the testes. Single intratesticular injection of purified MSCs suspension was done. RESULTS 20.7% of patients showed sperm in their semen after variable period of time. Hormonal profile among treated patients showed significant improvement regardless success of treatment. Also most of the treated patients appreciated the improvement of their sexual function and libido. CONCLUSIONS Bone marrow derived MSCs could be a new hope and therapeutic modality for treatment of refractory cases of NOA.
Collapse
Affiliation(s)
| | - Gamal Elmorsy
- Clinical Pathology, Faculty of Medicine, Al-Azhar University, Cairo.
| | - Sayed Bakry
- Genetic Engineering, Faculty of Science for Boys in Cairo, Al-Azhar University, Cairo.
| | - Hesham El-Amrosy
- Clinical Pathology, Egypt Ministry of Health and Population, Cairo.
| | - Ibrahim Mearaj
- Dermatology and Andrology, Faculty of Medicine, Al-Azhar University, Cairo.
| | - Ebrahim A Sabra
- Animal cell and tissue culture, Genetic engineering and Biotechnology Institute, Sadat University, Sadat City.
| | - Osama M Badr
- Animal cell and tissue culture, Genetic engineering and Biotechnology Institute, Sadat University, Sadat City.
| | - Dalia Ibraheem
- Department of Tissue engineering, Faculty of Science, Al-Azhar University, Cairo.
| | - Taymour Khalifa
- Dermatology and Andrology , Al-Azhar University Faculty of Medicine, Cairo.
| |
Collapse
|
5
|
Segunda MN, Díaz C, Torres CG, Parraguez VH, De Los Reyes M, Peralta OA. Bovine Peripheral Blood-Derived Mesenchymal Stem Cells (PB-MSCs) and Spermatogonial Stem Cells (SSCs) Display Contrasting Expression Patterns of Pluripotency and Germ Cell Markers under the Effect of Sertoli Cell Conditioned Medium. Animals (Basel) 2024; 14:803. [PMID: 38473188 DOI: 10.3390/ani14050803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/05/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
In vitro gamete derivation has been proposed as an interesting strategy for treatment of infertility, improvement of genetic traits, and conservation of endangered animals. Spermatogonial stem cells (SSCs) are primary candidates for in vitro gamete derivation; however, recently, mesenchymal stem cells (MSCs) have also been proposed as candidates for germ cell (GCs) differentiation mainly due to their transdifferentiating capacity. The objective of the present study was to compare the potential for GC differentiation of bovine peripheral blood-derived MSCs (PB-MSCs) and SSCs under the effect of conditioned medium (CM) derived from Sertoli cells (SCs/CM). Samples were collected every 7 days for 21 days and analyzed for pluripotent, GC, and MSC marker expression. The absence of OCT4 and the increased (p < 0.05) expression of NANOG seems to play a role in SSC differentiation, whereas the absence of NANOG and the increased expression (p < 0.05) of OCT4 may be required for PB-MSC differentiation into GCs. SSCs cultured with SCs/CM increased (p < 0.05) the expression of PIWIL2 and DAZL, while PB-MSCs cultured under the same condition only increased (p < 0.05) the expression of DAZL. Overall, the patterns of markers expression suggest that PB-MSCs and SSCs activate different signaling pathways after exposure to SCs/CM and during differentiation into GCs.
Collapse
Affiliation(s)
- Moisés N Segunda
- Faculty of Veterinary and Animal Sciences, University of Chile, Santiago 8820808, Chile
- Doctorate Program of Forestry, Agriculture, and Veterinary Sciences (DCSAV), University of Chile, Santiago 8820808, Chile
- Faculdade de Medicina Veterinária, Universidade José Eduardo dos Santos, Bairro Santo António-Avenida Nuno Alvarez, Huambo 555, Angola
| | - Carlos Díaz
- Doctorate Program in Sciences, UNED, Bravo Murillo 38, 28015 Madrid, Spain
| | - Cristian G Torres
- Faculty of Veterinary and Animal Sciences, University of Chile, Santiago 8820808, Chile
| | - Víctor H Parraguez
- Faculty of Veterinary and Animal Sciences, University of Chile, Santiago 8820808, Chile
| | - Mónica De Los Reyes
- Faculty of Veterinary and Animal Sciences, University of Chile, Santiago 8820808, Chile
| | - Oscar A Peralta
- Faculty of Veterinary and Animal Sciences, University of Chile, Santiago 8820808, Chile
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
| |
Collapse
|
6
|
Cortez J, Torres CG, Parraguez VH, De Los Reyes M, Peralta OA. Bovine adipose tissue-derived mesenchymal stem cells self-assemble with testicular cells and integrates and modifies the structure of a testicular organoids. Theriogenology 2024; 215:259-271. [PMID: 38103403 DOI: 10.1016/j.theriogenology.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/21/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Mesenchymal stem cells (MSC) display self-renewal and mesodermal differentiation potentials. These characteristics make them potentially useful for in vitro derivation of gametes, which may constitute experimental therapies for human and animal reproduction. Organoids provide a spatial support and may simulate a cellular niche for in vitro studies. In this study, we aimed at evaluating the potential integration of fetal bovine MSCs derived from adipose tissue (AT-MSCs) in testicular organoids (TOs), their spatial distribution with testicular cells during TO formation and their potential for germ cell differentiation. TOs were developed using Leydig, Sertoli, and peritubular myoid cells that were previously isolated from bovine testes (n = 6). Thereafter, TOs were characterized using immunofluorescence and Q-PCR to detect testicular cell-specific markers. AT-MSCs were labeled with PKH26 and then cultured with testicular cells at a concentration of 1 × 106 cells per well in Ultra Low Attachment U-shape bottom (ULA) plates. TOs formed by testicular cells and AT-MSCs (TOs + AT-MSCs) maintained a rounded structure throughout the 28-day culture period and did not show significant differences in their diameters. Conversely, control TOs exhibited a compact structure until day 7 of culture, while on day 28 they displayed cellular extensions around their structure. Control TOs had greater (P < 0.05) diameters compared to TOs + AT-MSCs. AT-MSCs induced an increase in proportion of Leydig and peritubular myoid cells in TOs + AT-MSCs; however, did not induce changes in the overall gene expression of testicular cell-specific markers. STAR immunolabelling detected Leydig cells that migrated from the central area to the periphery and formed brunches in control TOs. However, in TOs + AT-MSCs, Leydig cells formed a compact peripheral layer. Sertoli cells immunodetected using WT1 marker were observed within the central area forming clusters of cells in TOs + AT-MSCs. The expression of COL1A associated to peritubular myoids cells was restricted to the central region in TOs + AT-MSCs. Thus, during a 28-day culture period, fetal bovine AT-MSCs integrated and modified the structure of the TOs, by restricting formation of branches, limiting the overall increase in diameters and increasing the proportions of Leydig and peritubular myoid cells. AT-MSCs also induced a reorganization of testicular cells, changing their distribution and particularly the location of Leydig cells.
Collapse
Affiliation(s)
- Jahaira Cortez
- Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, Santiago 8820808 Chile; Doctorate Program of Forestry, Agriculture, and Veterinary Sciences (DCSAV), University of Chile, Santa Rosa 11315, Santiago 8820808 Chile
| | - Cristian G Torres
- Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, Santiago 8820808 Chile
| | - Víctor H Parraguez
- Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, Santiago 8820808 Chile
| | - Mónica De Los Reyes
- Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, Santiago 8820808 Chile
| | - Oscar A Peralta
- Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, Santiago 8820808 Chile.
| |
Collapse
|
7
|
Papa PM, Segabinazzi LGTM, Fonseca-Alves CE, Papa FO, Alvarenga MA. Intratesticular transplantation of allogenic mesenchymal stem cells mitigates testicular destruction after induced heat stress in Miniature-horse stallions. J Equine Vet Sci 2024; 132:104961. [PMID: 37925113 DOI: 10.1016/j.jevs.2023.104961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/09/2023] [Accepted: 11/02/2023] [Indexed: 11/06/2023]
Abstract
Testicular degeneration (TD) is the most frequent cause of sub or infertility in stallions. Currently, mesenchymal stem cells (MSC) have been studied as a therapeutic option for several diseases including induced-TD in laboratory animals. Therefore, this study aimed to evaluate the effect of intratesticular MSC therapy on the testicular histology of stallions submitted to scrotal heat stress. Ten healthy Miniature-horse stallions were submitted to testicular heat stress induced by a heating wrap device (42-45°C). Afterward, the stallions were divided into two groups and treated seven days later. MSCs-treated stallions were treated with an intratesticular injection of 10 × 106 of MSCs diluted in 5 mL of PBS, whereas placebo-treated stallions had 5 mL of PBS intratesticular injected. All stallions had testicular biopsies collected seven days before and one- and 14-days post-heat stress and were castrated 30 days after testicular insult. Tissue sections were stained with H&E and evaluated for the tubular and luminal diameter, epithelial thickness, seminiferous tubules (STs) integrity, the number of spermatozoa in the STs, and the percent of abnormal STs. Significance was set at P≤0.05. In both groups, testicular heat stress damaged the STs (P<0.05). However, STs' parameters were improved in MSCs-treated stallions compared to placebo-treated stallions 30 days after the testicular insult (P<0.05). In conclusion, the results of the present study suggest that intratesticular MSC therapy provided a therapeutic advantage in rescuing acute TD in stallions. However, further studies are essential to evaluate the benefits of this therapy on semen parameters and stallions with idiopathic TD.
Collapse
Affiliation(s)
- Patricia M Papa
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, FMVZ, Universidade Estadual Paulista "Júlio de Mesquita Filho", UNESP, Botucatu, Brazil
| | - Lorenzo G T M Segabinazzi
- Department of Clinical Sciences, Ross University School of Veterinary Medicine, Basseterre, St. Kitts, West Indies.
| | - Carlos E Fonseca-Alves
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, FMVZ, Universidade Estadual Paulista "Júlio de Mesquita Filho", UNESP, Botucatu, Brazil
| | - Frederico O Papa
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, FMVZ, Universidade Estadual Paulista "Júlio de Mesquita Filho", UNESP, Botucatu, Brazil
| | - Marco A Alvarenga
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, FMVZ, Universidade Estadual Paulista "Júlio de Mesquita Filho", UNESP, Botucatu, Brazil
| |
Collapse
|
8
|
Margiana R. Enhancing Spermatogenesis in Non-obstructive Azoospermia Through Mesenchymal Stem Cell Therapy22. Curr Stem Cell Res Ther 2024; 19:1429-1441. [PMID: 38243988 DOI: 10.2174/011574888x283311231226081845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/29/2023] [Accepted: 11/10/2023] [Indexed: 01/22/2024]
Abstract
Stem cells hold great promise as novel and encouraging therapeutic tools in the treatment of degenerative disorders due to their differentiation potential while maintaining the capability to self-renewal and their unlimited ability to divide and regenerate tissue. A variety of different types of stem cells can be used in cell therapy. Among these, mesenchymal stem cell (MSC) therapy has gradually established itself as a novel method for treating damaged tissues that need restoration and renewal. Male infertility is an important health challenge affecting approximately 8-12% of people around the world. This abnormality can be caused by primary, congenital, acquired, or idiopathic reasons. Men with no sperm in their semen have a condition called azoospermia, caused by non-obstructive (NOA) causes and post-testicular obstructive causes. Accumulating evidence has shown that various types of MSCs can differentiate into germ cells and improve spermatogenesis in the seminiferous tubules of animal models. In addition, recent studies in animal models have exhibited that extracellular vesicles derived from MSCs can stimulate the progression of spermatogenesis and germ cell regeneration in the recipient testes. In spite of the fact that various improvements have been made in the treatment of azoospermia disorder in animal models by MSC or their extracellular vesicles, no clinical trials have been carried out to test their therapeutic effect on the NOA. In this review, we summarize the potential of MSC transplantation for treating infertility caused by NOA.
Collapse
Affiliation(s)
- Ria Margiana
- Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Indonesia General Academic Hospital, Depok, Indonesia
- Ciptomangunkusumo General Academic Hospital, Jakarta, Indonesia
| |
Collapse
|
9
|
Liakath Ali F, Park HS, Beckman A, Eddy AC, Alkhrait S, Ghasroldasht MM, Al-Hendy A, Raheem O. Fertility Protection, A Novel Concept: Umbilical Cord Mesenchymal Stem Cell-Derived Exosomes Protect against Chemotherapy-Induced Testicular Cytotoxicity. Int J Mol Sci 2023; 25:60. [PMID: 38203232 PMCID: PMC10779299 DOI: 10.3390/ijms25010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Currently, there is no viable option for fertility preservation in prepubertal boys. Experimentally, controlled vitrification of testicular tissue has been evaluated and found to cause potential structural damage to the spermatogonial stem cell (SSC) niche during cryopreservation. In this report, we leveraged the regenerative effect of human umbilical cord-derived Mesenchymal stem cell exosomes (h-UCMSC-Exo) to protect against testicular damage from the cytotoxic effects of polychemotherapy (CTX). A chemotherapy-induced testicular dysfunctional model was established by CTX treatment with cyclophosphamide and Busulfan in vitro (human Sertoli cells) and in prepubescent mice. We assessed the effects of the exosomes by analyzing cell proliferation assays, molecular analysis, immunohistochemistry, body weight change, serum hormone levels, and fertility rate. Our data indicates the protective effect of h-UCMSC-Exo by preserving the SSC niche and preventing testicular damage in mice. Interestingly, mice that received multiple injections of h-UCMSC-Exo showed significantly higher fertility rates and serum testosterone levels (p < 0.01). Our study demonstrates that h-UCMSC-Exo can potentially be a novel fertility protection approach in prepubertal boys triaged for chemotherapy treatment.
Collapse
Affiliation(s)
- Farzana Liakath Ali
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (F.L.A.)
| | - Hang-Soo Park
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (F.L.A.)
| | - Analea Beckman
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (F.L.A.)
| | - Adrian C. Eddy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (F.L.A.)
| | - Samar Alkhrait
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (F.L.A.)
| | | | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (F.L.A.)
| | - Omer Raheem
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (F.L.A.)
- Department of Surgery, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
10
|
Anvari A, Movahedin M, Hamzeh M. Optimizing Immature Testicular Tissue and Cell Transplantation Results: Comparing Transplantation Sites and Scaffolds. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2023; 18:12-19. [PMID: 38041454 PMCID: PMC10692742 DOI: 10.22074/ijfs.2023.559999.1350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 05/06/2023] [Accepted: 06/27/2023] [Indexed: 12/03/2023]
Abstract
For patients who had testicular tissue cryopreserved before receiving gonadotoxic therapies, transplantation of testicular tissues and cells has been recommended as a potential therapeutic option. There are no studies that indicate the generation of sperm after human immature testicular tissue (ITT) or spermatogonial stem cells (SSCs) transplantation. The use of releasing scaffolds and localized drug delivery systems as well as the optimizing transplantation site can play an effective role in increasing the efficiency and improving the quality of testicular tissue and cell transplantation in animal models. Current research is focused on optimizing ITT and cell transplantation, the use of releasing scaffolds, and the selection of the right transplantation site that might restore sperm production or male infertility treatment. By searching the PubMed and Google Scholar databases, original and review papers were collected. Search terms were relevant for SSCs and tissue transplantation. In this review, we'll focus on the potential advantages of using scaffolds and choosing the right transplantation site to improve transplantation outcomes.
Collapse
Affiliation(s)
- Alireza Anvari
- Department of Anatomical Sciences, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Mansoureh Movahedin
- Department of Anatomical Sciences, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran.
| | - Maedeh Hamzeh
- Department of Anatomical Sciences, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
11
|
Adriansyah RF, Margiana R, Supardi S, Narulita P. Current Progress in Stem Cell Therapy for Male Infertility. Stem Cell Rev Rep 2023; 19:2073-2093. [PMID: 37440145 DOI: 10.1007/s12015-023-10577-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2023] [Indexed: 07/14/2023]
Abstract
Infertility has become one of the most common issues worldwide, which has negatively affected society and infertile couples. Meanwhile, male infertility is responsible for about 50% of infertility. Accordingly, a great number of researchers have focused on its treatment during the last few years; however, current therapies such as assisted reproductive technology (ART) are not effective enough in treating male infertility. Because of their self-renewal and differentiation capabilities and unlimited sources, stem cells have recently raised great hope in the treatment of reproductive system disorders. Stem cells are undifferentiated cells that can induce different numbers of specific cells, such as male and female gametes, demonstrating their potential application in the treatment of infertility. The present review aimed at identifying the causes and potential factors that influence male fertility. Besides, we highlighted the recent studies that investigated the efficiency of stem cells such as spermatogonial stem cells (SSCs), embryonic stem cells (ESCs), very small embryonic-like stem cells (VSELs), induced pluripotent stem cells (iPSCs), and mesenchymal stem cells (MSCs) in the treatment of various types of male infertility.
Collapse
Affiliation(s)
| | - Ria Margiana
- Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia.
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia.
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
- Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
- Indonesia General Academic Hospital, Depok, Indonesia.
- Ciptomangunkusumo General Academic Hospital, Jakarta, Indonesia.
| | - Supardi Supardi
- Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Pety Narulita
- Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| |
Collapse
|
12
|
Kaushik A, Metkari SM, Ali S, Bhartiya D. Preventing/Reversing Adverse Effects of Endocrine Disruption on Mouse Testes by Normalizing Tissue Resident VSELs. Stem Cell Rev Rep 2023; 19:2525-2540. [PMID: 37561284 DOI: 10.1007/s12015-023-10601-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2023] [Indexed: 08/11/2023]
Abstract
Reproductive health of men is declining in today's world due to increased developmental exposure to endocrine-disrupting chemicals (EDCs). We earlier reported that neonatal exposure to endocrine disruption resulted in reduced numbers of seminiferous tubules in Stage VIII, decreased sperm count, and infertility along with testicular tumors in 65% of diethylstilbestrol (DES) treated mice. Epigenetic changes due to EDCs, pushed the VSELs out of a quiescent state to enter cell cycle and undergo excessive self-renewal while transition of c-KIT- stem cells into c-KIT + germ cells was blocked due to altered MMR axis (Np95, Pcna, Dnmts), global hypomethylation (reduced expression of 5-methylcytosine) and loss of imprinting at Igf2-H19 and Dlk1-Meg3 loci. The present study was undertaken to firstly show similar defects in FACS sorted VSELs from DES treated testis and to further explore the reversal of these testicular pathologies by (i) oral administration of XAR (a nano-formulation of resveratrol) or (ii) inter-tubular transplantation of mesenchymal stromal cells (MSCs). Similar defects as reported earlier in the testes were evident, based on RNAseq data, on FACS sorted VSELs from DES treated mice. Both strategies were found effective, improved spermatogenesis, increased number of tubules in Stage VIII, normalized numbers of VSELs and c-KIT + cells, improved epigenetic status of VSELs to restore quiescent state, and reduced cancer incidence from 65% after DES to 13.33% and 20% after XAR treatment or MSCs transplantation respectively. Results provide a basis for initiating clinical studies and the study falls under the umbrella of United Nations Sustainable Development Goal 3 to ensure healthy lives and well-being for all of all ages.
Collapse
Affiliation(s)
- Ankita Kaushik
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive & Child Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| | - S M Metkari
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive & Child Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| | - Subhan Ali
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive & Child Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| | - Deepa Bhartiya
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive & Child Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India.
- Epigeneres Biotech Pvt Ltd, Lower Parel, Mumbai, 400 013, India.
| |
Collapse
|
13
|
Mo P, Zhao Z, Ke X, Fan Y, Li C. Effects of clinical medications on male fertility and prospects for stem cell therapy. Front Cell Dev Biol 2023; 11:1258574. [PMID: 37791073 PMCID: PMC10543686 DOI: 10.3389/fcell.2023.1258574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/07/2023] [Indexed: 10/05/2023] Open
Abstract
An increasing number of men require long-term drug therapy for various diseases. However, the effects of long-term drug therapy on male fertility are often not well evaluated in clinical practice. Meanwhile, the development of stem cell therapy and exosomes treatment methods may provide a new sight on treating male infertility. This article reviews the influence and mechanism of small molecule medications on male fertility, as well as progress of stem cell and exosomes therapy for male infertility with the purpose on providing suggestions (recommendations) for evaluating the effect of drugs on male fertility (both positive and negative effect on male fertility) in clinical application and providing strategies for diagnosis and treatment of male infertility.
Collapse
Affiliation(s)
| | | | | | - Yong Fan
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Department of Obstetrics and Gynecology, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chaohui Li
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Department of Obstetrics and Gynecology, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
14
|
Zhuge R, Li Z, He C, Ma W, Yan J, Xue Q, Wang R, Liu Y, Lu R, Du H, Yin F, Guo L. Bone marrow mesenchymal stem cells repair hexavalent chromium-induced testicular injury by regulating autophagy and ferroptosis mediated by the AKT/mTOR pathway in rats. ENVIRONMENTAL TOXICOLOGY 2023; 38:289-299. [PMID: 36416502 DOI: 10.1002/tox.23713] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 10/29/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
There is no ideal therapy for testicular damage induced by Cr(VI); however, bone marrow mesenchymal stem cells (BMSCs) transplantation may be a promising therapy. A Cr(VI) solution was administered to rats by intraperitoneal injection for 30 days, then BMSCs from donor rats were transplanted. Two weeks later, decreased activity and appetite, along with other pathological changes, were improved in the BMSCs group. The location of BMSCs in damaged testes was observed via laser confocal microscopy. Chromium content in the Cr(VI) and BMSCs groups significantly increased compared with that in the control group, but there was no significant difference between the two groups, as revealed by atomic absorption spectrometry. The ferrous iron and the total iron content of testes in the BMSCs group were significantly lower than those in the Cr(VI) group, as observed by Lillie staining and a tissue iron assay kit. Western blotting and immunohistochemical analyses revealed that the expression of Beclin 1, LC3B, 4-hydroxynonenal, and transferrin receptor 1 was decreased in the BMSCs group, compared with the Cr(VI) group. The expression of glutathione peroxidase 4 (GPX4), SLC7A11, p-AKT, mammalian target of rapamycin (mTOR), and p-mTOR in the BMSCs group was higher than that in the Cr(VI) group. Taken together, we propose that BMSCs repair Cr(VI)-damaged testes by alleviating ferroptosis and downregulating autophagy-associated proteins through the upregulation of AKT and mTOR phosphorylation.
Collapse
Affiliation(s)
- Ruijian Zhuge
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Zhongrun Li
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Changhao He
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Wenxuan Ma
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Jun Yan
- Department of Scientific Research Center, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| | - Qian Xue
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Rui Wang
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Ying Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Rifeng Lu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Haiying Du
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Fei Yin
- Department of Orthopaedics, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| | - Li Guo
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
15
|
Ibrahim D, Abozied N, Abdel Maboud S, Alzamami A, Alturki NA, Jaremko M, Alanazi MK, Alhuthali HM, Seddek A. Therapeutic potential of bone marrow mesenchymal stem cells in cyclophosphamide-induced infertility. Front Pharmacol 2023; 14:1122175. [PMID: 37033609 PMCID: PMC10073512 DOI: 10.3389/fphar.2023.1122175] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/26/2023] [Indexed: 04/11/2023] Open
Abstract
Cancer is a deadly disease characterized by abnormal cell proliferation. Chemotherapy is one technique of cancer treatment. Cyclophosphamide (CYP) is the most powerful chemotherapy medication, yet it has serious adverse effects. It is an antimitotic medicine that regulates cell proliferation and primarily targets quickly dividing cells, and it has been related to varying levels of infertility in humans. In the current study, we assessed the biochemical, histological, and microscopic evaluations of testicular damage following cyclophosphamide administration. Further, we have explored the potential protective impact of mesenchymal stem cell (MSCs) transplantation. The biochemical results revealed that administration of cyclophosphamide increased serum concentrations of follicle-stimulating hormone (FSH) and luteinizing hormone (LH), while it decreased serum concentrations of free testosterone hormone (TH), testicular follicle-stimulating hormone, luteinizing hormone, and free testosterone hormone concentrations, testicular total antioxidant capacity (TAC), and testicular activity of superoxide dismutase (SOD) enzyme. The histology and sperm examinations revealed that cyclophosphamide induced destruction to the architectures of several tissues in the testes, which drastically reduced the Johnsen score as well as the spermatogenesis process. Surprisingly, transplantation of mesenchymal stem cell after cyclophosphamide administration altered the deterioration effect of cyclophosphamide injury on the testicular tissues, as demonstrated by biochemical and histological analysis. Our results indicated alleviation of serum and testicular sex hormones, as well as testicular oxidative stress markers (total antioxidant capacity and superoxide dismutase activity), and nearly restored the normal appearance of the testicular tissues, Johnsen score, and spermatogenesis process. In conclusion, our work emphasizes the protective pharmacological use of mesenchymal stem cell to mitigate the effects of cyclophosphamide on testicular tissues that impair the spermatogenesis process following chemotherapy. These findings indicate that transferring mesenchymal stem cell to chemotherapy patients could significantly improve spermatogenesis.
Collapse
Affiliation(s)
- Dalia Ibrahim
- The Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- *Correspondence: Dalia Ibrahim,
| | - Nadia Abozied
- The Department of Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Samar Abdel Maboud
- The Department of Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Ahmad Alzamami
- Clinical Laboratory Science Department, College of Applied Medical Science, Shaqra University, AlQuwayiyah, Saudi Arabia
| | - Norah A. Alturki
- Clinical Laboratory Science Department, College of Applied Medical Science, King Saud University, Riyadh, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative and Red Sea Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Maram Khalil Alanazi
- Pharm.D, Scientific Office and Regulatory Affair Department, Dallah Pharma Company, Riyadh, Saudi Arabia
| | - Hayaa M. Alhuthali
- Department of Clinical laboratory sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Asmaa Seddek
- The Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
16
|
Abd-Alameer M, Rajabibazl M, Esmaeilizadeh Z, Fazeli Z. SAG-dihydrochloride enhanced the expression of germ cell markers in the human bone marrow- mesenchymal stem cells (BM-MSCs) through the activation of GLI-independent hedgehog signaling pathway. Gene X 2023; 849:146902. [DOI: 10.1016/j.gene.2022.146902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 11/15/2022] Open
|
17
|
Roshandel E, Mehravar M, Nikoonezhad M, Alizadeh AM, Majidi M, Salimi M, Hajifathali A. Cell-Based Therapy Approaches in Treatment of Non-obstructive Azoospermia. Reprod Sci 2022; 30:1482-1494. [PMID: 36380137 PMCID: PMC9666961 DOI: 10.1007/s43032-022-01115-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022]
Abstract
The rate of infertility has globally increased in recent years for a variety of reasons. One of the main causes of infertility in men is azoospermia that is defined by the absence of sperm in the ejaculate and classified into two categories: obstructive azoospermia and non-obstructive azoospermia. In non-obstructive azoospermia, genital ducts are not obstructed, but the testicles do not produce sperm at all, due to various reasons. Non-obstructive azoospermia in most cases has no therapeutic options other than assisted reproductive techniques, which in most cases require sperm donors. Here we discuss cell-based therapy approaches to restore fertility in men with non-obstructive azoospermia including cell-based therapies of non-obstructive azoospermia using regenerative medicine and cell-based therapies of non-obstructive azoospermia by paracrine and anti-inflammatory pathway, technical and ethical challenges for using different cell sources and alternative options will be described, and then the more effectual approaches will be mentioned as future trends.
Collapse
Affiliation(s)
- Elham Roshandel
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985711151, Tehran, Iran
| | - Maryam Mehravar
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985711151, Tehran, Iran
| | - Maryam Nikoonezhad
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985711151, Tehran, Iran
| | - Afshin Mohammad Alizadeh
- Department of Internal Medicine, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Majidi
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Salimi
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985711151, Tehran, Iran
| | - Abbas Hajifathali
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985711151, Tehran, Iran
| |
Collapse
|
18
|
Tahmasbpour Marzouni E, Stern C, Henrik Sinclair A, Tucker EJ. Stem Cells and Organs-on-chips: New Promising Technologies for Human Infertility Treatment. Endocr Rev 2022; 43:878-906. [PMID: 34967858 DOI: 10.1210/endrev/bnab047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Indexed: 11/19/2022]
Abstract
Having biological children remains an unattainable dream for most couples with reproductive failure or gonadal dysgenesis. The combination of stem cells with gene editing technology and organ-on-a-chip models provides a unique opportunity for infertile patients with impaired gametogenesis caused by congenital disorders in sex development or cancer survivors. But how will these technologies overcome human infertility? This review discusses the regenerative mechanisms, applications, and advantages of different types of stem cells for restoring gametogenesis in infertile patients, as well as major challenges that must be overcome before clinical application. The importance and limitations of in vitro generation of gametes from patient-specific human-induced pluripotent stem cells (hiPSCs) will be discussed in the context of human reproduction. The potential role of organ-on-a-chip models that can direct differentiation of hiPSC-derived primordial germ cell-like cells to gametes and other reproductive organoids is also explored. These rapidly evolving technologies provide prospects for improving fertility to individuals and couples who experience reproductive failure.
Collapse
Affiliation(s)
- Eisa Tahmasbpour Marzouni
- Laboratory of Regenerative Medicine & Biomedical Innovations, Pasteur Institute of Iran, Tehran, Iran
| | - Catharyn Stern
- Royal Women's Hospital, Parkville and Melbourne IVF, Melbourne, Australia
| | - Andrew Henrik Sinclair
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Elena Jane Tucker
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| |
Collapse
|
19
|
Mobarak H, Rahbarghazi R, Nouri M, Heidarpour M, Mahdipour M. Intratesticular versus intraperitoneal injection of Busulfan for the induction of azoospermia in a rat model. BMC Pharmacol Toxicol 2022; 23:50. [PMID: 35831882 PMCID: PMC9281107 DOI: 10.1186/s40360-022-00587-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 06/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Administration of antineoplastic drugs may cause azoospermia driving to subfertility. Production of animal azoospermia models is essential for evaluating new treatment methods before therapeutic interventions in human setup. This study aimed to investigate the toxic effects of Busulfan (an anticancer drug) on some vital organs and describe the best method and appropriate dose of Busulfan to induce an animal azoospermia model. METHODS Rats were randomly assigned into four groups, treatment groups received 10 mg/kg, 40 mg/kg Busulfan intraperitoneally (IP), 5 mg/kg Busulfan intratesticular (IT), and control group. Blood, bone marrow, liver, renal, and testes samples were collected for histological (H&E staining), biochemical (serum levels of ALT, AST, ALP, creatinine, and urea), and hematological analyses. RESULTS Results revealed severe anemia and leukopenia in rats that received Busulfan via IP. By contrast, injection of 5 mg/kg Busulfan via IT did not cause anemia except with a mild decrease in RBC count. Non-significant differences in the M/E ratio were observed in all groups. The administration of 40 mg/kg of Busulfan led to evacuation and destruction in the spermatogenesis process with thin-walled seminiferous epithelium in most tubules, but in rats treated with 10 mg/kg of Busulfan, the normal spermatogenesis process was notified. IT injection of Busulfan contributed to the complete degradation of spermatogenesis in which all spermatogenic cells degenerated. In the renal tissue, hyperemia, extensive tubular necrosis degeneration, and hyaline casts were found after IP injection of Busulfan. In hepatic tissue, focal hemorrhagic, chronic cholangitis, and hepatocyte degeneration, and swelling were noticed. Biochemical analysis revealed apparent Busulfan toxicity of both hepatic and renal tissues in IP Busulfan-treated rats. CONCLUSIONS In summary, we found that the intratesticular injection of low doses of Busulfan (5 mg/kg) is a relatively non-invasive and safe method for producing the rat azoospermia model causing the least toxicity on vital organs.
Collapse
Affiliation(s)
- Halimeh Mobarak
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Heidarpour
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
20
|
Mesenchymal stem cells promote spermatogonial stem/progenitor cell pool and spermatogenesis in neonatal mice in vitro. Sci Rep 2022; 12:11494. [PMID: 35798781 PMCID: PMC9263145 DOI: 10.1038/s41598-022-15358-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 06/16/2022] [Indexed: 12/02/2022] Open
Abstract
Prepubertal cancer treatment leads to irreversible infertility in half of the male patients. Current in vitro spermatogenesis protocols and cryopreservation techniques are inadequate to expand spermatogonial stem/progenitor cells (SSPC) from testicles. Bone marrow derived mesenchymal stem cells (BM-MSC) bearing a close resemblance to Sertoli cells, improved spermatogenesis in animal models. We asked if a co-culture setup supported by syngeneic BM-MSC that contributes to the air–liquid interphase (ALI) could lead to survival, expansion and differentiation of SSPCs in vitro. We generated an ALI platform able to provide a real-time cellular paracrine contribution consisting of syngeneic BM-MSCs to neonatal C57BL/6 mice testes. We aimed to evaluate the efficacy of this culture system on SSPC pool expansion and spermatogenesis throughout a complete spermatogenic cycle by measuring the number of total germ cells (GC), the undifferentiated and differentiating spermatogonia, the spermatocytes and the spermatids. Furthermore, we evaluated the testicular cell cycle phases, the tubular and luminal areas using histochemical, immunohistochemical and flow cytometric techniques. Cultures in present of BM-MSCs displayed survival of ID4(+) spermatogonial stem cells (SSC), expansion of SALL4(+) and OCT4(+) SSPCs, VASA(+) total GCs and Ki67(+) proliferative cells at 42 days and an increased number of SCP3(+) spermatocytes and Acrosin(+) spermatids at 28 days. BM-MSCs increased the percentage of mitotic cells within the G2-M phase of the total testicular cell cycle increased for 7 days, preserved the cell viability for 42 days and induced testicular maturation by enlargement of the tubular and luminal area for 42 days in comparison to the control. The percentage of PLZF(+) SSPCs increased within the first 28 days of culture, after which the pool started to get smaller while the number of spermatocytes and spermatids increased simultaneously. Our findings established the efficacy of syngeneic BM-MSCs on the survival and expansion of the SSPC pool and differentiation of spermatogonia to round spermatids during in vitro culture of prepubertal mice testes for 42 days. This method may be helpful in providing alternative cures for male fertility by supporting in vitro differentiated spermatids that can be used for round spermatid injection (ROSI) to female oocyte in animal models. These findings can be further exploited for personalized cellular therapy strategies to cure male infertility of prepubertal cancer survivors in clinics.
Collapse
|
21
|
Chen H, Zhang M, Zhang J, Chen Y, Zuo Y, Xie Z, Zhou G, Chen S, Chen Y. Application of Induced Pluripotent Stem Cell-Derived Models for Investigating microRNA Regulation in Developmental Processes. Front Genet 2022; 13:899831. [PMID: 35719367 PMCID: PMC9204592 DOI: 10.3389/fgene.2022.899831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/06/2022] [Indexed: 11/29/2022] Open
Abstract
Advances in induced pluripotent stem cell (iPSC) techniques have opened up new perspectives in research on developmental biology. Compared with other sources of human cellular models, iPSCs present a great advantage in hosting the unique genotype background of donors without ethical concerns. A wide spectrum of cellular and organoid models can be generated from iPSCs under appropriate in vitro conditions. The pluripotency of iPSCs is orchestrated by external signalling and regulated at the epigenetic, transcriptional and posttranscriptional levels. Recent decades have witnessed the progress of studying tissue-specific expressions and functions of microRNAs (miRNAs) using iPSC-derived models. MiRNAs are a class of short non-coding RNAs with regulatory functions in various biological processes during development, including cell migration, proliferation and apoptosis. MiRNAs are key modulators of gene expression and promising candidates for biomarker in development; hence, research on the regulation of human development by miRNAs is expanding. In this review, we summarize the current progress in the application of iPSC-derived models to studies of the regulatory roles of miRNAs in developmental processes.
Collapse
Affiliation(s)
- Hongyu Chen
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mimi Zhang
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jingzhi Zhang
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yapei Chen
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yabo Zuo
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Zhishen Xie
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Guanqing Zhou
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shehong Chen
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yaoyong Chen
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
22
|
Wu JX, Xia T, She LP, Lin S, Luo XM. Stem Cell Therapies for Human Infertility: Advantages and Challenges. Cell Transplant 2022; 31:9636897221083252. [PMID: 35348026 PMCID: PMC8969497 DOI: 10.1177/09636897221083252] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/03/2022] [Accepted: 02/09/2022] [Indexed: 11/15/2022] Open
Abstract
Physical and mental health and hormonal imbalance are associated with the problems related to infertility and reproductive disorders. The rate of infertility has increased globally over the years, due to various reasons. Given the psychosocial implications of infertility and its effects on the life of the affected people, there has been an increased focus on its treatment over the last several years. Assisted reproductive technology can only solve about 50% of the cases. Moreover, it contains significant risks and does not solve the fundamental problem of infertility. As pluripotent stem cells have the potential to differentiate into almost any type of cell, they have been widely regarded as a promising option in the development of stem cell-based fertility treatments, which could even correct genetic diseases in offspring. These advancements in reproductive biotechnology present both challenges and possibilities for solving infertility problems caused by various unexplainable factors. This review briefly presents the different types of infertility disorders and the potential applications of stem cells in the treatment of these reproductive diseases.
Collapse
Affiliation(s)
- Jin-Xiang Wu
- Department of Reproductive Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Tian Xia
- Department of Reproductive Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Li-Ping She
- New England Fertility Institute, Stamford, CT, USA
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Xiang-Min Luo
- Department of Reproductive Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
23
|
Qamar AY, Hussain T, Rafique MK, Bang S, Tanga BM, Seong G, Fang X, Saadeldin IM, Cho J. The Role of Stem Cells and Their Derived Extracellular Vesicles in Restoring Female and Male Fertility. Cells 2021; 10:2460. [PMID: 34572109 PMCID: PMC8468931 DOI: 10.3390/cells10092460] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 12/21/2022] Open
Abstract
Infertility is a globally recognized issue caused by different reproductive disorders. To date, various therapeutic approaches to restore fertility have been attempted including etiology-specific medication, hormonal therapies, surgical excisions, and assisted reproductive technologies. Although these approaches produce results, however, fertility restoration is not achieved in all cases. Advances in using stem cell (SC) therapy hold a great promise for treating infertile patients due to their abilities to self-renew, differentiate, and produce different paracrine factors to regenerate the damaged or injured cells and replenish the affected germ cells. Furthermore, SCs secrete extracellular vesicles (EVs) containing biologically active molecules including nucleic acids, lipids, and proteins. EVs are involved in various physiological and pathological processes and show promising non-cellular therapeutic uses to combat infertility. Several studies have indicated that SCs and/or their derived EVs transplantation plays a crucial role in the regeneration of different segments of the reproductive system, oocyte production, and initiation of sperm production. However, available evidence triggers the need to testify the efficacy of SC transplantation or EVs injection in resolving the infertility issues of the human population. In this review, we highlight the recent literature covering the issues of infertility in females and males, with a special focus on the possible treatments by stem cells or their derived EVs.
Collapse
Affiliation(s)
- Ahmad Yar Qamar
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
- College of Veterinary and Animal Sciences, Jhang, Sub-Campus of University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Tariq Hussain
- College of Veterinary and Animal Sciences, Jhang, Sub-Campus of University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Muhammad Kamran Rafique
- College of Veterinary and Animal Sciences, Jhang, Sub-Campus of University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Seonggyu Bang
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Bereket Molla Tanga
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
- Faculty of Veterinary Medicine, Hawassa University, Hawassa 05, Ethiopia
| | - Gyeonghwan Seong
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Xun Fang
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Islam M Saadeldin
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Jongki Cho
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
24
|
Hajiesmailpoor A, Emami P, Kondori BJ, Ghorbani M. Stem cell therapy as a recent advanced approach in male infertility. Tissue Cell 2021; 73:101634. [PMID: 34481231 DOI: 10.1016/j.tice.2021.101634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/18/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023]
Abstract
Infertility is one of the most common problems in the world that has negative effects on society and infertile people. Among the various causes of infertility, male infertility accounts for almost half of all infertility cases. Despite advances in medicine, current male infertility treatments such as assisted reproductive technology (ART) have not been successful in treating all types of male infertility. Recently, stem cells have been considered as therapeutic targets for many diseases, including infertility, due to their self-renewing and high differentiation. The purpose of this review is to discuss different types of male infertility and the effect of various stem cells against the treatment of male infertility.
Collapse
Affiliation(s)
- Ayshe Hajiesmailpoor
- Department of Emergency Medical Sciences, Faculty of Paramedical, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Payam Emami
- Department of Emergency Medical Sciences, Faculty of Paramedical, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Bahman Jalali Kondori
- Department of Anatomical Sciences, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Masoud Ghorbani
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
25
|
Mahboudi S, Parivar K, Mazaheri Z, Irani SH. Mir-106b Cluster Regulates Primordial Germ Cells Differentiation from Human Mesenchymal Stem Cells. CELL JOURNAL 2021; 23:294-302. [PMID: 34308572 PMCID: PMC8286458 DOI: 10.22074/cellj.2021.6836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 02/16/2020] [Indexed: 11/20/2022]
Abstract
Objective Numerous evidence indicates that microRNAs (miRNAs) are critical regulators in the spermatogenesis
process. The aim of this study was to investigate Mir-106b cluster regulates primordial germ cells (PGCs) differentiation
from human mesenchymal stem cells (MSCs).
Materials and Methods In this experimental study, samples containing male adipose (n: 9 samples- age: 25-40 years)
were obtained from cosmetic surgeries performed for the liposuction in Imam Khomeini Hospital. The differentiation
of MSCs into PGCs was accomplished by transfection of a lentivector expressing miR-106b. The transfection of miR-
106b was also confirmed by the detection of a clear green fluorescent protein (GFP) signal in MSCs. MSCs were
treated with bone morphogenic factor 4 (BMP4) protein, as a putative inducer of PGCs differentiation, to induce the
differentiation of MSCs into PGCs (positive control). After 4 days of transfection, the expression of miR-106b, STELLA,
and FRAGILIS genes was evaluated by real-time polymerase chain reaction (PCR). Also, the levels of thymocyte
differentiation antigen 1 (Thy1) protein was assessed by the western blot analysis. The cell surface expression of CD90
was also determined by immunocytochemistry method. The cytotoxicity of miR-106b was examined in MSCs after 24,
48, and 72 hours using the MTT assay. Results MSCs treated with BMP4 or transfected by miR-106b were successfully differentiated into PGCs. The results
of this study also showed that the expression of miR-106b was significantly increased after 48 hours from transfection.
Also, we showed STELLA, FARGILIS, as well as the protein expression of Thy1, was significantly higher in MSCs
transfected by lentivector expressing miR-106b in comparison with MSCs treated with BMP4 (P≤0.05). MTT assay
showed miR-106b was no toxic during 72 hours in 1 µg/ml dose, that this amount could elevated germ cells marker
significantly higher than other experimental groups (P≤0.05).
Conclusion According to this findings, it appears that miR-106b plays an essential role in the differentiation of MSCs
into PGCs.
Collapse
Affiliation(s)
- Sadaf Mahboudi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kazem Parivar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Zohreh Mazaheri
- Basic Medical Sciences Research Center, Histogenotech Company, Tehran, Iran
| | - S Hiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
26
|
Cellular Therapy via Spermatogonial Stem Cells for Treating Impaired Spermatogenesis, Non-Obstructive Azoospermia. Cells 2021; 10:cells10071779. [PMID: 34359947 PMCID: PMC8304133 DOI: 10.3390/cells10071779] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/04/2021] [Accepted: 07/12/2021] [Indexed: 12/18/2022] Open
Abstract
Male infertility is a major health problem affecting about 8–12% of couples worldwide. Spermatogenesis starts in the early fetus and completes after puberty, passing through different stages. Male infertility can result from primary or congenital, acquired, or idiopathic causes. The absence of sperm in semen, or azoospermia, results from non-obstructive causes (pretesticular and testicular), and post-testicular obstructive causes. Several medications such as antihypertensive drugs, antidepressants, chemotherapy, and radiotherapy could lead to impaired spermatogenesis and lead to a non-obstructive azoospermia. Spermatogonial stem cells (SSCs) are the basis for spermatogenesis and fertility in men. SSCs are characterized by their capacity to maintain the self-renewal process and differentiation into spermatozoa throughout the male reproductive life and transmit genetic information to the next generation. SSCs originate from gonocytes in the postnatal testis, which originate from long-lived primordial germ cells during embryonic development. The treatment of infertility in males has a poor prognosis. However, SSCs are viewed as a promising alternative for the regeneration of the impaired or damaged spermatogenesis. SSC transplantation is a promising technique for male infertility treatment and restoration of spermatogenesis in the case of degenerative diseases such as cancer, radiotherapy, and chemotherapy. The process involves isolation of SSCs and cryopreservation from a testicular biopsy before starting cancer treatment, followed by intra-testicular stem cell transplantation. In general, treatment for male infertility, even with SSC transplantation, still has several obstacles. The efficiency of cryopreservation, exclusion of malignant cells contamination in cancer patients, and socio-cultural attitudes remain major challenges to the wider application of SSCs as alternatives. Furthermore, there are limitations in experience and knowledge regarding cryopreservation of SSCs. However, the level of infrastructure or availability of regulatory approval to process and preserve testicular tissue makes them tangible and accurate therapy options for male infertility caused by non-obstructive azoospermia, though in their infancy, at least to date.
Collapse
|
27
|
Mahiddine FY, Kim MJ. Overview on the Antioxidants, Egg Yolk Alternatives, and Mesenchymal Stem Cells and Derivatives Used in Canine Sperm Cryopreservation. Animals (Basel) 2021; 11:1930. [PMID: 34203537 PMCID: PMC8300182 DOI: 10.3390/ani11071930] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 12/27/2022] Open
Abstract
Sperm cryopreservation is a widely used assisted reproductive technology for canine species. The long-term storage of dog sperm is effective for the breeding of dogs living far apart, scheduling the time of artificial insemination that suits the female, and preventing diseases of the reproductive tract. However, spermatozoa functions are impaired during the freeze-thaw processes, which may decrease reproductive performance. Numerous attempts have been made to restore such impairments, including the use of cryoprotectants to prevent the damage caused by ice crystal formation, and supplementation of antioxidants to reduce reactive oxygen species generation due to osmotic stress during the procedure. Egg yolk derivatives, antioxidants, and, more recently, mesenchymal stem cells (MSCs) and their derivatives have been proposed in this research field. This review article will summarize the current literature available on the topic.
Collapse
Affiliation(s)
| | - Min-Jung Kim
- Department of Research and Development, Mjbiogen Corp., Gwangnaru-ro 144, Seoul 14788, Korea;
| |
Collapse
|
28
|
Mesenchymal Stem Cells in Preclinical Infertility Cytotherapy: A Retrospective Review. Stem Cells Int 2021; 2021:8882368. [PMID: 34054970 PMCID: PMC8143877 DOI: 10.1155/2021/8882368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 04/06/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022] Open
Abstract
Infertility is a global reproductive disorder which is caused by a variety of complex diseases. Infertility affects the individual, family, and community through physical, psychological, social and economic consequences. The results from recent preclinical studies regarding stem cell-based therapies are promising. Stem cell-based therapies cast a new hope for infertility treatment as a replacement or regeneration strategy. The main features and application prospects of mesenchymal stem cells in the future of infertility should be understood by clinicians. Mesenchymal stem cells (MSCs) are multipotent stem cells with abundant source, active proliferation, and multidirectional differentiation potential. MSCs play a role through cell homing, secretion of active factors, and participation in immune regulation. Another advantage is that, compared with embryonic stem cells, there are fewer ethical factors involved in the application of MSCs. However, a number of questions remain to be answered prior to safe and effective clinical application. In this review, we summarized the recent status of MSCs in the application of the diseases related to or may cause to infertility and suggest a possible direction for future cytotherapy to infertility.
Collapse
|
29
|
Zhankina R, Baghban N, Askarov M, Saipiyeva D, Ibragimov A, Kadirova B, Khoradmehr A, Nabipour I, Shirazi R, Zhanbyrbekuly U, Tamadon A. Mesenchymal stromal/stem cells and their exosomes for restoration of spermatogenesis in non-obstructive azoospermia: a systemic review. Stem Cell Res Ther 2021; 12:229. [PMID: 33823925 PMCID: PMC8025392 DOI: 10.1186/s13287-021-02295-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/17/2021] [Indexed: 12/11/2022] Open
Abstract
Stem cells have been introduced as new promising therapeutic agents in treatment of degenerative diseases because of having high differentiation potential while maintaining the ability to self-replicate and retaining features of their source cells. Among different type of cell therapies, mesenchymal stromal/stem cell (MSC) therapy is being increasingly developed as a new way to treat structural defects that need to be repaired and regenerated. Non-obstructive azoospermia (NOA) is a reproductive disease in men that causes infertility in 10% of infertile men. Based on in vitro studies, MSCs from different tissue sources have been differentiated into germ cells or gamete progenitor cells by simple methods in both male and female. On the other hand, the therapeutic effects of MSCs have been evaluated for the treatment of NOA animal models created by chemical or surgical compounds. The results of these studies confirmed successful allotransplantation or xenotransplantation of MSCs in the seminiferous tubules. As well, it has been reported that exosomes secreted by MSCs are able to induce the process of spermatogenesis in the testes of infertile animal models. Despite numerous advances in the treatment of reproductive diseases in men and women with the help of MSCs or their exosomes, no clinical trial has been terminated on the treatment of NOA. This systematic review attempts to investigate the possibility of MSC therapy for NOA in men.
Collapse
Affiliation(s)
- Rano Zhankina
- Department of Urology and Andrology, Astana Medical University, Nur-Sultan, Kazakhstan 010000
| | - Neda Baghban
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, 7514633196 Iran
| | - Manarbek Askarov
- Department of Urology and Andrology, Astana Medical University, Nur-Sultan, Kazakhstan 010000
| | - Dana Saipiyeva
- Department of Urology and Andrology, Astana Medical University, Nur-Sultan, Kazakhstan 010000
| | - Almaz Ibragimov
- Department of Urology and Andrology, Astana Medical University, Nur-Sultan, Kazakhstan 010000
| | - Bakhyt Kadirova
- Department of Urology and Andrology, Astana Medical University, Nur-Sultan, Kazakhstan 010000
| | - Arezoo Khoradmehr
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, 7514633196 Iran
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, 7514633196 Iran
| | - Reza Shirazi
- Department of Anatomy, School of Medical Sciences, Medicine, UNSW Sydney, PO Box 2052, Sydney, Australia
| | - Ulanbek Zhanbyrbekuly
- Department of Urology and Andrology, Astana Medical University, Nur-Sultan, Kazakhstan 010000
| | - Amin Tamadon
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, 7514633196 Iran
| |
Collapse
|
30
|
Impact of platelet-rich plasma versus selenium in ameliorating induced toxicity in rat testis: histological, immunohistochemical, and molecular study. Cell Tissue Res 2021; 385:223-238. [PMID: 33791879 DOI: 10.1007/s00441-021-03439-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 02/18/2021] [Indexed: 10/21/2022]
Abstract
This study was conducted on forty adult rats divided into four groups: Group I (control) that is divided into subgroups A, B, and C and Group II (methotrexate (MTX)-treated); the rats were injected intraperitoneally with MTX at a dose of 1 mg/kg/week, for 8 weeks. Group III (MTX-Se co-treated) was injected with MTX like Group II plus an oral administration of selenium at a dose of 10 μg/kg b.w/day, for 8 weeks. Group IV (MTX-PRP co-treated), rats were injected intraperitoneally with MTX like Group II plus platelet-rich plasma (PRP) injection under the scrotum, three times with 2-week intervals (volume-0.1 ml per injection) and euthanized after 8 weeks. Histological, immunohistochemical, and genetic expression using qPCR and western blotting technique were conducted. There was improvement in histological structure of testes in most specimens of Group IV. The latter group revealed a significant decrease in Bax and an increase in Bcl-2. The regeneration of testicular tissue was more observed in Group IV as measured by an increase in mean number of PCNA. Moreover, Group IV revealed an increased genetic level of FSCN3, GCNF, UBQLN3, and DAZL. Both MTX-Se and MTX-PRP have an anti-inflammatory effect as measured by a reduction in NF-κb. The anti-oxidative effect of selenium and PRP was noticed by a decrease in the level of the iNos and an increase in eNos protein and the autophagy marker LC3. PRP has ameliorative effects on induced rat testicular toxicity as evaluated by morphological changes and confirmed by immunohistochemical reactions, genetic expression, and western blotting analyses including oxidative and anti- oxidative markers.
Collapse
|
31
|
The Therapeutic Potential of Amniotic Fluid-Derived Stem Cells on Busulfan-Induced Azoospermia in Adult Rats. Tissue Eng Regen Med 2021; 18:279-295. [PMID: 33713308 DOI: 10.1007/s13770-020-00309-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/20/2020] [Accepted: 10/13/2020] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND Busulfan is an alkylating chemotherapeutic agent that is routinely prescribed for leukemic patients to induce myelo-ablation. However, it also results in azoospermia and infertility in cancer survivors. This research was constructed to explore the possible therapeutic role of amniotic fluid-derived stem cells (AFSCs) in improving busulfan-induced azoospermia in adult rats. METHODS Forty two adult male albino rats were randomized into: (1) control group, (2) azoospermia group, (3) spontaneous recovery group, and (4) AFSCs-treated group, in which AFSCs were transplanted through their injection into the testicular efferent ducts. The assessment included a histo-pathological examination of the seminiferous tubules by the light and transmission electron microscopes. Additionally, the confocal laser scanning microscope was used for confirmation of homing of the implanted cells. Moreover, we conducted an immuno-fluorescence study for detection of the proliferating cell nuclear antigen (PCNA) in the spermatogenic cells, epididymal sperm count, and a histo-morphometric study. RESULTS AFSCs successfully homed over the basement membrane of the injured seminiferous tubules. They greatly attenuated busulfan-induced degenerative and oxidative changes. They also caused a re-expression of PCNA in the germ cells, leading to resumption of spermatogenesis and re-appearance of spermatozoa. CONCLUSION AFSCs could be a promising treatment modality for male infertility induced by chemotherapy, as they possess prominent regenerative, anti-apoptotic, and anti-inflammatory potentials.
Collapse
|
32
|
Mobarak H, Heidarpour M, Rahbarghazi R, Nouri M, Mahdipour M. Amniotic fluid-derived exosomes improved spermatogenesis in a rat model of azoospermia. Life Sci 2021; 274:119336. [PMID: 33716061 DOI: 10.1016/j.lfs.2021.119336] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/24/2021] [Accepted: 03/04/2021] [Indexed: 12/19/2022]
Abstract
AIMS This study aimed to explore the therapeutic effects of amniotic fluid-derived extracellular vesicles including exosomes (AF-Exos) on the recovery of sperm production capacity in a rat model of azoospermia. MAIN METHODS The non-obstructive azoospermia (NOA) was induced in rats using intratesticular administration of Busulfan. Azoospermia was confirmed by testis histology. AF-Exos samples containing 10 or 40 μg exosomal proteins were injected into testicular tissue of NOA rats. After two months, the recovery of spermatogenesis was monitored via histopathological staining, spermiogram, and hormonal analysis. Immunohistochemistry staining for OCT-3/4 was used to identify of spermatogonial progenitors. The expression of DAZL and VASA, was also measured. KEY FINDINGS AF-Exos exhibited sphere-shaped morphology with the mean diameter and zeta potential of 50 ± 7.521 nm and -7.16 mV. Immunoblots revealed that isolated nanoparticles were CD63, CD9, and CD81 positive. Histopathological evaluation revealed that spermatogenesis was improved significantly in NOA rats after AF-Exos injection. Data showed that the sperm parameters and spermatogenesis index were significantly improved after AF-Exos injection compared to azoospermic groups. OCT-3/4+ cells were increased in NOA rats after AF-Exos injection, showing the restoration of spermatogenesis. In the present study, both doses of exosome (10 and 40 μg) restored the testicular function of NOA rats. DAZL and VASA were increased significantly in animals who received 40 μg exosomal protein compared to azoospermic rats. Except in a high dose of AF-Exos (40 μg) for Testosterone and FSH, no statistically significant differences were found regarding hormones post-exosome injection. SIGNIFICANCE Our study demonstrated that AF-Exos regenerated spermatogenesis and improved sperm quality in NOA rats.
Collapse
Affiliation(s)
- Halimeh Mobarak
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, 9177948974 Mashhad, Iran
| | - Mohammad Heidarpour
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, 9177948974 Mashhad, Iran.
| | - Reza Rahbarghazi
- Biotechnology Research Center, Tabriz University of Medical Sciences, 5165665811 Tabriz, Iran; Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, 5166653431 Tabriz, Iran
| | - Mohammad Nouri
- Stem Cell Research Center, Tabriz University of Medical Sciences, 5166615739 Tabriz, Iran; Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, 5166653431 Tabriz, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, 5166615739 Tabriz, Iran; Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, 5166653431 Tabriz, Iran.
| |
Collapse
|
33
|
Zohni K, Lopez L, Mander P, Szaraz P, Filice M, Wyse BA, Garcia M, Gat I, Glass K, Gauthier-Fisher A, Librach CL. Human umbilical cord perivascular cells maintain regenerative traits following exposure to cyclophosphamide. Cancer Lett 2020; 501:133-146. [PMID: 33387641 DOI: 10.1016/j.canlet.2020.12.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 11/19/2022]
Abstract
Chemotherapies can cause germ cell depletion and gonadal failure. When injected post-chemotherapy, mesenchymal stromal cells (MSCs) from various sources have been shown to have regenerative effects in rodent models of chemotherapy-induced gonadal injury. Here, we evaluated two properties of a novel source of MSC, first trimester (FTM) human umbilical cord perivascular cells (HUCPVCs) (with increased regenerative potential compared to older sources), that may render them a promising candidate for chemotherapeutic gonadal injury prevention. Firstly, their ability to resist the cytotoxic effects of cyclophosphamide (CTX) in vitro, as compared to term HUCPVCs and bone marrow cells (BMSCs); and secondly, whether they prevent gonadal dysfunction if delivered prior to gonadotoxic therapy in vivo. BMSC, FTM HUCPVC, term HUCPVC, and control NTERA2 cells were treated with moderate (150 μmol/L) and high (300 μmol/L) doses of CTX in vitro. Viability, proliferative capacity, mesenchymal cell lineage markers and differentiation capacity, immunogenicity, and paracrine gene expression were assessed. CTX was administered to Wistar rats 2 days following an intra-ovarian injection of FTM HUCPVC. HUCPVC survival and ovarian follicle numbers were assessed using histological methods. We conclude that FTM HUCPVC maintain key regenerative properties following chemotherapy exposure and that pre-treatment with these cells may prevent CTX-induced ovarian damage in vivo. Therefore, HUCPVCs are promising candidates for fertility preservation.
Collapse
Affiliation(s)
- Khaled Zohni
- CReATe Fertility Centre, Toronto, Ontario, Canada; Department of Obstetrics & Gynecology, University of Toronto, Toronto, Canada; Department of Obstetrics and Gynecology, University of Manitoba, Winnipeg, Canada; Heartland Fertility and Gynecology Clinic, Winnipeg, Manitoba, Canada
| | - Lianet Lopez
- CReATe Fertility Centre, Toronto, Ontario, Canada
| | | | - Peter Szaraz
- CReATe Fertility Centre, Toronto, Ontario, Canada
| | | | | | | | - Itai Gat
- CReATe Fertility Centre, Toronto, Ontario, Canada; Pinchas Borenstein Talpiot Medical Leadership Program, Sheba Medical Center, Tel HaShomer, Ramat Gan, Affiliated to Sackler Medical School, University of Tel Aviv, Israel
| | - Karen Glass
- CReATe Fertility Centre, Toronto, Ontario, Canada; Department of Obstetrics & Gynecology, University of Toronto, Toronto, Canada
| | | | - Clifford L Librach
- CReATe Fertility Centre, Toronto, Ontario, Canada; Department of Obstetrics & Gynecology, University of Toronto, Toronto, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Canada; Department of Physiology, University of Toronto, Toronto, Canada; Department of Gynecology, Women's College Hospital, Toronto, ON, Canada.
| |
Collapse
|
34
|
Gul M, Hildorf S, Dong L, Thorup J, Hoffmann ER, Jensen CFS, Sønksen J, Cortes D, Fedder J, Andersen CY, Goossens E. Review of injection techniques for spermatogonial stem cell transplantation. Hum Reprod Update 2020; 26:368-391. [PMID: 32163572 DOI: 10.1093/humupd/dmaa003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/07/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Although the prognosis of childhood cancer survivors has increased dramatically during recent years, chemotherapy and radiation treatments for cancer and other conditions may lead to permanent infertility in prepubertal boys. Recent developments have shown that spermatogonial stem cell (SSC) transplantation may be a hope for restoring fertility in adult survivors of childhood cancers. For this reason, several centres around the world are collecting and cryopreserving testicular tissue or cells anticipating that, in the near future, some patients will return for SSC transplantation. This review summarizes the current knowledge and utility of SSC transplantation techniques. OBJECTIVE AND RATIONALE The aim of this narrative review is to provide an overview of the currently used experimental injection techniques for SSC transplantation in animal and human testes. This is crucial in understanding and determining the role of the different techniques necessary for successful transplantation. SEARCH METHODS A comprehensive review of peer-reviewed publications on this topic was performed using the PubMed and Google Scholar databases. The search was limited to English language work and studies between 1994 (from the first study on SSC transplantation) and April 2019. Key search terms included mouse, rat, boar, ram, dog, sheep, goat, cattle, monkey, human, cadaver, testes, SSC transplantation, injection and technique. OUTCOMES This review provides an extensive clinical overview of the current research in the field of human SSC transplantation. Rete testis injection with ultrasonography guidance currently seems the most promising injection technique thus far; however, the ability to draw clear conclusions is limited due to long ischemia time of cadaver testis, the relatively decreased volume of the testis, the diminishing size of seminiferous tubules, a lack of intratesticular pressure and leakage into the interstitium during the injection on human cadaver testis. Current evidence does not support improved outcomes from multiple infusions through the rete testes. Overall, further optimization is required to increase the efficiency and safety of the infusion method. WIDER IMPLICATIONS Identifying a favourable injection method for SSC transplantation will provide insight into the mechanisms of successful assisted human reproduction. Future research could focus on reducing leakage and establishing the optimal infusion cell concentrations and pressure.
Collapse
Affiliation(s)
- Murat Gul
- Laboratory of Reproductive Biology, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark.,Department of Urology, Selcuk University School of Medicine, 42250 Konya, Turkey
| | - Simone Hildorf
- Department of Pediatric Surgery, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Lihua Dong
- Laboratory of Reproductive Biology, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Jorgen Thorup
- Department of Pediatric Surgery, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Eva R Hoffmann
- DNRF Center for Chromosome Stability, Department of Molecular and Cellular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | - Jens Sønksen
- Department of Urology, Herlev and Gentofte University Hospital, 2930 Herlev, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Dina Cortes
- Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.,Department of Pediatrics, Copenhagen University Hospital Hvidovre, 2650 Hvidovre, Denmark
| | - Jens Fedder
- Centre of Andrology & Fertility Clinic, Department D, Odense University Hospital, 5000 Odense, Denmark.,Research Unit of Human Reproduction, Institute of Clinical Research, University of Southern Denmark, 5230 Odense, Denmark
| | - Claus Yding Andersen
- Laboratory of Reproductive Biology, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Ellen Goossens
- Biology of the Testis, Research Laboratory for Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| |
Collapse
|
35
|
The Therapeutic Potential of Mesenchymal Stromal Cells in the Treatment of Chemotherapy-Induced Tissue Damage. Stem Cell Rev Rep 2020; 15:356-373. [PMID: 30937640 DOI: 10.1007/s12015-019-09886-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chemotherapy constitutes one of the key treatment modalities for solid and hematological malignancies. Albeit being an effective treatment, chemotherapy application is often limited by its damage to healthy tissues, and curative treatment options for chemotherapy-related side effects are largely missing. As mesenchymal stromal cells (MSCs) are known to exhibit regenerative capacity mainly by supporting a beneficial microenvironment for tissue repair, MSC-based therapies may attenuate chemotherapy-induced tissue injuries. An increasing number of animal studies shows favorable effects of MSC-based treatments; however, clinical trials for MSC therapies in the context of chemotherapy-related side effects are rare. In this concise review, we summarize the current knowledge of the effects of MSCs on chemotherapy-induced tissue toxicities. Both preclinical and early clinical trials investigating MSC-based treatments for chemotherapy-related side reactions are presented, and mechanistic explanations about the regenerative effects of MSCs in the context of chemotherapy-induced tissue damage are discussed. Furthermore, challenges of MSC-based treatments are outlined that need closer investigations before these multipotent cells can be safely applied to cancer patients. As any pro-tumorigenicity of MSCs needs to be ruled out prior to clinical utilization of these cells for cancer patients, the pro- and anti-tumorigenic activities of MSCs are discussed in detail.
Collapse
|
36
|
Can mesenchymal stem cells ameliorate testicular damage? Current researches. JOURNAL OF SURGERY AND MEDICINE 2020. [DOI: 10.28982/josam.770063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
37
|
Bishop TF, Van Eenennaam AL. Genome editing approaches to augment livestock breeding programs. ACTA ACUST UNITED AC 2020; 223:223/Suppl_1/jeb207159. [PMID: 32034040 DOI: 10.1242/jeb.207159] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The prospect of genome editing offers a number of promising opportunities for livestock breeders. Firstly, these tools can be used in functional genomics to elucidate gene function, and identify causal variants underlying monogenic traits. Secondly, they can be used to precisely introduce useful genetic variation into structured livestock breeding programs. Such variation may include repair of genetic defects, the inactivation of undesired genes, and the moving of useful alleles and haplotypes between breeds in the absence of linkage drag. Editing could also be used to accelerate the rate of genetic progress by enabling the replacement of the germ cell lineage of commercial breeding animals with cells derived from genetically elite lines. In the future, editing may also provide a useful complement to evolving approaches to decrease the length of the generation interval through in vitro generation of gametes. For editing to be adopted, it will need to seamlessly integrate with livestock breeding schemes. This will likely involve introducing edits into multiple elite animals to avoid genetic bottlenecks. It will also require editing of different breeds and lines to maintain genetic diversity, and enable structured cross-breeding. This requirement is at odds with the process-based trigger and event-based regulatory approach that has been proposed for the products of genome editing by several countries. In the absence of regulatory harmony, researchers in some countries will have the ability to use genome editing in food animals, while others will not, resulting in disparate access to these tools, and ultimately the potential for global trade disruptions.
Collapse
|
38
|
Gauthier-Fisher A, Kauffman A, Librach CL. Potential use of stem cells for fertility preservation. Andrology 2019; 8:862-878. [PMID: 31560823 DOI: 10.1111/andr.12713] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Infertility and gonadal dysfunction can result from gonadotoxic therapies, environmental exposures, aging, or genetic conditions. In men, non-obstructive azoospermia (NOA) results from defects in the spermatogenic process that can be attributed to spermatogonial stem cells (SSC) or their niche, or both. While assisted reproductive technologies and sperm banking can enable fertility preservation (FP) in men of reproductive age who are at risk for infertility, FP for pre-pubertal patients remains experimental. Therapeutic options for NOA are limited. The rapid advance of stem cell research and of gene editing technologies could enable new FP options for these patients. Induced pluripotent stem cells (iPSC), SSC, and testicular niche cells, as well as mesenchymal stromal cells (aka medicinal signaling cells, MSCs), have been investigated for their potential use in male FP strategies. OBJECTIVE Here, we review the benefits and challenges for three types of stem cell-based approaches under investigation for male FP, focusing on the role that promising sources of MSC derived from human umbilical cord, specifically human umbilical cord perivascular cells (HUCPVC), could fulfill. These approaches are as follows: 1. isolation and ex vivo expansion of autologous SSC for in vivo transplantation or in vitro spermatogenesis; 2. in vitro differentiation toward germ cell and testicular somatic cell lineages using autologous SSC, or stem cells such iPSC or MSC; and 3. protection or regeneration of the spermatogenic niche after gonadotoxic insults in vivo. CONCLUSION Our studies suggest that HUCPVC are promising sources of cells that could be utilized in multiple aspects of male FP strategies.
Collapse
Affiliation(s)
| | - A Kauffman
- CReATe Fertility Centre, Toronto, ON, Canada
| | - C L Librach
- CReATe Fertility Centre, Toronto, ON, Canada.,Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Department of Gynecology, Women's College Hospital, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
39
|
Deng C, Xie Y, Zhang C, Ouyang B, Chen H, Lv L, Yao J, Liang X, Zhang Y, Sun X, Deng C, Liu G. Urine-Derived Stem Cells Facilitate Endogenous Spermatogenesis Restoration of Busulfan-Induced Nonobstructive Azoospermic Mice by Paracrine Exosomes. Stem Cells Dev 2019; 28:1322-1333. [PMID: 31311428 DOI: 10.1089/scd.2019.0026] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Nonobstructive azoospermia (NOA) is a severe form of male infertility, with limited effective treatments. Urine-derived stem cells (USCs) possess multipotent differentiation capacity and paracrine effects, and participate in tissue repair and regeneration. The aim of this study is to investigate whether the transplantation of USCs or USC exosomes (USC-exos) could promote endogenous spermatogenesis restoration in a busulfan-induced NOA mice model. USCs were cultured and characterized by flow cytometry. High-density USCs were cultured in a hollow fiber bioreactor for exosomes collection. USC-exos were isolated from USCs conditional media and identified by transmission electron microscopy, western blotting, and Flow NanoAnalyzer analysis. USC-exos exhibited sphere- or cup-shaped morphology with a mean diameter of 66.5 ± 16.0 nm, and expressed CD63 and CD9. USCs and USC-exos were transplanted into the interstitial space in the testes of NOA mice per the following groups: normal group; groups treated with no injection, phosphate-buffered saline (PBS), USCs or USC-exos on days 3 and 36 after busulfan administration, respectively. Thirty days after USCs and USC-exos transplantation, spermatogenesis was restored by both USCs and USC-exos in NOA mice 36 days after busulfan treatment as confirmed by immunofluorescence staining and hematoxylin and eosin staining. Moreover, spermatogenic genes (Pou5f1, Prm1, SYCP3, and DAZL) and the spermatogenic protein UCHL1 were significantly increased in both the USCs 36 and USC-exos36 groups compared with the PBS group, as demonstrated using quantitative real-time polymerase chain reaction and western blot analysis. However, the transplantation of USCs or USC-exos at day 3 after busulfan treatment did not improve spermatogenesis in NOA mice. Our study demonstrated that USCs could facilitate endogenous spermatogenesis restoration of busulfan-induced NOA mice through paracrine exosomes but could not protect the mouse testicles at the early stage of destruction caused by busulfan. This study provides a novel insight into the treatment of NOA.
Collapse
Affiliation(s)
- Cuncan Deng
- Reproductive Medicine Center, The Sixth Affiliate Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yun Xie
- Department of Andrology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, China
| | - Chi Zhang
- Department of Andrology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bin Ouyang
- Department of Andrology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Haicheng Chen
- Department of Andrology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Linyan Lv
- Reproductive Medicine Center, The Sixth Affiliate Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiahui Yao
- Reproductive Medicine Center, The Sixth Affiliate Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Liang
- Reproductive Medicine Center, The Sixth Affiliate Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina
| | - Xiangzhou Sun
- Department of Andrology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chunhua Deng
- Department of Andrology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guihua Liu
- Reproductive Medicine Center, The Sixth Affiliate Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
40
|
Eliyasi Dashtaki M, Hemadi M, Saki G, Mohammadiasl J, Khodadadi A. Spermatogenesis Recovery Potentials after Transplantation of Adipose Tissue-Derived Mesenchymal Stem Cells Cultured with Growth Factors in Experimental Azoospermic Mouse Models. CELL JOURNAL 2019; 21:401-409. [PMID: 31376321 PMCID: PMC6722443 DOI: 10.22074/cellj.2020.6055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 11/17/2018] [Indexed: 12/26/2022]
Abstract
Objective Approximately 1% of the male population suffers from obstructive or non-obstructive azoospermia. Previous
in vitro studies have successfully differentiated mesenchymal stem cells (MSCs) into germ cells. Because of immune-
modulating features, safety, and simple isolation, adipose tissue-derived MSCs (AT-MSCs) are good candidates for
such studies. However, low availability is the main limitation in using these cells. Different growth factors have been
investigated to overcome this issue. In the present study, we aimed to comparatively assess the performance of
AT-MSCs cultured under the presence or absence of three different growth factors, epidermal growth factor (EGF),
leukemia inhibitory factor (LIF) and glial cell line-derived neurotrophic factor (GDNF), following transplantation in
testicular torsion-detorsion mice
Materials and Methods This was an experimental study in which AT-MSCs were first isolated from male Naval
Medical Research Institute (NMRI) mice. Then, the mice underwent testicular torsion-detorsion surgery and received
bromodeoxyuridine (BrdU)-labeled AT-MSCs into the lumen of seminiferous tubules. The transplanted cells had been
cultured in different conditioned media, containing the three growth factors and without them. The expression of germ
cell-specific markers was evaluated with real-time polymerase chain reaction (PCR) and western-blot. Moreover,
immunohistochemical staining was used to trace the labeled cells.
Results The number of transplanted AT-MSCs resided in the basement membrane of seminiferous tubules significantly
increased after 8 weeks. The expression levels of Gcnf and Mvh genes in the transplanted testicles by AT-MSCs
cultured in the growth factors-supplemented medium was greater than those in the control group (P<0.001 and P<0.05,
respectively). The expression levels of the c-Kit and Scp3 genes did not significantly differ from the control group.
Conclusion Our findings showed that the use of EGF, LIF and GDNF to culture AT-MSCs can be very helpful in terms of
MSC survival and localization.
Collapse
Affiliation(s)
- Masoumeh Eliyasi Dashtaki
- Cellular and Molecular Research Center, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Masoud Hemadi
- Cellular and Molecular Research Center, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ghasem Saki
- Physiology Research Center, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. Electronic Address:
| | - Javad Mohammadiasl
- Department of Medical Genetics, School of Medicine, Ahvaz University of Medical Sciences, Ahvaz, Iran
| | - Ali Khodadadi
- Cancer, Environmental and Petroleum Pollutants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
41
|
Differentiation of bone marrow derived mesenchymal stem cells into male germ-like cells in co-culture with testicular cells. Endocr Regul 2019; 53:93-99. [DOI: 10.2478/enr-2019-0011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Abstract
Objective. Stem cell therapy, specifically, pre-induction of mesenchymal stem cells toward male germ-like cells may be useful in patients with azoospermia. The aim of this study was to evaluate in vitro differentiation of mouse bone marrow-derived mesenchymal stem cells (BMSCs) into male germ-like cells by indirect co-culture with testicular cells in the presence of bone morphogenetic protein 4 (BMP4).
Methods. Experimental groups included: control (mouse BMSCs), treatment group-1 (BMSCs treated with BMP4), treatment group-2 (indirect co-culture of BMSCs with mouse testicular cells in the presence of BMP4) and treatment group-3 (indirect co-culture of BMSCs with testicular cells). BMSCs-derived male germ-like cells were evaluated by the expression of Dazl, and Stra8 using RT-qPCR.
Results. Stra8 gene expression was significantly increased in the treatment group-2 and Dazl gene was significantly increased in the treatment group-1 compared to other groups. In conclusion, indirect co-culturing of BMSCs with testicular cells and BMP4 leads to the differentiation of BMSCs into male germ-like cells which express specific male germ-like genes. Testicular cells released factors that contributed to the differentiation of BMSCs into male germ progenitor cells.
Conclusion. This study suggests that mesenchymal stem cells may be differentiated into male germ-like cells and therefore, may be a novel treatment option for men with azoospermia.
Collapse
|
42
|
Luo Y, Xie L, Mohsin A, Ahmed W, Xu C, Peng Y, Hang H, Zhuang Y, Chu J, Guo M. Efficient generation of male germ-like cells derived during co-culturing of adipose-derived mesenchymal stem cells with Sertoli cells under retinoic acid and testosterone induction. Stem Cell Res Ther 2019; 10:91. [PMID: 30867048 PMCID: PMC6415496 DOI: 10.1186/s13287-019-1181-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/17/2019] [Accepted: 02/19/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Adipose-derived mesenchymal stem cells (ADMSCs) are considered an efficient and important candidate for male infertility treatment because they contain pluripotent stem cells, which can differentiate into all cells from three germ layers. However, the efficient generation of male germ-like cell (MGLCs) is one of the key issues, and little is known about the mechanisms underlying generation of MGLCs. Herein, we attempt to improve the efficient generation of MGLCs derived during co-culturing of rat ADMSCs with SCs under retinoic acid (RA) and testosterone (T) treatment. METHODS ADMSCs isolated from male SD rat were induced into generation of MGLCs by using respective methods in vitro. Transwell insert system was used for co-culturing. Busulfan-induced non-obstructive azoospermia rat mode was used to evaluate spermatogenic recovery ability of treated ADMSCs. Besides, the relative gene expression level was detected by reverse transcription PCR, quantitative RT-PCR. The relative protein expression level was detected by western blot (WB) and immunostaining analysis. RESULTS The results showed that ADMSCs co-cultured with TM4 cells under RA and T induction enhanced the formation of bigger and tightly packed MGLCs feature colonies in vitro. Moreover, the expression of male germ cell-related markers (Oct4, Stella, Ddx4, Dazl, PGP9.5, Stra8, and ITGα6) is significantly upregulated in TM4 cell-co-cultured ADMSCs in vitro and in busulfan-treated rat testis after injecting TM4 cell-treated ADMSCs for 2 months. Comparatively, the ADMSCs treated by TM4 cell with RA and T exhibited the highest expression of male germ cell-related markers. RA- and T-treated TM4 cell showed fewer dead cells and higher cytokine secretion than untreated groups. The protein expression level of TGFβ-SMAD2/3, JAK2-STAT3, and AKT pathways in ADMSCs co-cultured with TM4 cells under RA and T was higher than others. Whereas, downregulation of male germ cell-related marker expression subsequently inhibited the phosphorylation of SMAD2/3, JAK2, STAT3, and AKT. CONCLUSION These results suggested that TM4 cells could efficiently stimulate in vitro generation of MGLCs during co-culturing of ADMSCs under RA and T treatment. Conclusively, the ADMSCs co-cultured with TM4 cell under RA and T induction stimulate the efficient generation of MGLCs in vitro through activating TGFβ-SMAD2/3, JAK2-STAT3, and AKT pathways. Among them, JAK2-STAT3 and AKT pathways are being first reported to show involvement of in vitro generation of MGLCs during ADMSC co-culturing with SCs.
Collapse
Affiliation(s)
- Yanxia Luo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, China
| | - Lili Xie
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, China
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, China
| | - Waqas Ahmed
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, China
| | - Chenze Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, China
| | - Yan Peng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, China
| | - Haifeng Hang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, China
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, China
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, China.
| |
Collapse
|
43
|
Mahabadi JA, Sabzalipoor H, Nikzad H, Seyedhosseini E, Enderami SE, Gheibi Hayat SM, Sahebkar A. The role of microRNAs in embryonic stem cell and induced pluripotent stem cell differentiation in male germ cells. J Cell Physiol 2018; 234:12278-12289. [PMID: 30536380 DOI: 10.1002/jcp.27990] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/21/2018] [Indexed: 12/12/2022]
Abstract
New perspectives have been opened by advances in stem cell research for reproductive and regenerative medicine. Several different cell types can be differentiated from stem cells (SCs) under suitable in vitro and in vivo conditions. The differentiation of SCs into male germ cells has been reported by many groups. Due to their unlimited pluripotency and self-renewal, embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) can be used as valuable tools for drug delivery, disease modeling, developmental studies, and cell-based therapies in regenerative medicine. The unique features of SCs are controlled by a dynamic interplay between extrinsic signaling pathways, and regulations at epigenetic, transcriptional and posttranscriptional levels. In recent years, significant progress has been made toward better understanding of the functions and expression of specific microRNAs (miRNAs) in the maintenance of SC pluripotency. miRNAs are short noncoding molecules, which play a functional role in the regulation of gene expression. In addition, the important regulatory role of miRNAs in differentiation and dedifferentiation has been recently demonstrated. A balance between differentiation and pluripotency is maintained by miRNAs in the embryo and stem cells. This review summarizes the recent findings about the role of miRNAs in the regulation of self-renewal and pluripotency of iPSCs and ESCs, as well as their impact on cellular reprogramming and stem cell differentiation into male germ cells.
Collapse
Affiliation(s)
- Javad Amini Mahabadi
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Sabzalipoor
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Nikzad
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Elahe Seyedhosseini
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Ehsan Enderami
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Seyed Mohammad Gheibi Hayat
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Amirhosein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
44
|
Kargar-Abarghouei E, Vojdani Z, Hassanpour A, Alaee S, Talaei-Khozani T. Characterization, recellularization, and transplantation of rat decellularized testis scaffold with bone marrow-derived mesenchymal stem cells. Stem Cell Res Ther 2018; 9:324. [PMID: 30463594 PMCID: PMC6249892 DOI: 10.1186/s13287-018-1062-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/23/2018] [Accepted: 10/25/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Regenerative medicine potentially offers the opportunity for curing male infertility. Native extracellular matrix (ECM) creates a reconstruction platform to replace the organs. In this study, we aimed to evaluate the efficiency of the testis decellularized scaffold as a proper niche for stem cell differentiation toward testis-specific cell lineages. METHODS Rats' testes were decellularized by freeze-thaw cycle followed by immersion in deionized distilled water for 2 h, perfused with 1% Triton X-100 through ductus deferens for 4 h, 1% SDS for 48 h and 1% DNase for 2 h. The decellularized samples were prepared for further in vitro and in vivo analyses. RESULT Histochemical and immunohistochemistry studies revealed that ECM components such as Glycosaminoglycans (GAGs), neutral carbohydrate, elastic fibers, collagen I & IV, laminin, and fibronectin were well preserved, and the cells were completely removed after decellularization. Scanning electron microscopy (SEM) showed that 3D ultrastructure of the testis remained intact. In vivo and in vitro studies point out that decellularized scaffold was non-toxic and performed a good platform for cell division. In vivo implant of the scaffolds with or without mesenchymal stem cells (MSCs) showed that appropriate positions for transplantation were the mesentery and liver and the scaffolds could induce donor-loaded MSCs or host migrating cells to differentiate to the cells with phenotype of the sertoli- and leydig-like cells. The scaffolds also provide a good niche for migrating DAZL-positive cells; however, they could not differentiate into post meiotic-cell lineages. CONCLUSION The decellularized testis can be considered as a promising vehicle to support cell transplantation and may provide an appropriate niche for testicular cell differentiation.
Collapse
Affiliation(s)
- Elias Kargar-Abarghouei
- Tissue Engineering Lab, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Zand St., Shiraz, Fars, 7134845794, Iran.,Laboratory for Stem Cell Research, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Vojdani
- Tissue Engineering Lab, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Zand St., Shiraz, Fars, 7134845794, Iran.,Laboratory for Stem Cell Research, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ashraf Hassanpour
- Tissue Engineering Lab, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Zand St., Shiraz, Fars, 7134845794, Iran.,Laboratory for Stem Cell Research, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Alaee
- Reproductive Biology Department, School of Advance Sciences and Technology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Talaei-Khozani
- Tissue Engineering Lab, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Zand St., Shiraz, Fars, 7134845794, Iran. .,Laboratory for Stem Cell Research, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
45
|
Co-transplantation of mesenchymal stem cells improves spermatogonial stem cell transplantation efficiency in mice. Stem Cell Res Ther 2018; 9:317. [PMID: 30463610 PMCID: PMC6249754 DOI: 10.1186/s13287-018-1065-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/19/2018] [Accepted: 10/31/2018] [Indexed: 12/27/2022] Open
Abstract
Background Spermatogonial stem cell transplantation (SSCT) could become a fertility restoration tool for childhood cancer survivors. However, since in mice, the colonization efficiency of transplanted spermatogonial stem cells (SSCs) is only 12%, the efficiency of the procedure needs to be improved before clinical implementation is possible. Co-transplantation of mesenchymal stem cells (MSCs) might increase colonization efficiency of SSCs by restoring the SSC niche after gonadotoxic treatment. Methods A mouse model for long-term infertility was developed and used to transplant SSCs (SSCT, n = 10), MSCs (MSCT, n = 10), a combination of SSCs and MSCs (MS-SSCT, n = 10), or a combination of SSCs and TGFß1-treated MSCs (MSi-SSCT, n = 10). Results The best model for transplantation was obtained after intraperitoneal injection of busulfan (40 mg/kg body weight) at 4 weeks followed by CdCl2 (2 mg/kg body weight) at 8 weeks of age and transplantation at 11 weeks of age. Three months after transplantation, spermatogenesis resumed with a significantly better tubular fertility index (TFI) in all transplanted groups compared to non-transplanted controls (P < 0.001). TFI after MSi-SSCT (83.3 ± 19.5%) was significantly higher compared to MS-SSCT (71.5 ± 21.7%, P = 0.036) but did not differ statistically compared to SSCT (78.2 ± 12.5%). In contrast, TFI after MSCT (50.2 ± 22.5%) was significantly lower compared to SSCT (P < 0.001). Interestingly, donor-derived TFI was found to be significantly improved after MSi-SSCT (18.8 ± 8.0%) compared to SSCT (1.9 ± 1.1%; P < 0.001), MSCT (0.0 ± 0.0%; P < 0.001), and MS-SSCT (3.4 ± 1.9%; P < 0.001). While analyses showed that both native and TGFß1-treated MSCs maintained characteristics of MSCs, the latter showed less migratory characteristics and was not detected in other organs. Conclusion Co-transplanting SSCs and TGFß1-treated MSCs significantly improves the recovery of endogenous SSCs and increases the homing efficiency of transplanted SSCs. This procedure could become an efficient method to treat infertility in a clinical setup, once the safety of the technique has been proven. Electronic supplementary material The online version of this article (10.1186/s13287-018-1065-0) contains supplementary material, which is available to authorized users.
Collapse
|
46
|
Fazeli Z, Abedindo A, Omrani MD, Ghaderian SMH. Mesenchymal Stem Cells (MSCs) Therapy for Recovery of Fertility: a Systematic Review. Stem Cell Rev Rep 2018; 14:1-12. [PMID: 28884412 DOI: 10.1007/s12015-017-9765-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In recent years, the mesenchymal stem cells (MSCs) have provided the new opportunities to treat different disorders including infertility. Different studies have suggested that the MSCs have ability to differentiate into germ-like cells under specific induction conditions as well as transplantation to gonadal tissues. The aim of this systematic review was to evaluate the results obtained from different studies on MSCs therapy for promoting fertility. This search was done in PubMed and Science Direct databases using key words MSCs, infertility, therapy, germ cell, azoospermia, ovarian failure and mesenchymal stem cell. Among the more than 11,400 papers, 53 studies were considered eligible for more evaluations. The obtained results indicated that the most studies were performed on MSCs derived from bone marrow and umbilical cord as compared with the other types of MSCs. Different evaluations on animal models as well as in vitro studies supported from their role in the recovery of spermatogenesis and folliculogenesis. Although the data obtained from this systematic review are promising, but the further studies need to assess the efficiency and safety of transplantation of these cells in fertility recovery.
Collapse
Affiliation(s)
- Zahra Fazeli
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Atieh Abedindo
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mir Davood Omrani
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, No 23, Shahid Labbafi Nejad Educational Hospital, Amir Ebrahimi St, Pasdaran Ave, Tehran, Iran
| | - Sayyed Mohammad Hossein Ghaderian
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, No 23, Shahid Labbafi Nejad Educational Hospital, Amir Ebrahimi St, Pasdaran Ave, Tehran, Iran
| |
Collapse
|
47
|
Hajihoseini M, Mehrabani D, Vahdati A, Hosseini SE, Tamadon A, Dianatpour M, Rahmanifar F. Spermatogenesis after Transplantation of Adipose Tissue-Derived Stem Cells in Azoospermic Guinea Pigs: A Histological and Histomorphometric Study. Galen Med J 2018; 7:e1000. [PMID: 34466423 PMCID: PMC8343795 DOI: 10.22086/gmj.v0i0.1000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 09/20/2017] [Accepted: 11/17/2017] [Indexed: 11/30/2022] Open
Abstract
Background: The purpose of this research was to determine histomorphometric changes in busulfan-induced azoospermia after transplantation of Adipose Tissue-Derived Stem Cells (AdSCs) in guinea pig. AdSCs were isolated from adipose tissue around the testes of guinea pigs and characterized for mesenchymal properties. Materials and Methods: Guinea pigs were allocated into three groups, including the control group without any intervention. To induce azoospermia, groups 2 and 3 received a dose of 40 mg/kg of busulfan with 21 days interval. Group 3 received 1×106 AdSCs in their seminiferous tubules of left testes, 35 days following last busulfan injection, while right testis in the group was considered for comparison as controls. Sixty days following transplantation of cell, histomorphometric and histopathologic changes of the experiments were assessed. Results: After AdSCs’ transplantation, normal spermatogenesis appearance was noticed compared to busulfan-induced azoospermia and AdSCs recovered spermatogenesis, and our findings can be added to the literature in treating azoospermic infertilities. Conclusion: The transplanted AdSCs could induce production of germinal cells using testicular seminiferous tubules and were an effective source in treating azoospermia
Collapse
Affiliation(s)
- Mehrdokht Hajihoseini
- Department of Biology, Fars Science and Research Branch, Islamic Azad University, Fars, Iran.,Department of Biology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Davood Mehrabani
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Akbar Vahdati
- Department of Biology, Fars Science and Research Branch, Islamic Azad University, Fars, Iran.,Department of Biology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Seyed Ebrahim Hosseini
- Department of Biology, Fars Science and Research Branch, Islamic Azad University, Fars, Iran.,Department of Biology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Amin Tamadon
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mehdi Dianatpour
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farhad Rahmanifar
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
48
|
Zhang S, Zhao C, Liu S, Wang Y, Zhao Y, Guan W, Zhu Z. Characteristics and multi‑lineage differentiation of bone marrow mesenchymal stem cells derived from the Tibetan mastiff. Mol Med Rep 2018; 18:2097-2109. [PMID: 29916546 PMCID: PMC6072167 DOI: 10.3892/mmr.2018.9172] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 03/13/2018] [Indexed: 12/29/2022] Open
Abstract
Bone marrow mesenchymal stem cells (BM-MSCs) are pluripotent stem cells that are regarded as ideal resources for the reconstruction of tissues and organs. The Tibetan mastiff is a breed of domesticated Chinese native dog that is well-adjusted to the high-altitude environments of Tibet. To the best of our knowledge, the biological characterization and multi-lineage differentiation of Tibetan mastiff BM-MSCs have not been reported previously. Therefore, the present study aimed to investigate the biological characteristics and therapeutic potential of Tibetan mastiff BM-MSCs. A cell culture system was constructed and cells were cultured to 23 passages in vitro. Growth curves and colony formation studies suggested that BM-MSCs had a high self-renewal capacity and that their proliferation rate declined with age. Karyotype analysis demonstrated that BM-MSCs were diploid and genetically stable. Semi-quantitative polymerase chain reaction analysis revealed that BM-MSCs positively expressed cluster of differentiation (CD)73, CD90, CD105, CD166 and vimentin, although they were negative for the endothelial cell marker CD31. Additionally, immunofluorescence staining revealed that the cells expressed CD29, CD44, CD90, CD105 and vimentin. Flow cytometric analysis revealed that the rates of positive expression of vimentin, CD44, CD90 and CD105 were all >97%. BM-MSCs were able to differentiate into adipocytes, osteoblasts, cartilage cells, hepatocytes and functional insulin-secreting cells. In conclusion, Tibetan mastiff BM-MSCs may be purified successfully using a whole bone marrow culture method. The findings of the current study suggested important potential applications of BM-MSCs as a source for regenerative therapies.
Collapse
Affiliation(s)
- Shuang Zhang
- Scientific Research Center, Harbin Sport University, Harbin, Heilongjiang 150008, P.R. China
| | - Chenqiong Zhao
- Scientific Research Center, Harbin Sport University, Harbin, Heilongjiang 150008, P.R. China
| | - Shi Liu
- Scientific Research Center, Harbin Sport University, Harbin, Heilongjiang 150008, P.R. China
| | - Yufeng Wang
- Scientific Research Center, Harbin Sport University, Harbin, Heilongjiang 150008, P.R. China
| | - Yuhua Zhao
- Scientific Research Center, Harbin Sport University, Harbin, Heilongjiang 150008, P.R. China
| | - Weijun Guan
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Zhiqiang Zhu
- Scientific Research Center, Harbin Sport University, Harbin, Heilongjiang 150008, P.R. China
| |
Collapse
|
49
|
Mahabadi JA, Sabzalipour H, Bafrani HH, Gheibi Hayat SM, Nikzad H. Application of induced pluripotent stem cell and embryonic stem cell technology to the study of male infertility. J Cell Physiol 2018; 233:8441-8449. [PMID: 29870061 DOI: 10.1002/jcp.26757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 04/23/2018] [Indexed: 01/18/2023]
Abstract
Stem cells (SCs) are classes of undifferentiated biological cells existing only at the embryonic, fetal, and adult stages that can divide to produce specialized cell types during fetal development and remain in our bodies throughout life. The progression of regenerative and reproductive medicine owes the advancement of respective in vitro and in vivo biological science on the stem cell nature under appropriate conditions. The SCs are promising therapeutic tools to treat currently of infertility because of wide sources and high potency to differentiate. Nevertheless, no effective remedies are available to deal with severe infertility due to congenital or gonadotoxic stem cell deficiency in prepubertal childhood. Some recent solutions have been developed to address the severe fertility problems, including in vitro formation of germ cells from stem cells, induction of pluripotency from somatic cells, and production of patient-specific pluripotent stem cells. There is a possibility of fertility restoration using the in vitro formation of germ cells from somatic cells. Accordingly, the present review aimed at studying the literature published on the medical application of stem cells in reproductive concerns.
Collapse
Affiliation(s)
- Javad Amini Mahabadi
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Sabzalipour
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Seyed Mohammad Gheibi Hayat
- Student Research Committee, Department of Medical Biotechnology, Faculty Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Nikzad
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
50
|
Pourmoghadam Z, Aghebati‐Maleki L, Motalebnezhad M, Yousefi B, Yousefi M. Current approaches for the treatment of male infertility with stem cell therapy. J Cell Physiol 2018; 233:6455-6469. [DOI: 10.1002/jcp.26577] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 02/27/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Zahra Pourmoghadam
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
- Drug Applied Research Center Tabriz University of Medical Sciences Tabriz Iran
- Student Research Committee Tabriz University of Medical Sciences Tabriz Iran
| | - Leili Aghebati‐Maleki
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
- Department of Immunology Tabriz University of Medical Sciences Tabriz Iran
| | | | - Bahman Yousefi
- Drug Applied Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Mehdi Yousefi
- Drug Applied Research Center Tabriz University of Medical Sciences Tabriz Iran
- Department of Immunology Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|